Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material - Institut d'Optique Graduate School Access content directly
Journal Articles Physical Review Letters Year : 2017

Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

Abstract

The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.
Fichier principal
Vignette du fichier
PhysRevLett.118.157402.pdf (567.94 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01549547 , version 1 (28-06-2017)

Identifiers

Cite

Thomas Christensen, Wei Yan, A.-P. Jauho, Marin Soljačić, N. Asger Mortensen. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. Physical Review Letters, 2017, 118, pp.57402. ⟨10.1103/PhysRevLett.118.157402⟩. ⟨hal-01549547⟩
90 View
151 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More