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We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional quasi-
condensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations
of the quasicondensate momentum distribution. The doubling here refers to the oscillation frequency relative to
the oscillations of the real-space density distribution, invoked by a sudden confinement quench. By constructing
a nonequilibrium phase diagram that characterises the regime of frequency doubling and its gradual disappear-
ance, we find that this crossover is governed by the quench strength and the initial temperature, rather than
by the equilibrium-state crossover from the quasicondensate to the ideal Bose gas regime. The hydrodynamic
predictions are supported by the results of numerical simulations based on a finite-temperature c-field approach,
and extend the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of
finite-temperature systems and their dynamics in momentum space.

PACS numbers: 03.75.Kk, 67.85.-d, 05.30.Jp

Hydrodynamics is a powerful and broadly applicable ap-
proach for characterizing the collective nonequilibrium be-
havior of a wide range of classical and quantum fluids, includ-
ing Fermi liquids, liquid helium, and ultra-cold atomic Bose
and Fermi gases [1–6]. For ultra-cold gases, the hydrody-
namic approach has been particularly successful in describing
the breathing (monopole) and higher-order (multipole) col-
lective oscillations of harmonically trapped three-dimensional
(3D) Bose-Einstein condensates [2, 6, 7]. For condensates
near zero temperature, the applicability of the approach stems
from the fact that for long-wavelength (low-energy) excita-
tions the hydrodynamic equations are essentially equivalent
to those of superfluid hydrodynamics, which in turn can be
derived from the Gross-Pitaevskii equation for the order pa-
rameter. For partially condensed samples at finite tempera-
tures, the hydrodynamic equations should be generalized to
the equations of two-fluid hydrodynamics, where the applica-
bility of the approach to the normal (thermal) component of
the gas is justified by fast thermalization times due to colli-
sional relaxation [3, 8].

In contrast to 3D systems, the applicability of the hydro-
dynamic approach to 1D Bose gases is not well established.
Firstly, in the thermodynamic limit 1D Bose gases lack the
long-range order required for superfluid hydrodynamics to be
a priori applicable. Secondly, the very notion of local ther-
malisation, required for the validity of collisional hydrody-
namics of normal fluids, is questionable due to the underlying
integrability of the uniform 1D Bose gas model [9]. Despite
these reservations, the hydrodynamic approach has already
been applied to zero-temperature (T = 0) dynamics of 1D
Bose gases in various scenarios [10–15] (for related experi-
ments, see [16–18]). The comparison of hydrodynamic pre-
dictions with exact theoretical results is challenging. In Ref.

[13], time-dependent density matrix renormalization group
simulations of the collision of 1D Bose gases at T = 0 found
reasonable agreement with the hydrodynamic approximation,
although the latter failed to predict short wavelength dynamics
such as shock waves. An alternative approximate approach,
based on the conservation of Lieb-Liniger rapidities, has been
applied to describe the free expansion dynamics of a T = 0
1D gas [15] and was able to reproduce the hydrodynamic re-
sults for both weak and strong interactions.

At finite temperatures finding exact predictions is extremely
difficult, and thus developing a hydrodynamic approach is ap-
pealing, despite its lack of justification. Here, we develop a
general finite-T hydrodynamic approach suitable for 1D Bose
gases and specifically apply it to the breathing-mode oscil-
lations of a harmonically trapped 1D quasicondensate. We
find the predictions agree both with experimental observations
[18] and numerical simulations of a finite-temperature c-field
methodology [19, 20]. More remarkably, our hydrodynamic
approach not only adequately describes the dynamics of the
density distribution of the gas (the standard observable of the
hydrodynamic theory), but it can be also used to describe the
dynamics of the momentum distribution. This is a key ob-
servable for quantum gas experiments, and has not previously
been accessible from a hydrodynamic approach.

Reference [18] experimentally studied confinement
quenches of a finite-T 1D Bose gas. The key finding was
the phenomenon of frequency doubling in the oscillations of
the momentum distribution relative to the breathing-mode
oscillations of the real-space density profile. For the ex-
perimental dataset deep in the quasicondensate regime, a
periodic narrowing of the momentum distribution occurred
at twice the frequency of the breathing mode of the density
profile. Although finite-temperature effects are crucial for
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understanding the momentum-space properties of equilibrium
quasicondensates [21–26], the said experimental data for
dynamics were well-described by a simple zero-temperature
classical hydrodynamic approach, wherein the frequency
doubling was interpreted as a result of a self-reflection
mechanism due to the mean-field interaction energy barrier.
In contrast to this behavior, no frequency doubling was
observed in the nearly ideal Bose gas regime, as expected for
a noninteracting gas. The experimentally observed smooth
crossover from the regime of frequency doubling to no
doubling has so far not been explained theoretically.

