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We present a free-space interferometer to observe two-particle interference of a pair of atoms with
entangled momenta. The source of atom pairs is a Bose–Einstein condensate subject to a dynamical
instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit
of our recent Hong–Ou–Mandel experiment. We report an observation consistent with an entangled
state at the input of the interferometer. We explain how our current setup can be extended to
enable a test of a Bell inequality on momentum observables.

A key element of the second quantum revolution [1, 2]
is entanglement [3]. Its extraordinary character comes
from the fact that the many-body wave-function of en-
tangled particles can only be described in a configuration
space associated with the tensor product of the configura-
tion spaces of the individual particles. When one insists
on describing it in our ordinary space-time, one has to
face the problem of non-locality [4–6]. This is clearly il-
lustrated by the violation of Bell’s inequalities [7], which
apply to any system that can be described in the spirit of
the local realist worldview of Einstein, in which physical
reality lies in our ordinary space-time [8].

While the violation of Bell’s inequalities stems from
two-particle interferences observed with entangled pairs,
the converse is not true: not all phenomena associated
with two-particle interference can lead to a violation of
Bell’s inequalities. This is for instance the case of the
Hanbury Brown–Twiss effect for thermal bosons [9, 10],
or the Hong–Ou–Mandel effect [11]: the quantum de-
scription appeals to two-particle interference but no non-
locality is involved. This is because the latter effects in-
volve only two modes for two indistinguishable particles,
while a configuration leading to the violation of Bell’s
inequalities requires four modes that can be made to in-
terfere two by two in different places [12].

Ever more ideal experimental tests of Bell’s inequalities
have been performed with low energy photons, internal
states of trapped ions and nitrogen-vacancy centers (see
references in [13, 14]). But we know of no experiments
on two-particle interference in four modes associated with
motional degrees of freedom (position or momentum), in
a configuration permitting, even in principle, a Bell in-
equality test [15]. Such tests involving mechanical ob-
servables are desirable, in particular because they may
allow one to touch upon the interface between quantum
mechanics and gravitation [16].

In this paper, we present a setup to measure two-
particle interferences with atoms entangled in momen-
tum. We observe correlations consistent with the pres-
ence of an entangled state, and discuss how the appara-
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FIG. 1. Diagram of a two-particle, four-mode interferometer.
An atom pair in the entangled momentum state (1) is emitted
at time t = 0. Using Bragg diffraction on optical lattices, the
four input modes are then deflected at time t1, and mixed
two by two on the splitters A and B at time t2 = 2 t1. The
interference is read-out by detecting the atoms in the out-
put modes A±, B±, and measuring the probabilities of joint
detection P(A±, B±). The Bragg deflector and splitters dif-
fer from their optical analogs, because rather than reversing
the incident momentum, they add a fixed momentum ±~k`
along the z-axis, where k` is the reciprocal lattice vector. The
dashed lines show the Hong–Ou–Mandel configuration.

tus can be extended to realize a test of a Bell inequality.
To understand the experiment, consider a Bell state con-
sisting of a pair of atoms in a superposition of distinct
momentum modes labeled in the center-of-mass reference
frame by ±p and ±p′:

|Ψ〉 =
1
√
2

(|p,−p〉+ |p′,−p′〉) . (1)

To probe the coherent superposition of the pair states
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|p,−p〉 and |p′,−p′〉, we use the two-atom interferometer
shown in Fig. 1. An analogous interferometer for photons
was proposed in Ref. [17], implemented in Ref. [18], and
resulted in a Bell inequality violation. Similar configura-
tions for atoms were also analyzed in Refs. [19, 20].

The input modes p and −p′ of our interferometer are
deflected and mixed on the 50:50 splitter A. Similarly,
the input modes p′ and −p are deflected and mixed on the
50:50 splitter B. The deflection and mixing are realized
with Bragg diffraction on optical lattices. The deflecting
lattice is common to the four input modes and is applied
at time t1. The splitting lattices A and B are applied at
time t2 = 2 t1 (the time origin is set at the instant of pair
emission). The four output modes of the interferometer,
A± and B±, can be written in terms of the four input
modes [21]:

|A+〉 =
−1
√
2

(
e−i(φA−φD)|p〉+ i e−iφD | − p′〉

)
, (2)

|A−〉 =
−1
√
2

(
i eiφD |p〉+ ei(φA−φD)| − p′〉

)
, (3)

|B+〉 =
−1
√
2

(
e−i(φB−φD)|p′〉+ i e−iφD | − p〉

)
, (4)

|B−〉 =
−1
√
2

(
i eiφD |p′〉+ ei(φB−φD)| − p〉

)
. (5)

Here, the phases φD, φA and φB are the relative phases
of the laser beams forming the deflecting lattice (φD) and
the splitting lattices (φA and φB); they can in principle
be separately controlled. We have omitted overall phase
factors due to propagation.

