
HAL Id: hal-01518606
https://hal.science/hal-01518606

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upsortable: Programming Top-K Queries Over Data
Streams

Julien Subercaze, Christophe Gravier, Syed Gillani, Abderrahmen Kammoun,
Frédérique Laforest

To cite this version:
Julien Subercaze, Christophe Gravier, Syed Gillani, Abderrahmen Kammoun, Frédérique Laforest.
Upsortable: Programming Top-K Queries Over Data Streams. 43rd International Conference on Very
Large Data Bases, Aug 2017, Munich, Germany. �hal-01518606�

https://hal.science/hal-01518606
https://hal.archives-ouvertes.fr

Upsortable: Programming Top-K Queries Over Data
Streams

Julien Subercaze, Christophe Gravier, Syed Gillani
Abderrahmen Kammoun, Frédérique Laforest

Laboratoire Hubert Curien, UMR CNRS 5516
Université Jean Monnet

25 rue docteur Rémy Annino
F-42000, Saint-Etienne, France

ABSTRACT
Top-k queries over data streams is a well studied problem.
There exists numerous systems allowing to process contin-
uous queries over sliding windows. At the opposite, non-
append only streams call for ad-hoc solutions, e.g. tailor-
made solutions implemented in a mainstream programming
language. In the meantime, the Stream API and lambda
expressions have been added in Java 8, thus gaining pow-
erful operations for data stream processing. However, the
Java Collections Framework does not provide data struc-
tures to safely and convienently support sorted collections of
evolving data. In this paper, we demonstrate Upsortable,
an annotation-based approach that allows to use existing
sorted collections from the standard Java API for dynamic
data management. Our approach relies on a combination
of pre-compilation abstract syntax tree modifications and
runtime analysis of bytecode. Upsortable offer the devel-
oper a safe and time-efficient solution for developing top-k
queries on data streams while keeping a full compatibility
with standard Java.

1. INTRODUCTION
Stream data processing systems have drawn the attention

of the database community for more than a decade [1, 3,
10]. Numerous systems have been developed to handle con-
tinuous queries in the frame of real-time applications. The
sliding-window paradigm is well-suited for processing the
large amount of real-time data in standard real-time moni-
toring applications [9, 4]. This paradigm underlies the vast
majority of existing data stream processing systems. Among
the capabilities of such systems, top-k query within sliding
windows has been widely covered [12, 18, 15, 11]. On the
data structure side, there is a vast body of work on approxi-
mate evaluation of frequent items, top-k and cardinality for
stream processing [5, 13, 6].

The sliding window paradigm covers the needs for major
monitoring applications, but one size does not fit all and
more complex analytics have requirements that cannot be
met by this paradigm. If the data expiration is not linear
with the time systems based on sliding-windows fall short
[8]. Therefore these real-world data stream processing ap-
plications require ad-hoc developements with standard pro-
gramming languages.

Programming languages have also evolved to answser the
need for data stream processing. Be it with Domain Specific
Languages [2, 16, 17], language extensions [14, 7] or with
evolutions of standard API like Stream for Java, this field
demonstrated many advances in the last few years. How-
ever, the existing data structures of these languages have
been designed for static data processing and their correct
use with evolving data is cumbersome – top-k query pro-
cessing requires maintaining sorted collections. We show
that maintaining sorted collections of dynamic data is par-
ticularly error-prone and leads to hard-to-detect bugs. In
this demo, we tackle the issue of maintaining dynamically
sorted collections in Java in a safe and transparent manner
for the application developer. For this purpose, we devel-
oped an annotation-based approach called Upsortable – a
portmanteau of update and sort – that uses compilation-
time abstract syntax tree modifications and runtime byte-
code analysis. Upsortable is fully compatible with standard
Java and is therefore available to the greatest number of de-
velopers 1.