Here, we explain this phenomenon within the hydrody-
namic approach and construct, for the first time, the corre-
sponding nonequilibrium phase diagram, showing that the fre-
quency doubling crossover is governed by the quench strength
and a nontrivial combination of the temperature and interac-
tion strength. For small enough quenches, the crossover from
frequency doubling to no doubling can lie entirely within the
quasicondensate regime, and does not require an equilibrium-
state crossover to the ideal Bose gas regime. Constructing and
studying phase diagrams is an important goal in many areas
of physics, and our findings here serve as an example where
equilibrium and dynamical phase diagrams are not identical.
We confirm our predictions by comparing the hydrodynamic
results to those obtained numerically using finite-temperature
c-field simulations (for a review, see [20]) based on the pro-
jected Gross-Pitaevskii equation (PGPE) [19].

1. Hydrodynamic equations and evolution of the density
distribution.—The hydrodynamic approach relies on the local
density approximation (LDA) and assumes that the 1D system
can be divided into small locally uniform slices, each of which
is in thermal equilibrium in the local moving frame. More-
over, one can assume that heat transfer between the slices
is negligible for long-wavelength excitations [27], which im-
plies that each slice undergoes isentropic (de)compression.
The hydrodynamic description of this system is [1]

∂tρ+ ∂x(ρv) = 0, (1a)

∂tv + v∂xv = − 1

m
∂xV (x, t)− 1

mρ
∂xP, (1b)

∂ts+ v∂xs = 0, (1c)

where ρ(x, t) is the local 1D density of the slice at position
x, v(x, t) is the respective hydrodynamic velocity, s(x, t) is
the entropy per particle, P (x, t) is the pressure, m is the
mass of the constituent particles, and V (x, t) is the exter-
nal trapping potential which for our case study is harmonic,
V (x, t) = 1

2mω(t)
2x2, of frequency ω(t).

We now apply the hydrodynamic approach to describe the
post-quench dynamics induced by the following scenario. Ini-
tially the atomic cloud with density profile ρ0(x) is in ther-
mal equilibrium at temperature T0 in the trap of frequency
ω0. Subsequently, at time t = 0, the trap frequency is sud-
denly changed to ω1. To characterize the ensuing dynamics in
different regimes of the 1D Bose gas, we introduce the dimen-
sionless interaction parameter γ0 = mg/~2ρ0(0) and the di-
mensionless temperature t0 = 2~2kBT0/mg2 [28, 29], where

g is the coupling strength of the pairwise δ-function interac-
tion potential. The solutions of the HDEs (1a)-(1c) describing
this harmonic-confinement quench depend only on the ther-
modynamic equation of state of the gas. In each of the fol-
lowing three cases, (i) – ideal gas regime (t0, γ

3/2
0 t0�1), (ii)

– strongly interacting or Tonks-Girardeau regime (γ0, 1/t0 �
1), and (iii) – quasicondensate regime (γ0, γ

3/2
0 t0 � 1), the

solutions reduce to scaling equations of the form

ρ(x, t) = ρ0(x/λ(t))/λ(t), v(x, t) = xλ̇(t)/λ(t), (2)

T (t) = T0/λ(t)
ν+1, (3)

where the scaling parameter λ(t) [with λ̇≡ dλ(t)/dt, λ(0)=
1, and λ̇(0)=0] satisfies the ordinary differential equation,

λ̈ = −ω2
1λ+ ω2

0/λ
2ν+1, (4)

with the value of ν in different regimes given below [30]. The
hydrodynamic solution (3) for the temperature is one of the
key results of this paper as it allows one to simply calculate
the evolution of the temperature-dependent momentum distri-
bution of the gas (see below).

(i) Ideal gas regime (t0, γ
3/2
0 t0�1): In this case ν = 1, and

the validity of the above scaling solutions can be demonstrated
using a dimensional analysis of the equation of state (see Ref.
[31]), which we note is also applicable to an ideal Fermi gas.
Equation (4) in this regime has an explicit analytic solution,

λ(t) =

√
1 + ε sin2(ω1t). (5)

This corresponds to harmonic oscillations of the mean squared
width of the density profile, occurring at frequency ωB =
2ω1, with ε ≡ (ω0/ω1)

2 − 1 characterizing the quench
strength. This result coincides with that for a noninteract-
ing gas obtained from a single-particle picture. The fact that
the hydrodynamic approach, which a priori assumes sufficient
collisions to ensure local thermal equilibrium, agrees with the
results for a noninteracting gas is specific to the harmonic-
confinement quench considered here and is accidental.

(ii) Strongly interacting regime (γ0, 1/t0 � 1): Here, the
equation of state is that of an ideal Fermi gas so that the pre-
vious ideal gas results apply, and Eqs. (2)–(4) are fulfilled
with ν = 1. The breathing mode oscillations of the momen-
tum distribution of a finite-temperature Tonks-Girardeau gas
are discussed elsewhere [32].