Inverting equations (2–5), one readily obtains the ex-
pression of the entangled state (1) at the output of the
interferometer, which solely depends on φA and φB :

|Ψout〉 =
1

2
√
2

[
−i
(
eiφA + eiφB

)
|A+, B+〉

+
(
ei(φA−φB) − 1

)
|A+, B−〉

+
(
e−i(φA−φB) − 1

)
|A−, B+〉

−i
(
e−iφA + e−iφB

)
|A−, B−〉

]
.

(6)

The probabilities of joint detection in the output modes
are given by the squared modulus of the complex ampli-
tudes of the corresponding pair states:

P(A+, B+) = P(A−, B−) =
1

2
cos2

[
(φA − φB)/2

]
, (7)

P(A+, B−) = P(A−, B+) =
1

2
sin2

[
(φA − φB)/2

]
, (8)

while the probabilities of single detection are all equal
to 1/2. Observing the modulation of the joint detection
probabilities as a function of the phase difference (φA −
φB) would demonstrate that the initial state is entangled.
If rather, we have initially a statistical mixture of the pair
states |p,−p〉 and |p′,−p′〉, there would be no modulation
and the probabilities of joint detection would all be equal

to 1/4. The four joint detection probabilities can also be
combined in a single correlation coefficient:

E = P(A+, B+) + P(A−, B−)

− P(A+, B−)− P(A−, B+)

(9)

= V cos(φA − φB) . (10)

The visibility V is equal to unity for the input state (1),
but it may be reduced in a real experiment due for exam-
ple to decoherence, or the presence of additional pairs. Of
course, a Bell’s inequality test remains possible provided
V > 1/

√
2 [22].

We now come to our experimental realization. A
gaseous Bose–Einstein condensate (BEC) containing 7×
104 Helium-4 atoms in the metastable 2 3S1,mJ = 1 elec-
tronic state is confined in an ellipsoidal optical trap with
its long axis along the vertical (z) direction. The emis-
sion of atom pairs occurs in the presence of a vertical,
moving optical lattice formed by the interference of two
laser beams with slightly different frequencies [21]. It
results from the scattering of two atoms from the BEC
and can be thought of as a spontaneous, degenerate four-
wave mixing process [23]. The lattice is switched on and
off adiabatically in 100µs, and is maintained at a con-
stant depth for 600µs. The lattice hold time is tuned to
obtain a typical mode occupancy of 0.2 [24]. The proba-
bility to emit multiple pairs in the same modes is about 5
times smaller. The optical trap is switched off abruptly
as soon as the lattice depth is returned to zero. The
atoms are then transferred to the magnetically insensi-
tive mJ = 0 state with a two-photon Raman transition
and fall freely under the sole influence of gravity. They
end their fall on a micro-channel plate detector located
46 cm below the position of the optical trap [25]. The
detector records the impact of each atom with an effi-
ciency ∼ 25 %. We store the arrival times and horizontal
positions (x-y-plane), and reconstruct the initial three-
dimensional velocity distribution of the atoms.

In Fig. 2, we show the initial velocity distribution of
the emitted atom pairs in the y-z-plane. Here, and in
the rest of the article, velocities are expressed in the
center-of-mass reference frame of the free-falling pairs.
The distribution is bimodal, and symmetric under ro-
tation about the z-axis, reflecting the one-dimensional
character of the pair emission. We do observe, however,
a slight asymmetry in the height of the two maxima. We
attribute this asymmetry to momentum-dependent losses
occurring during the short time when the emitted atoms
spatially overlap with the BEC.