2. THE CASE FOR UPSORTABLE
The standard Java Collections API contains three imple-

mentations of sorted data structures: the java.util.TreeSet
backed by a Red-Black tree, the java.util.PriorityQueue that
implements a priority heap, and for thread-safety purpose,
the java.util.concurrent.ConcurrentSkipListSet implements
a concurrent variant of Skip List. These structures especially
implement add and remove primitives, as well as methods
to navigate within these collections. These structures are
therefore well-suited for the implementation of exact top-k
queries. Elements are kept sorted according to either a com-
parator provided at the creation time of data structure or
by the natural ordering of the elements. In both cases, a
pairwise comparison method is used to sort the objects and
this method must provide a total ordering. When dealing

1Our system will be available upon acceptance as open-
source software and distributed as a Maven artifact

1

with data streams, the value of some fields of an object are
subject to evolution and this evolution may require a re-
ordering within the collections this object belongs to. With
the aforementioned sorted data structures – as well as third-
parties Java Collections API such as Guava2 or Eclipse Col-
lections3 – the developer must first remove the object from
each sorted collections, update its internal fields and rein-
sert the object in these collections. The sorted collections
may otherwise become irredeemably broken. Figure 1 de-
picts such an example. This remove, update, insert pro-
cess is very error-prone, especially in large code base where
objects belong to different sorted collections, depending on
the state of the application. Broken sorted collections are
also hard to identify at runtime and may go undetected for
a while. This is typical for top-k queries, where the collec-
tions might be broken after the k-th element. The behaviour
of the corrupted data structure is not predictible, it ranges
from inconsistent results to wrong inserts and impossible re-
movals – as depicted in Figure 1 where the removal of D is
impossible since it cannot be reached.

Figure 1: Example of a corrupted Red-Black tree after up-
date of Object A via call to its setter.

To circumvent this issue, the standard solution is to rely
on the Observer design pattern. This pattern implies that
the objects must keep track of the collections they belong
to. This requires to add an extra data structure within the
objects to store pointers to the collections they belong to.
The field setters must be updated to remove, update and in-
sert the object (acting as the notify in the pattern). Using a
dynamic array to store the pointer is the most compact way
but may lead to useless remove and update if the modified
field does not participate in the comparison of some sorted
structures that the objects belong to. Using a Hashmap
circumvents this issue by mapping fields to the structures
where the object belong and where the fields participate in
the comparison. However in both cases, when dealing with
millions/billions of objects that are created and destroyed
during the application lifetime, this solution has a very high
memory cost. Moreover, it still requires heavy modifications
of the source code by the application developer who must
handcraft these routines for each object definition and for
each setter.

Listing 1: Annotation based solution

@Upsortable
pub l i c c l a s s MyObject {

p r i v a t e i n t f i r s t F i e l d ;
p r i v a t e S t r ing secondFie ld ;

}

2https://github.com/google/guava
3https://www.eclipse.org/collections/

3. SOLUTION OVERVIEW
Our solution proposes an alternative to the Observer pat-

tern that does not require any other source code modifica-
tion than adding an annotation and has a restricted memory
fingerprint. The developer simply uses the @Upsortable an-
notation at the classe level to declare that the internal fields
are subject to modification and that the sorted collections it
belongs must be dynamically upated – such as depicted in
Listing 1. Our framework performs all the required updates
to maintain the collections correctly sorted when setters up-
date values in the object fields.

The underlying idea of our solution is that in real-time
applications the number of sorted collections is very small
compared to the number of objects that are sorted within
these collections – dozens against millions in practice. We
leverage this imbalance to devise an approach that does not
require to add any extra data structure to the objects def-
inition. Instead of linking objects to the collections they
belong, as in the Observer pattern, a global map links each
field definition to the list of collections where it participate
in the comparison process.

To relieve the developer from the burden of implementing
this process, our framework consists of two parts: a trans-
parent source code injection during the compilation phase
and an encapsulation of the standard API sorted collections
to automatically manage the global collection.

3.1 AST modifications
The Java compilation is a two-step process. The first

step parses and compiles the source code and the second
one processes the annotations. The Lombok project4 has
demonstrated the feasability of modifying and recompiling
the Abstract Syntax Tree (AST) during the second step, al-
lowing annotations to transparently inject source code. Our
framework, based on Lombok, injects setters methods for
the classes annotated @Upsortable. The pseudo code of the
setter method is given in Algorithm 1. The setter retrieves
the sorted collections associated to the current field name –
obtained via reflection – and performs the remove, update,
insert operations. The algorithm keeps track of the sets the
current object participates in (by contract remove() returns
true if the object was present). As a consequence, we are
guaranteed to insert the updated object in the correct col-
lections. Usage of WeakReference is detailed in Section 3.3.
Figure 2 depicts the source code injection via AST modifi-
cation during the annotation processing phase.