(iii) Quasicondensate regime (γ0, γ
3/2
0 t0� 1): In this case

ν = 1/2, and the validity of the scaling solutions (2) can be
demonstrated using the equation of state P = 1

2gρ
2. The latter

can be derived from the quasicondensate chemical potential
µ= gρ and the Gibbs-Duhem relation ρ= (∂P/∂µ)T . For a
weak quench, ε� 1, the solution to Eq. (4) oscillates at fre-
quency ωB'

√
3ω1 and is nearly harmonic with an amplitude

λ(t=π/ωB)−1'2ε/3 [33]. According to Eq. (2), the density
profile breathes self-similarly, maintaining its initial Thomas-
Fermi parabolic shape, ρ0(x) = ρ0(0)(1 − x2/X2

0 ) for x ≤
X0 [ρ0(x) = 0 otherwise], with X0 =

√
2gρ0(0)/mω2

0 .
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Finite-temperature effects are not seen in the dynamics of the
density distribution ρ(x, t) [34] because in this regime the
equation of state does not depend on the temperature. How-
ever, as we show below, such effects can be revealed in the
dynamics of the momentum distribution.

2. Dynamics of the momentum distribution.— Let us con-
sider a slice of the gas in the region [x, x + dx] of density
ρ(x, t), velocity v(x, t), and entropy per particle s(x, t). In
the laboratory frame its momentum distribution is n(ρ, s, k −
mv/~), where n is the equilibrium momentum distribution of
a homogeneous gas, which we normalize to

´

dk n(ρ, s; k) =
ρ. The total momentum distribution is then given by

n(k, t) =

ˆ

dxn(ρ, s; k −mv(x, t)/~). (6)

There are two contributions to n(k, t): the hydrodynamic
velocity field and the contribution of thermal velocities, which
have different effects on the breathing mode oscillations. In
order to see the sole effect of the hydrodynamic velocity field,
let us first disregard the effect of the thermal velocities, taking
n(ρ, s; k −mv(x, t)/~) = ρδ(k −mv(x, t)/~), where δ(k)
is the Dirac delta function. If a scaling solution as in Eq. (2)
exists, the hydrodynamic component of the momentum distri-
bution evolves according to

nh(k, t) =
~

m|λ̇|
ρ0

(
~k
mλ̇

)
. (7)

For oscillatory λ(t), this implies that nh(k, t) collapses to
a zero-width distribution twice per position-space density
breathing cycle: when the width of the cloud in real space
is both largest and smallest, both corresponding to λ̇ = 0.
Therefore, the oscillations of the hydrodynamic contribution
to the momentum distribution will always display frequency
doubling.

Now consider the additional contribution of thermal veloc-
ities to n(k, t), which changes as each slice undergoes isen-
tropic compression and decompression during the breathing
cycle. Since one expects the momentum width to be a mono-
tonically increasing function of the compression factor, the
thermal momentum width of each slice [and hence of the
overall momentum distribution n(k, t)] is expected to oscil-
late out-of-phase relative to the width of the real-space density
profile, but at the same breathing frequency ωB .

The evolution of the overall momentum distribution n(k, t)
results from the combination of the hydrodynamic and ther-
mal parts. For a near-ideal gas at T > 0 this leads to a
somewhat fortuitous cancellation of the hydrodynamic veloc-
ity field by the thermal component, and so the total momen-
tum distribution always oscillates at ωB = 2ω1 (see Ref. [31])
and never displays frequency doubling, consistent with the
single-particle picture.

The situation is different, however, in the quasicondensate
regime. The momentum distribution of a homogeneous qua-
sicondensate of density ρ and temperature T , for wavelengths
in the phononic regime (i.e., k � ~/√mgρ) is given by a

Lorentzian n(ρ, s; k) = (2ρlφ/π)/
[
1 + (2lφk)

2
]

[31]. Sub-
stituting this Lorentzian into Eq. (6), we obtain the full mo-
mentum distribution of the trapped gas,

n(k, t) =
1

π

ˆ

dx
2lφ(x, t)ρ(x, t)

1 + 4[lφ(x, t)]2[k −mv(x, t)/~]2
, (8)

where lφ(x, t) = ~2ρ(x, t)/mkBT (t). According to the scal-
ing solutions (2) and (3) with ν = 1/2 (see also [31]), lφ(x, t)
evolves as

lφ(x, t) =
√
λ l

(0)
φ ρ̃0(x/λ), (9)

where ρ̃0(x) = 1− x2/X2
0 is the scaled initial density profile

and l(0)φ = ~2ρ0(0)/mkBT0 = 2[ρ0(0)γ
2
0t0]

−1.
Combining the scaling solution for lφ(x, t) with that for

ρ(x, t), and changing variables to u = x/λX0 in Eq. (8), leads
to the following final result

n(k, t)=B
√
λ̃

ˆ 1

−1

du
(1− u2)2

1 + 4λ̃(1− u2)2
(
k̃ − ω1

ω0
A
˙̃
λu
)2 .