The pairwise emission process is characterized by the
normalized cross-correlation:

g(2)(v+
z , v

−
z ) =

〈n(v+
z )n(v−z )〉

〈n(v+
z )〉〈n(v−z )〉

, (11)

where n(v±z ) represents the number of atoms with a ve-
locity v+

z > 0, or v−z < 0, along the z-axis and 0 along
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FIG. 2. Initial velocity distribution of the emitted atom pairs
in the y-z-plane. The color scale represents the total number
of atoms detected over 1 169 repetitions of the experiment
inside a small integration volume [21]. The velocities are de-
fined with respect to the center-of-mass velocity of the atom
pairs, which was measured to be 0, 0 and 94mm/s along the
x, y and z directions, respectively.

the x- and y-axes. Experimentally, we measure this cor-
relation by counting the number of detected atoms in-
side two small volumes in velocity-space [21], and aver-
aging their product over many realizations (as denoted
by 〈·〉). The correlation obtained in the experiment is
displayed in Fig. 3. A two-particle correlation centered
around v+

z = −v−z ' 25 mm/s is clearly visible and con-
firms that atoms are indeed emitted in pairs with op-
posite velocities. Because the pair emission fulfills the
quasi-momentum conservation strictly, but the energy
conservation only loosely [23], our source emits several
pairs of modes, as shown by the correlation peak which
is elongated along the line v+

z = −v−z [21].
If the pair production process is coherent, emitted pairs

will be in a superposition of several pair states, each with
well defined velocities. In other words, our source of atom
pairs should produce pairs of entangled atoms. By filter-
ing the velocities at the detector according to: mv+

z = p
or p′, and mv−z = −p or −p′, where m is the mass of
the atom, we therefore expect to obtain a Bell state of
the form (1). The next step is to observe an interference
between the two components of the superposition state
with the interferometer in Fig. 1. This is realized using
Bragg diffraction of the atoms on a second moving op-
tical lattice oriented along the z-axis, distinct from the
lattice driving the pair emission. This Bragg lattice is
pulsed first for 100µs to realize the Bragg deflector (π-
pulse), and then for 50µs to realize the Bragg splitters
(π/2-pulse). The reciprocal vector k` of the lattice is set
to the value ~k`/m = 50 mm/s. By construction, the in-
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FIG. 3. Normalized cross-correlation g(2)(v+z , v−z ). The veloc-
ities are measured along the z-axis and relative to the center-
of-mass velocity of the atom pairs. A sliding average was per-
formed to reduce the statistical noise. The correlation peak
is elongated along the anti-diagonal because the source can
emit in several pairs of modes. The width of the correlation
peak along the diagonal corresponds to the diffraction limit
imposed by the spatial extent of the source.

terferometer is closed for any pair of modes (p,−p′), or
(−p, p′), satisfying the condition p + p′ = ~k`. The fre-
quency difference between the laser beams forming the
lattice is tuned to resonantly couple the modes with ve-
locities v±z = ±25 mm/s but the spectral broadening in-
duced by the finite interaction time of the atoms with the
lattice is such that all pairs of modes populated in the
experiment are coupled with almost the same strength.
Thus, a single Bragg pulse simultaneously realizes the de-
flection, or the mixing, of the two pairs of modes (p,−p′)
and (−p, p′).

We choose to apply the deflecting pulse right after the
transfer to the mJ = 0 state, at t1 = 1 100 µs, where the
time origin is arbitrarily set at the instant when the op-
tical lattice driving the pair emission is switched on, and
t1 is the beginning of the pulse. To close the interfer-
ometer, the time t2 for the splitting pulse is determined
experimentally. This is achieved by performing a Hong–
Ou–Mandel experiment [26]; that is, we vary the time at
which the splitting pulse is applied and measure the prob-
ability of joint detection at velocities v±z = ±25 mm/s
(dashed lines in Fig. 1). The interferometer is closed
when the joint detection probability is minimum, which,
in our experiment, occurs when the Bragg splitting pulse
starts at t2 = 1 950 µs [21].

Ideally, one would vary the relative phase (φA − φB)
in a controlled manner to observe the modulation pre-
dicted in Eq. (10). This is not possible with the setup
described here because the two splitters are realized with
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FIG. 4. Joint detection probabilities measured at the output
of the four-mode interferometer for three independent sets
of momentum modes (p, p′). The lower graph displays the
correlation coefficient, E. The gray line represents the zero
level of this coefficient, calibrated using uncorrelated sets of
velocites; the width of the line is the error on the zero level.
The velocities v+z corresponding to the modes p are 27.0, 29.1
and 31.1mm/s for sets 1, 2 and 3, respectively. Averages
were taken over 2 218 repetitions of the experiment. Error
bars denote the statistical uncertainty and are obtained by
bootstrapping.

the same Bragg pulse. Active control of the relative phase
(φA − φB) could be achieved using independent Bragg
pulses for the splitters A and B, and we intend to imple-
ment this procedure in the future. However, we still have
a way to probe different relative phases in the current
setup by filtering modes for which the Bragg diffraction
is slightly off-resonant, which adds a velocity-dependent
contribution to the relative phase (φA − φB) [21]. We
therefore obtain different relative phases by filtering dif-
ferent output modes.