3.2 Bookkeeping
To keep track of the mappings between the fields names

and the sorted collections, we encapsulate the creation of
the sorted collections using the static factory pattern.

Listing 2: Collection instantiation with upsortable

//Without upsor tab l e
TreeSet<MyObject> mySet = new

TreeSet<>(comparator) ;

//With upsor tab l e
UpsortableSet<MyObject> mySet =

Upsortab les . newTreeSet (comparator) ;

4https://projectlombok.org/

2

Figure 2: Upsortable Abstract Syntax Tree modifications at annotation processing time.

Algorithm 1: Injected Setter code during annotation
processing

Input: newV alue: the new value of the field
// Fails fast is value is unchanged

1 if this.field == newValue then
2 return
3 end

// List of references to the collections concerned by
this field

4 refsList← refMap.get(currentF ieldName);
// Remove this from the collections, remove cleaned

references
5 participatingCollections = newArrayList();
6 for ref ∈ refsList do
7 if ref is cleaned then
8 remove from refList
9 else

10 if ref.deref().remove(this) then
11 participatingCollections.add(ref.deref())
12 end

13 end
14 end

// Update the value
15 this.field← newV alue

// Reinsert in the right collections
16 for collection ∈ participatingCollections do
17 collection.add(this)
18 end

We created a class called Upsortables that exposes static
methods to create sorted structrures backed by the stan-
dard Java API ones: TreeSet, ConcurrentSkipList and Pri-
orityQueue. These static factory methods require the usage
of comparator for the creation of sorted collections, disallow-
ing the usage of natural ordering. The comparator imple-
ments per definition a compare(MyObject o, MyObject o2)
method. The static factory methods analyze the content of
the compare method via runtime bytecode analysis in order

to extract the fields of MyObject that participates in the
comparison. For this purpose, we use Javassist, a common
bytecode manipulation library. The extracted field names
are then associated to the sorted collection that is being cre-
ated in the global map. For performance reasons, we provide
two versions of this global collection, one being thread-safe,
the other not. On the developer point-of-view, besides the
usage of the annotation, the sorted collection instantiation
is the only modification, albeit minor, that is required to use
Upsortable. Listing 2 depicts the minor changes that this
encapsulation implies. The burden on the developer side
is therefore very limited and does not bring any particular
difficulty.

3.3 Garbage Collection
Sorted collections may be created and deleted during the

lifecycle of the application. Our framework shall therefore
not interfere with the lifetime of these collections and shall
especially not prevent them from being collected by the
garbage collector. To prevent the Hashmap that maps fields
definitions to the Upsortable collections to hold a reference
to these collections that would prevent them to be collected,
we use a WeakReference. Contrarily to soft references, weak
ones do not interfere with the garbage collection of the ob-
jects they refer. The injected setters’ code takes care of
removing weak references that have been cleaned up by the
garbage collector. By relying on the ListIterator, we are able
to both process valid references and remove cleaned ones in
a single iteration over the list of weak references.

3.4 Discussion
The Upsortable approach offers a convenient and safe solu-

tion to manage dynamic sorted collections. Naturally, safety
and convenience have a performance impact. Keeping track
of the relation between fields and sorted collections in Up-
sortable has a very limited memory fingerprint – especially

3

compared to the Observer design pattern – and the CPU
impact is also limited. Since we leverage the imbalance be-
tween the number of objects and collections, this leads to
a very few useless removes (a O(log(n)) operation for three
data structures) and has a very limited impact of several
percents (< 5%) of the runtime in the practice, depending
on the input data. We show the attendee the impact of the
framework on a real-world application in the second scenario
of our demonstration.

4. DEMONSTRATION
In this demo, we will showcase i) the impact of Upsortable

on development time in the frame of an illustrative scenario
where annotated class instances participate to a single col-
lection, ii) the usage of Upsortable in a complex scenario
with real-world data in a large code base.