(10)
Here, k̃ = l

(0)
φ k, A = mω0X0l

(0)
φ /~ =

√
8/γ

3/2
0 t0, and

B = 2ρ0(0)l
(0)
φ X0/π is a normalization factor. In addition,

we have introduced a dimensionless time τ ≡ ω1t, so that
the dimensionless functions λ̃(τ)≡λ(τ/ω1) and ˙̃

λ = dλ̃/dτ ,
obtained from Eq. (4), depend only on the ratio ω1/ω0, or
equivalently only on the quench strength ε = (ω0/ω1)

2 − 1.
Thus, for a given ε, the evolution of n(k, t) is governed solely
by the dimensionless parameter A, which itself depends only
on the initial intensive parameters γ0 and t0. Note that A� 1

in the quasicondensate regime where γ3/20 t0�1 [25, 28].
Using Eq. (10) for a given A and quench strength ε, we

can now compute the evolution of the full momentum dis-
tribution and its half width at half maximum (HWHM); see
Figs. 1(a)–(b). The HWHM can then be fitted with a sum of
two sinusoidal functions: the fundamental mode oscillating
at ωB ('

√
3ω1, for ε � 1) and the first harmonic oscillat-

ing at 2ωB , with amplitudes c1 and c2, respectively. Defining
the weight of the fundamental mode as K = c21/(c

2
1 + c22),

we identify the frequency doubling phenomenon with K�1,
whereas K ' 1 corresponds to the absence of doubling. The
doubling crossover can, therefore, be defined as the value of
A = Acr for which K = 1/2. As we show in [31], for
small quench amplitudes one expects the frequency doubling
to occur for A

√
ε � 1, while for A

√
ε � 1 the thermal

effects dominate and the frequency doubling is absent; ac-
cordingly, Acr is expected to scale as Acr ∝ 1/

√
ε. Figure

1(c) shows the nonequilibrium phase diagram of the crossover
from frequency doubling to no doubling and confirms that
Acr, obtained using Eq. (10) and the fitting procedure de-
scribed above, does indeed scale as ∝ 1/

√
ε.

In Fig. 1(d) we superimpose the conditions for observing
frequency doubling on the equilibrium phase diagram of the
1D Bose gas. As we see, for small enough quench strengths,
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FIG. 1. (Color online). (a) Breathing mode oscillations and (b) the respective widths (HWHM) of the momentum distribution of a harmonically
trapped 1D quasicondensate after a confinement quench as a function of the dimensionless time τ = ω1t. The three examples shown in (a)
and (b) correspond, respectively, to: ε = 0.563, A = 104 (with t0 = 106 and ~ω0/[gρ0(0)] = 3.0 × 10−3 is c-field simulations) – top row;
ε = 0.101, A = Acr = 5.21 (t0 = 103, ~ω0/[gρ0(0)] = 1.1× 10−2) – middle row; and ε = 0.0203, A = 3.95 – bottom row [34]. The grey
triangles are the c-field data [30], with the error bars indicating 95% confidence interval. (c) Nonequilibrium phase diagram of the dynamical
crossover from frequency doubling to no doubling in the A-ε parameter space; data points (circles) show the crossover values Acr for which
the weights of the fundamental and the first harmonics are equal (K = 1/2); grey triangles are from c-field simulations. The dashed line is
a fit in the region A > 5 with a power law Acr ' 1.58/

√
ε (see text), whereas the two dotted lines show the values of A corresponding to

K = 0.05 and K = 0.95. (d) Frequency doubling conditions superimposed on the equilibrium phase diagram of the 1D Bose gas [25, 28],
drawn in terms of the dimensionless temperature (t0) and interaction strength (γ0), and covering the quasicondensate and the neighbouring
nearly ideal Bose gas regimes. The grey dashed line (t0 = γ

−3/2
0 ) corresponds to the crossover between the two equlibrium regimes. The two

lines with filled (red) and open (blue) circles, on the other hand, correspond to the frequency doubling crossover conditions for two different
quenches, ε = 0.1 and ε = 0.02 (the respective data points in (c) are labelled in the same way). The (light red and light blue) shaded areas
underneath these lines correspond to the conditions where the frequency doubling occurs.