The number of independent sets of momentum modes
(±p,±p′) —and thus the number of different relative
phases— that we can access is constrained by the width
of the Bragg resonance and the fact that the integration
volume should be large enough that a significant num-
ber of atoms are detected. In the experiment we have
been able to make measurements on three independent
sets. We estimate the relative phases imprinted by the
off-resonant Bragg diffraction to be −43, −94 and −144◦
for sets 1, 2 and 3, respectively. We give these values
only as an indication of how the relative phase may vary
between the three sets of modes since other contributions

could also be present.
Figure 4 displays the result of these three measure-

ments. The upper two graphs show the four joint detec-
tion probabilities [21]. As expected from Eqs. (7) and (8),
the values of P(A+, B+) and P(A−, B−) on the one hand,
and P(A+, B−) and P(A−, B+) on the other, appear to
be correlated. Note that, for each set of modes, the sum
of all four joint detection probabilities is equal to unity
by construction. The lower graph shows the correlation
coefficient E defined in Eq. (10). We observe that, for at
least one set of modes, the correlation coefficient takes a
non-zero value (set 3 gives E = 0.51± 0.20). We can also
use our data to verify the zero level of E: by filtering 78
sets of uncorrelated velocities, we find E = −0.003 with a
statistical uncertainty of 0.020 [21] (gray line in the lower
graph of Fig. 4).

Our results are thus consistent with the existence of
an entangled state of two atoms. To make a stronger
claim we would like to observe the modulation of E when
we control the phase difference (φA − φB). This is best
achieved by introducing separate Bragg splitters. Per-
forming a correlation measurement on a single set of mo-
mentum modes would render common any velocity de-
pendent phase and we could then examine the variation
of E with the relative phase and measure the contrast.
A contrast in excess of 1/

√
2 would permit the observa-

tion of a Bell inequality violation for freely falling mas-
sive particles using their momentum degree of freedom.
Finally, we note that the setup described here can in
principle be adapted to mix the mode p with p′, and −p
with −p′, by changing the reciprocal wavevector of the
Bragg lattices. This variant, where the trajectories of the
two atoms never cross, can also lead to a violation of a
Bell inequality, in a situation where non-locality is more
striking.

The research leading to these results has received
funding from the European Research Council and from
the People Programme (Marie Curie Actions) under
the European Union’s Seventh Framework Programme
(FP7/2007-2013) and H2020 Programme (2014-2020) /
ERC grant agreement n◦267775, and REA grant agree-
ments n◦618760 and 704832. We also acknowledge fund-
ing from the ANR through the grant agreement n◦15-
CE30-0017 and support from Churchill College, Cam-
bridge.

APPENDIX

Optical lattice for pair emission

The optical lattice driving the dynamical instability at
the origin of the pair creation has a period a = 550 nm
and a depth of 0.45Erec, where Erec = π2~2/2ma2 is
the recoil energy and m is the mass of an atom. The
frequency difference between the two laser beams form-
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ing the lattice is ν = 105 kHz, resulting in a velocity
νa = 57 mm/s for the motion of the standing wave in the
laboratory frame of reference.

Integration volumes for counting the atom numbers

Depending on the observable, we choose different in-
tegration volumes in velocity space in order to optimize
the signal to noise ratio. In Tab. I, we summarize the in-
tegration volumes used to count the number of atoms for
each graph of the main text and supplemental material.