Annotating a class field using Upsortable. For this
demo, we provide a Java project that consumes a stream
of temperatures issued by one hundred different temper-
ature sensors. Each temperature value streamed to the
system is represented in memory as instances of the class
TemperatureSensor, which holds two fields: a sensor identi-
fier (a unique String) and the current temperature value
for this sensor (a float). In this application, any new
sensor value supersedes the previous one. The functional
objective of the system is to deliver, at each new received
value, the ten sensors with the greatest values (top-10 query
over all sensors). We showcase how to effectively use the
Upsortable annotation in order to answer this stream query
with as little development time possible, that is by adding
the Upsortable annotation and adding the temperature sen-
sors values to a UpsortableSet – using the set that encapsu-
lates Java collections API TreeSet. Would the attendee pre-
fer to use another collection such as a ConcurrentSkipList

or a PriorityQueue, we then showcase the easiness of chang-
ing the underlying data structure. Besides being a first sce-
nario demonstrating the pratical interest for Upsortable,
the attendee will be shown that only two lines of code and
an annotation (@Upsortable) are required to implement the
stream query.

Non-appendable data stream processing. The aim
of the second demo program for Upsortable is to provide
a stream processing scenario with more heterogeneous data
and more complex continuous queries. This program is part
of our answer to the DEBS 2016 Grand Challenge [8] that
was selected as finalist runner-ups. In this application, the
underlying scenario addresses the analysis metrics for a dy-
namic (evolving) social network graph. The item streamed
are social events of four kinds: new friendship between users,
a new post created, a new comment posted in response to
a post, or a user declares a like on a post. This query is
complex as instances belong to several collections that must
be continuously tracked to be updated when constituting in-
stances are updated. The continuous query that the system
must answer is the identification of the posts that currently
trigger the most activity in the social network. Posts ex-
piration is triggered by their score reaching zero, which is
not bound to a sliding window but actually to the activ-
ity of the social network. The total score of an active post
is computed as the sum of its own score plus the score of
all its related comments. A decreasing factor is applied to
both posts and comments – older events having less weight.
Posts lifespan cannot be predicted, this application therefore

showcases a non append-only application [12].The attendee
will gain a deeper understanding of the power of Upsortable
where instances are candidates to a continuous query belong
to several collections – and this ownership to different col-
lections can change over time. The main issue tackled here
ensues from events that can become obsolete (with a cas-
cading effect on related comments) and updated frequently
– when a like or a comment is produced for a given post,
this updates its score hence its ranking in the continuous
top-k query data structure.

We showcase that this previously prone-to-error and time-
consuming task is a case where Upsortable shines.

5. REFERENCES
[1] D. J. Abadi et al. Aurora: a new model and

architecture for data stream management. VLDBJ,
2003.

[2] J. Bosboom et al. StreamJIT: A commensal compiler
for high-performance stream programming. In
OOPSLA, 2014.

[3] S. Chandrasekaran et al. Telegraphcq: continuous
dataflow processing. In SIGMOD. ACM, 2003.

[4] G. Chen et al. Realtime data processing at facebook.
In SIGMOD, pages 1087–1098. ACM, 2016.

[5] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 2005.

[6] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In ESA, 2003.

[7] P. Eugster and K. Jayaram. EventJava: An extension
of Java for event correlation. In ECOOP. Springer,
2009.

[8] V. Gulisano et al. The DEBS 2016 grand challenge. In
DEBS, 2016.

[9] S. Kulkarni et al. Twitter heron: Stream processing at
scale. In SIGMOD, pages 239–250, 2015.

[10] J. Meehan et al. S-store: Streaming meets transaction
processing. PVLDB, 2015.

[11] A. Metwally et al. Efficient computation of frequent
and top-k elements in data streams. In ICDT, 2005.

[12] K. Mouratidis, S. Bakiras, and D. Papadias.
Continuous monitoring of top-k queries over sliding
windows. In SIGMOD, 2006.

[13] N. Ntarmos, P. Triantafillou, and G. Weikum.
Counting at large: Efficient cardinality estimation in
internet-scale data networks. In ICDE, 2006.

[14] G. Schueller and A. Behrend. Stream fusion using
reactive programming, linq and magic updates. In
FUSION, 2013.

[15] M. A. Soliman et al. Top-k query processing in
uncertain databases. In ICDE, 2007.

[16] X. Su et al. Changing engines in midstream: A Java
stream computational model for big data processing.
PVLDB, 2014.

[17] W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. In
International Conference on Compiler Construction,
2002.

[18] R. o. Zhu. SAP: Improving Continuous Top-K Queries
over Streaming Data. TKDE, 2017.

4