Although the applicability of the hydrodynamic theory in
this system might be questionable, our analytic results have
been benchmarked against finite-temperature c-field simula-
tions, which is an approach that is identical (in 1D) to the
truncated Wigner approximation and whose validity for de-
generate weakly interacting Bose gases is well established
[19, 20, 35–37]. In this approach, the atomic field is treated
as a classical field, whose evolution is governed by the time-
dependant Gross-Pitaevskii equation (GPE), with the initial
stated being generated using a stochastic evolution that sam-
ples the Gibbs ensemble [30]. Qualitatively, the same be-
haviour as in Figs. 1(a)–(b) based on the hydrodynamic ap-
proach occurs in our c-field simulations [34]; quantitatively,
the crossover from doubling to no-doubling is in line with the
analytic predictions [see Fig. 1(c)]. Moreover, as we argue in
Ref. [30], for sufficiently weak confinement (small ω0), the c-
field dynamics are governed by just two dimensionless param-

eters, A and ε, as predicted from the hydrodynamic approach.
Overall, the performance of the hydrodynamic theory—as val-
idated by our c-field simulations—in modelling the harmonic
confinement quench of a finite-temperature quasicondensate
is remarkable. Moreover, even though the hydrodynamic re-
sults of Eq. (10) formally require A� 1 to ensure the appli-
cability of the quasicondensate regime, our comparison with
c-field simulations shows that Eq. (10) continues to give accu-
rate predictions even for moderate values of A & 1: the pre-
dictions capture correctly the crossover values of Acr even for
large to moderate quench strengths, for which Acr lies close
to the equilibrium crossover to the ideal Bose gas regime.

In summary, we have developed a finite-temperature hydro-
dynamic approach for a harmonically trapped 1D Bose gas
and applied it to the study of breathing mode oscillations in
the quasicondensate regime. In addition to the standard scope
of the hydrodynamic theory, which is to describe the evolution

FIG. 1. (Color online). (a) Breathing mode oscillations and (b) the respective widths (HWHM) of the momentum distribution of a harmonically
trapped 1D quasicondensate after a confinement quench as a function of the dimensionless time τ = ω1t. The three examples shown in (a)
and (b) correspond, respectively, to: ε = 0.563, A = 104 (with t0 = 106 and ~ω0/[gρ0(0)] = 3.0 × 10−3 is c-field simulations) – top row;
ε = 0.101, A = Acr = 5.21 (t0 = 103, ~ω0/[gρ0(0)] = 1.1× 10−2) – middle row; and ε = 0.0203, A = 3.95 – bottom row [35]. The grey
triangles are the c-field data [31], with the error bars indicating 95% confidence interval. (c) Nonequilibrium phase diagram of the dynamical
crossover from frequency doubling to no doubling in the A-ε parameter space; data points (circles) show the crossover values Acr for which
the weights of the fundamental and the first harmonics are equal (K = 1/2); grey triangles are from c-field simulations. The dashed line is
a fit in the region A > 5 with a power law Acr ' 1.58/

√
ε (see text), whereas the two dotted lines show the values of A corresponding to

K = 0.05 and K = 0.95. (d) Frequency doubling conditions superimposed on the equilibrium phase diagram of the 1D Bose gas [25, 28],
drawn in terms of the dimensionless temperature (t0) and interaction strength (γ0), and covering the quasicondensate and the neighbouring
nearly ideal Bose gas regimes. The grey dashed line (t0 = γ

−3/2
0 ) corresponds to the crossover between the two equilibrium regimes. The two

lines with filled (red) and open (blue) circles, on the other hand, correspond to the frequency doubling crossover conditions for two different
quenches, ε = 0.1 and ε = 0.02 (the respective data points in (c) are labelled in the same way). The (light red and light blue) shaded areas
underneath these lines correspond to the conditions where the frequency doubling occurs.

the crossover from doubling to no doubling lies well within
the quasicondensate regime. We therefore conclude that this
phenomenon is governed not by the crossover from the ideal
Bose gas regime into the quasicondensate regime, but by
the competition between the hydrodynamic velocity (which
always displays doubling) and the broadening/narrowing of
the thermal component of the gas due to adiabatic compres-
sion/decompression (which always oscillates at the funda-
mental frequency ωB).

Although the applicability of the hydrodynamic theory in
this system might be questionable, our analytic results have
been benchmarked against finite-temperature c-field simula-
tions, whose validity for degenerate weakly interacting Bose
gases is well established [19, 20, 36–38]. In this approach, the
Bose gas is approximated as a classical field, whose evolution
is governed by the time-dependent Gross-Pitaevskii equation
(GPE), with the initial state being sampled from the classical
Gibbs ensemble for the given temperature and density [31].
Qualitatively, the same behaviour as in Figs. 1(a)–(b) based

on the hydrodynamic approach occurs in our c-field simula-
tions [35]; quantitatively, the crossover from doubling to no-
doubling is in broad agreement with the analytic predictions
[see Fig. 1(c)]. Moreover, as we argue in Ref. [31], for suffi-
ciently weak confinement (small ω0), the c-field dynamics are
governed by just two dimensionless parameters, A and ε, as
predicted from the hydrodynamic approach. Overall, the per-
formance of the hydrodynamic theory—as validated by our
c-field simulations—in modelling the harmonic confinement
quench of a finite-temperature quasicondensate is remarkable.
Moreover, even though the hydrodynamic results of Eq. (10)
formally require A�1 to ensure the applicability of the qua-
sicondensate regime, our comparison with c-field simulations
shows that Eq. (10) continues to give accurate predictions
even for moderate values of A & 1.