Table I. Integration volumes. Rectangular boxes have a size
δvx, δvy and δvz along x, y and z, respectively. Cylindrical
boxes are oriented along z; their diameter is δvx = δvy and
their length is δvz. All sizes are given in mm/s.

box shape δvx δvy δvz

Fig. 2 rectangular 9.2 1.7 9.2
Fig. 3 cylindrical 32.0 32.0 2.5
Fig. 4 cylindrical 4.0 4.0 2.0
Fig. S1 (left) cylindrical 18.0 18.0 1.8
Fig. S1 (right) cylindrical 18.0 18.0 0.9
Fig. S3 cylindrical 4.0 4.0 2.6

Normalized cross-correlation

The normalized cross-correlation g(2)(v+
z , v

−
z ) shown in

Fig. 3 of the main text displays a peak centered around
v+
z = −v−z ' 25 mm/s. This peak is elongated along the
line v+

z = −v−z , indicating the multi-mode nature of our
source of atom pairs. Projections of the two-dimensional
cross-correlation function along the lines v+

z = −v−z and
v+
z −v−z = 50 mm/s, corresponding to the long and short
axes of the correlation peaks, respectively, are given in
Fig. 5. Unlike the two-dimensional map displayed in
Fig. 3 of the main text, no sliding average was performed
and all experimental points are statistically independent.
The different amplitudes of the correlation peak along the
long and short axes stem from the different integration
volumes. A Gaussian fit yields the half-widths (standard
deviation) σ = (9.0± 2.3) mm/s for the long axis, and
σ = (2.7± 0.7) mm/s for the short axis. These values are
to be compared to the half-width of the auto-correlation
functions, σauto = (1.9± 0.4) mm/s, which is the diffrac-
tion limit of our source.

Timing of the Bragg pulses

In principle, the interferometer is closed when the time
t2 at which the mixing is realized equals twice the time
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FIG. 5. Projections of the two-dimensional cross-correlation
function on its long and short axes. The blue points represent
the experimental data. The error bars represent the statistical
uncertainty and are obtained by bootstrapping. The grey
lines are Gaussian fits with an offset fixed at unity.

t1 at which the deflection is realized. However, neither
the pair emission, nor the Bragg diffraction occur at a
well defined instant and we have to determine exper-
imentally the time at which the Bragg splitting pulse
must be applied in order to close the interferometer. We
solve this problem by performing a Hong–Ou–Mandel ex-
periment. This is achieved by filtering two symmetric
output modes, C+ and C−, corresponding to the input
state |p′′,−p′′〉 (see Fig. 6). This configuration realizes
a two-mode interferometer when 2 p′′ = ~k`. In the ex-
periment we have selected the modes with the velocities
v+
z = −v−z = 25 mm/s, which are located at the maxima
of the initial velocity distribution of the emitted atom
pairs. We then vary the time at which the Bragg split-
ting pulse is applied, and measure the probability of joint
detection in the two output modes:

P(C+, C−) = 2Λ−1〈n(p′′)n(−p′′)〉 , (12)

where the normalization factor is given by

Λ = 〈n(p′′)(n(p′′)− 1)〉+ 〈n(−p′′)(n(−p′′)− 1)〉
+ 2〈n(p′′)n(−p′′)〉 (13)

and we have used the notation n(±p′′) instead of n(v±z ),
with mv±z = ±p′′.

In a closed interferometer, the “which-path” informa-
tion is erased and the two atoms of a pair become in-
distinguishable after the Bragg splitter. A two-particle
interference then results in the cancellation of the joint
detection probability. We show the result of this mea-
surement in Fig. 7. The dip in the joint detection prob-
ability is clearly visible when the Bragg splitting pulse is
applied at time t2 = 1 950 µs, and we use this timing to
realize the four-mode interferometer.
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FIG. 6. Diagram of the Hong–Ou–Mandel interferometer. By
filtering, only two output modes corresponding to the ini-
tial pair state |p′′,−p′′〉, the four-mode interferometer folds
onto a two-mode interferometer. The Hong–Ou–Mandel ef-
fect occurs when the Bragg splitting pulse mixes the two in-
put modes p′′ and −p′′. It manifests as a reduction of the
probability of joint detection in the output modes C+ and
C−, shown in Fig. 7.

Bragg diffraction model

The Bragg reflectors and splitters are realized by Bragg
diffraction on a vertical, moving optical lattice formed by
the interference pattern of two laser beams with slightly
different frequencies. The frequency difference between
the two beams forming the lattice is chosen such that the
lattice is at rest in the center-of-mass reference frame of
the free-falling atom pair. In the limit of a shallow lattice,
i.e. when the lattice depth is smaller than the recoil
energy Erec = ~2k2

`/2m, Bragg diffraction couples only
pairs of momentum states (p,−p′), or (−p, p′), satisfying
both momentum conservation: p+p′ = 2~k`, and energy
conservation: p2/2m = p′2/2m. If the interaction time
between the atoms and the lattice is short, however, the
energy conservation condition is not strict.