In summary, we have developed a finite-temperature hy-
drodynamic approach for a harmonically trapped 1D Bose gas
and applied it to the study of breathing mode oscillations in the
quasicondensate regime. While the usual scope of the hydro-
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dynamic theory is to describe the evolution of the real-space
density of a gas, our approach extends its utility to describe
the evolution of its momentum distribution. The approach
allowed us to discern the contribution of the hydrodynamic
velocity field and that of thermal excitations in the oscilla-
tory dynamics of the momentum distribution of the 1D quasi-
condensate, hence explaining the full mechanism behind the
phenomenon of frequency doubling and the crossover to no
doubling. The hydrodynamic predictions are in broad agree-
ment with numerical simulations based on finite-temperature
c-field simulations. Our approach can address not only the
sudden quench scenario studied here, but also the dynam-
ics under arbitrary driving of the trapping frequency ω(t), in
which case the differential equation for the scaling parameter
λ(t), Eq. (4), must be solved numerically. Future extensions
of this work will concern the treatment of breathing mode os-
cillations in the strongly interacting regime [32], and could
also address collective behavior of 1D Bose gases in anhar-
monic traps, as well as of 2D and 3D quasicondensates in
highly-elongated geometries.
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In this supplemental material we provide further details on
the hydrodynamic scaling solutions, as well as a brief descrip-
tion and further results of our c-field simulations.

I. SCALING SOLUTIONS IN THE HYDRODYNAMIC
APPROACH

A. Ideal gas regime.

For a uniform ideal gas (either bosonic or fermionic) at
temperature T and 1D density ρ = N/L, where N is
the number of particles and L is length of the confinement
box, the only two length scales are the mean interparti-
cle separation ρ−1 and the thermal de Broglie wavelength
ΛT =

√
2π~2/(mkBT ); the corresponding energy scales are

~2ρ2/m and kBT . Using the thermodynamic definition of the
1D pressure, P = (∂U/∂L)s, where U is the internal energy,
one can apply simple dimensional analysis to write down the
equations of state for P and s:

P = kBTρ F (~2ρ2/mkBT ), (S1)

s/kB = G(mkBT/~2ρ2). (S2)

Here F and G are dimensionless functions of the only di-
mensionless parameter—the ratio of the two energy scales.
With this choice of expression for P , the classical ideal gas
law in the high temperature limit is recovered with F ' 1.
For a highly degenerate ideal Fermi gas, on the other hand,
the equation of state P = ~2π2ρ3/(3m) is recovered with
F ' (π2/3)(~2ρ2/mkBT ).

Now consider a confinement quench of the gas. Apply-
ing the general functional forms of P and s to small (locally
uniform) slices of the gas, it can be shown by direct sub-
stitution that the scaling solutions, Eqs. (2) and (3) of the
main text, satisfy Eqs. (1a) and (1c). For Eq. (1b), first note
that Eq. (S1) together with the scaling solutions imply that
P (x, t) = P0(x/λ)/λ3, where P0(x) ≡ P (x, 0). Since
Eq. (1b) is assumed true at this initial time, then ∂xP0 =
−ρ0(x)∂xV (x, 0) = −mω2

0xρ0(x). Together with the scal-
ing solutions and Eq. (4) of the main text, this relation is suf-
ficient to show that Eq. (1b) is true for all times.

B. Equilibrium momentum distribution of a uniform 1D
quasicondensate.

Here we outline the derivation of the Lorentzian shape of
the equilibrium momentum distribution of a uniform 1D qua-
sicondensate (for a more detailed derivation, we refer the
reader to Refs. [1, 2]). For a uniform and hence translation-
ally invariant system, the momentum distribution is given by
the Fourier transform of the first-order correlation function,
G(1)(x) = 〈Ψ̂(x)Ψ̂(0)〉, where Ψ̂(x) is the bosonic field
operator. In the quasicondensate regime, corresponding to
T �√γ ~2ρ2/(2mkB) [3] (with ρ being the uniform den-
sity and γ ≡ mg/~2ρ), the first-order correlation function is
dominated by the long-wavelength (low-energy) excitations
whose Hamiltonian reduces (using the density-phase repre-
sentation of the field operator, Ψ̂(x) =

√
ρ+ δρ̂(x)eiφ̂(x)) to

the Luttinger liquid form [2, 4]

ĤL =

ˆ

dx

[
~2ρ
2m

(∂xφ̂)2 +
g

2
(δρ̂)2

]
. (S3)

Here, δρ̂(x) is the operator describing the density fluctuations,
canonically conjugate to the phase operator φ̂(x).

In evaluating G(1)(x) we note that the density fluctuations
are small in the quasicondensate regime and can be com-
pletely neglected as long as the relative distances of interest
are much larger than the healing length ξ = ~/√mgρ [1, 2,
5, 6]. As the Luttinger liquid Hamiltonian (S3) is quadratic in
φ̂, the correlation function G(1)(x) = ρ〈ei(φ̂(x)−φ̂(0))〉 can be
expressed through the mean-square fluctuations of the phase
via Wick’s theorem:

G(1)(x) = ρe−
1
2 〈[φ̂(x)−φ̂(0)]2〉. (S4)

Denoting the Fourier component of φ̂(x) at wavevector k via
φ̂k, the corresponding term in the expectation value of the
Hamiltonian is given by

´

dk
2πLρ~

2k2〈|φ̂k|2〉/(2m), where L
is the length of the uniform system. The relevant modes con-
tributing to G(1)(x) are highly populated, such that a classical
field picture is sufficient. The energy per quadratic degree
of freedom is thus given by kBT/2 and therefore 〈|φ̂k|2〉 =
mkBT/(Lρ~2k2) [7]. Using this result one can then show,
after a little algebra, that Eq. (S4) yields

G(1)(x) ' ρe−|x|/2lφ , (|x| � ξ), (S5)
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where lφ ≡ ~2ρ/(mkBT ). The Fourier transform of this ex-
ponentially decaying correlation function gives the Lorentzian
momentum distribution, n(k) = (2ρlφ/π)/

[
1 + (2lφk)2

]
,

used in the main text.

C. Scaling solution for the temperature in the quasicondensate
regime.

In order to calculate n(k, t) using the hydrodynamic scal-
ing solutions, Eqs. (2) and (4) of the main text, we first need
to determine how the temperature of the gas and hence the
phase correlation length lφ = ~2ρ/(mkBT ) evolves dur-
ing the breathing oscillations. To do this, we first note that
the energy of the jth phonon mode in a quantization box of
length L is given by Ej = ~kjc, where kj = 2π

L j is the
phonon wave vector and c =

√
(∂P/∂ρ)/m is the speed of

sound. Using P ∝ ρ2, we find that c scales as c ∝ ρ1/2

and therefore Ej ∝ L−1ρ1/2 ∝ ρ3/2. Consider now an adia-
batic compression/decompression cycle for a uniform slice of
the gas confined to a box of length L. Such a compression
does not change the mean occupation number of the mode
j. The mode occupation is given by nj ' kBT/Ej in the
long-wavelength limit and scales as nj ∝ T/ρ3/2, whereas
ρ ∝ λ−1 according to the scaling solution, Eq. (2) of the main
text. Therefore, during the adiabatic breathing oscillations,
the temperature T (t) evolves from the initial value T (0) ≡ T0
to T (t) = T0/λ

3/2, i.e., Eq. (3) of the main text with ν = 1/2.

D. Evolution of the momentum distribution for an ideal gas.

Applying the hydrodynamic approach and Eq. (7) of
the main text to the ideal gas regime, we first note that
the momentum distribution of a uniform ideal gas (nor-
malized to

´

dk n(k) = ρ) is given by n̄(ρ, s; k) =
N ((~2k2/2m− µ)/kBT ), whereN is a dimensionless func-
tion whose expression depends on the quantum statistics
[8]. Since µ/kBT is a function of s (in the sense of a
thermodynamic equation of state), which itself is a func-
tion of mkBT/~2ρ2 [see Eq. (S2)], one can assert that
µ/(kBT ) = G(mkBT/~2ρ2), where G is a dimensionless
function. Then, the scaling solutions (2) and (3) of the main
text imply that µ(x, t)/kBT (t) = G[mkBT (t)/~2ρ2(x, t)] =
G[mkBT0/~ρ20(x/λ)] ≡ G0(x/λ), or

µ(x, t) = µ(x/λ, 0)/λ2 = [µ0 − 1
2mω

2
0(x/λ)2]/λ2, (S6)

where µ0 is the initial chemical potential in the trap center.
Substituting n̄(ρ, s; k) along with this expression for µ(x, t)
into Eq. (6) of the main text, and changing variables to x̃ =
αx−~kλλ̇/(mω2

0α), gives

n(k, t) = n0(k/α)/α, (S7)

where n0(k) is the initial momentum distribution of the
trapped gas and α2 = (ω2

0 + λ2λ̇2)/(λω0)2. Using Eq. (5)
of the main text, we can explicitly write α as

α =
√

[1 + ε cos2(ω1t)]/(1 + ε), (S8)

which implies that the momentum distribution of a finite-
temperature ideal gas in the hydrodynamic limit oscillates at
ωB = 2ω1 and never displays frequency doubling. One thus
recovers the expected behaviour for an ideal gas, due to the
position-momentum symmetry of the underlying harmonic
oscillator Hamiltonian. The fact that this result is reproduced
within the hydrodynamic approach is a result of a “fortuitous”
exact cancelation of the effect of the hydrodynamic velocity
field by the thermal component.