Resonant diffraction

We consider here the pair of input modes p and −p′
resonantly coupled by the Bragg lattice. We write the
coupling Hamiltonian in the basis {|p〉, | − p′〉} as:

Ĥ =
~Ω

2

(
0 eiφ

e−iφ 0

)
, (14)

where Ω is the two-photon Rabi-frequency and φ is the
relative phase between the two laser beams forming the

 0
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FIG. 7. Joint detection probability in the two symmetric
output modes as a function of the time at which the Bragg
splitting pulse is applied. The blue points represent the ex-
perimental data. The error bars represent the statistical un-
certainty and are obtained by bootstrapping. The grey line is
a Gaussian fit. The reduction of the joint detection probabil-
ity at t2 = 1950µs results from the Hong–Ou–Mandel effect,
and signals that the interferometer is closed.

Bragg lattice. The Bragg lattice drives a Rabi oscilla-
tion between the two modes p and −p′. The evolution
operator describing this dynamics takes the simple form:

Û(t) ≡ e−iĤt/~ =

(
cos (Ωt/2) −i e−iφ sin (Ωt/2)

−i eiφ sin (Ωt/2) cos (Ωt/2)

)
,

(15)
where the time origin is set at the instant when the laser
beams are switched on. An interaction time t = π/Ω
(π-pulse) turns an input state |p〉 into an output state
| − p′〉, and an input state | − p′〉 into an output state
|p〉; it therefore realizes a Bragg deflector. Similarly, an
interaction time t = π/2Ω (π/2-pulse) turns |p〉 or |− p′〉
into a superposition with equal weights of |p〉 and |− p′〉;
it therefore realizes a 50:50 Bragg splitter.

In our interferometer, a π-pulse and a π/2-pulse are
successively applied to realize the deflection and the split-
ting. Using the subscriptsD and A to label the deflecting
pulse and the splitting pulse A, respectively, we therefore
obtain the output modes A+ and A− by writing:

(
A+

A−

)
= ÛA(π/2Ω) ÛD(π/Ω)

(
p
−p′
)

(16)

=
−1√

2

(
e−i(φA−φD) i e−iφD

i eiφD ei(φA−φD)

)(
p
−p′
)
. (17)

The same reasoning applies if we consider the pair of
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input modes p′ and −p. We then obtain:(
B+

B−

)
= ÛB(π/2Ω) ÛD(π/Ω)

(
p′

−p

)
(18)

=
−1√

2

(
e−i(φB−φD) i e−iφD

i eiφD ei(φB−φD)

)(
p′

−p

)
. (19)

Equations (S4–S7) directly give Eqs. (2–5) in the main
text.

Off-resonant diffraction

We now consider the pair of input modes p and −p′
for which the Bragg diffraction is slightly off-resonant.
We introduce the detuning from the resonance condition:
~δ = p2/2m− p′2/2m. We assume p > p′, so that δ > 0.
To first order in δ/Ω, the evolution operator in the basis
{|p〉, | − p′〉} is modified according to:

Û(t) '
(

e−iδt/2 cos (Ωt/2) −i e−i(φ+δt/2) sin (Ωt/2)
−i ei(φ+δt/2) sin (Ωt/2) eiδt/2 cos (Ωt/2)

)
.

(20)
If we consider instead the input states p′ and −p, but
keep the same definition for δ, we must take care to re-
place δ by −δ in this evolution operator. Compared to
the resonant case, one sees that an additional phase δt
is accumulated between the components |p〉 and | − p′〉
during the interaction with the Bragg lattice. At the out-
put of the interferometer, the modes A± and B± are now
given by the matrix equations(
A+

A−

)
' −1√

2

(
e−i(φA−φD−πδ/4Ω) i e−i(φD+3πδ/4Ω)

i ei(φD+3πδ/4Ω) ei(φA−φD−πδ/4Ω)

)(
p
−p′
)

(21)

and(
B+

B−

)
' −1√

2

(
e−i(φB−φD+πδ/4Ω) i e−i(φD−3πδ/4Ω)

i ei(φD−3πδ/4Ω) ei(φB−φD+πδ/4Ω)

)(
p′

−p

)
.

(22)

Inverting the matrix equations (21) and (22), we can
express the entangled state |ψ〉 = 1√

2
(|p,−p〉+ |p′,−p′〉)

at the output of the interferometer:

|Ψout〉 '
1

2
√
2

[
−i
(
ei(φA−πδ/Ω) + ei(φB+πδ/Ω)

)
|A+, B+〉

+
(
ei(φA−φB−πδ/2Ω) − e3iπδ/2Ω

)
|A+, B−〉

+
(
e−i(φA−φB−πδ/2Ω) − e−3iπδ/2Ω

)
|A−, B+〉

−i
(
e−i(φA−πδ/Ω) + e−i(φB+πδ/Ω)

)
|A−, B−〉

]
.

(23)

We finally obtain the joint detection probabilities

P(A±, B±) ' 1

2
cos2

[
(φA − φB − 2πδ/Ω)/2

]
, (24)

P(A±, B∓) ' 1

2
sin2

[
(φA − φB − 2πδ/Ω)/2

]
. (25)

To first order in δ/Ω, the effect of the detuning from the
Bragg resonance is thus to add a contribution −2πδ/Ω
to the relative phase (φA − φB). This off-resonance con-
tribution depends on p and p′ through the detuning δ.

The velocities v+
z corresponding to the mode p are 27.0,

29.1 and 31.1mm/s for sets 1, 2 and 3, respectively. The
velocities corresponding to the mode p′ are 23.0, 20.9 and
18.9mm/s for sets 1, 2 and 3, respectively. The detuning
from the Bragg resonance condition for these three sets
of modes are thus: δ1/2π = 0.9 kHz, δ2/2π = 1.9 kHz and
δ3/2π = 2.9 kHz. For these values of the detuning δ, the
condition δ � Ω is only marginally satisfied and the low-
est order approximation overestimates the relative phases
by about 30%. For a better estimation, we wrote the ex-
act evolution operator for the two-mode dynamics, and
numerically calculated the additional phases with respect
to the resonant case; we found −43, −94 and −144◦ for
sets 1, 2 and 3, respectively.

Experimental measurement of the joint detection
probabilities

The probabilities of joint detection in the output
modes A± and B± are measured by counting the number
of atoms with velocities mv+

z = p or p′, and mv−z = −p
or −p′, and using the relations

P(A+, B+) = Λ−1〈n(p)n(p′)〉 , (26)

P(A−, B−) = Λ−1〈n(−p)n(−p′)〉 , (27)

P(A+, B−) = Λ−1〈n(p)n(−p)〉 , (28)

P(A−, B+) = Λ−1〈n(−p′)n(p′)〉 , (29)

where the normalization factor is given by

Λ = 〈n(p)n(p′)〉+ 〈n(−p)n(−p′)〉
+ 〈n(p)n(−p)〉+ 〈n(−p′)n(p′)〉 (30)

and we have used the notation n(±p) or n(±p′) instead
of n(v±z ), with mv±z = ±p or ±p′.

Zero level of the correlation coefficient

For measuring the joint detection probabilities, we
have counted the number of atoms n(v±z ) detected at
four different velocities: mv+

z = p or p′ and mv−z = −p
or −p′. This was repeated with three different sets of
modes (±p,±p′) for which the interferometer was closed.

In order to confirm the zero level of the correlation co-
efficient E, we have constructed a correlation coefficient
using sets of modes which are initially uncorrelated, and
do not close the interferometer. Using the 34 = 81 val-
ues of v±z , there are 81− 3 = 78 such combinations. The
mean values of the joint detection probabilities measured
with these uncorrelated sets of modes are all close to 1/4,
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FIG. 8. Histogram of the correlation coefficient measured
with 78 sets of uncorrelated modes, which do not close the in-
terferometer. The fact that the distribution is peaked around
zero shows that there is no bias in the evaluation of the cor-
relation coefficient.

as summarized in Tab. II. In Fig. 8, we show a histogram
of the corresponding values of E. The distribution has
a mean value of −0.003± 0.020. These calibration mea-
surements give us confidence that we have no systematic
bias in the estimation of the correlation coefficient.

Table II. Mean values of the joint detection
probabilities for uncorrelated data.

P(A+, B+) 0.245± 0.007
P(A−, B−) 0.257± 0.010
P(A+, B−) 0.258± 0.009
P(A−, B+) 0.241± 0.009
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