E. Scaling of the frequency doubling crossover Acr with the
quench strength ε.

In this section we make qualitative arguments that pro-
vide an understanding of the dominant oscillation regimes
in the dynamics of the momentum distribution of a quasi-
condensate, and derive an approximate scaling of Acr with
ε. Let us first introduce typical momentum scales involved
in the dynamics. For small-amplitude oscillations, corre-
sponding to ε � 1, the scaling parameter λ oscillates as
λ(t) ' 1 + ε

3 − ε
3 cos(

√
3ω1t) and therefore the magni-

tude of ˙̃
λ is of the order of ∼ ε/

√
3. This means that the

characteristic hydrodynamic momentum, which can be esti-
mated as k̄h ∼ mX0λ̇/~ from Eq. (7) of the main text, and
which can be rewritten as k̄h∼mX0εω1/~∼(ω1/ω0)Aε/l

(0)
φ ,

is of the order of k̄h ∼ Aε/l(0)φ for ε � 1. Compared to
this, the characteristic thermal momentum during the com-
pression/decompression cycle oscillates above k̄th ∼ 1/l

(0)
φ

with an amplitude variation of δk̄th∼ε/l(0)φ � k̄th.
For Aε � 1, the characteristic hydrodynamic momentum

is much larger than both the characteristic thermal momentum
and its variation, k̄h � k̄th, δk̄th. Then, as long as one is inter-
ested in momenta of the order of k̄h, the function n̄ in Eq. (6)
of the main text can be approximated by a δ-function, and
therefore the breathing oscillations of the momentum distri-
bution will be dominated by the hydrodynamic phenomenon
of frequency doubling.

In the opposite regime of Aε � 1, the characteristic hy-
drodynamic momentum is much smaller than the characteris-
tic thermal momentum, k̄h � k̄th, and therefore the above
approximation, which neglects the effect of the width of n̄
in Eq. (6) of the main text, breaks down. In this case, the
contribution of the hydrodynamic momenta to n(k, t) can
instead be estimated via a Taylor series of n̄ as powers of
kh(x, t) = mv(x, t)/~. In this series, the contribution of
the first-order term to the integral vanishes because ∂n̄/∂k
is an even function of x, whereas kh(x, t) is odd; there-
fore, the hydrodynamic velocity field has no effect on n(k, t)
in this order. The leading-order correction in n(k, t) thus
comes from the second-order derivative term, proportional
to k2h. To estimate this correction, let us consider the typi-
cal variations of the peak value of the momentum distribution
n(0, t), which we denote via δn, induced solely by the hy-
drodynamic momenta. Using ∂2n̄/∂k2|k=0 ∼ ρ0(0)(l

(0)
φ )3

in Eq. (6), one can find that δn ∼ −X0ρ0(0)l
(0)3

φ k̄2h, or
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δn ∼ −X0ρ0(0)l
(0)
φ (Aε)2, where we have used k̄h∼Aε/l(0)φ .

Since the peak value n(0, t) is inversely proportional to the
characteristic momentum width W , the hydrodynamic contri-
bution to the typical change (δW ) of the momentum width
fulfils δW/W ' −δn/n(0, 0). Using W ∼ k̄th ∼ 1/l

(0)
φ

and n(0, 0) ∼ ρ0(0)l
(0)
φ X0, we then find δW ∼ (Aε)2/l

(0)
φ .

Comparing now this result with the typical variation of the
thermal momentum width δk̄th∼ε/l(0)φ , we can conclude that

the hydrodynamic contribution δW ∼ (Aε)2/l
(0)
φ will domi-

nate the thermal contribution if A� 1/
√
ε; in this case, one

would still observe the phenomenon of frequency doubling.
If, on the other hand, A� 1/

√
ε, the breathing oscillations

will be dominated by the variations of thermal momenta and
no frequency doubling will be observed. Accordingly, one
can expect the crossover from doubling to no doubling to oc-
cur at Acr∝1/

√
ε, with the proportionality factor to be found

from the numerical results. From Fig. 1(c) of the main textwe
see that, in the relevant region of A& 5, Acr scales as 1/

√
ε

as expected. Since A � 1 in the quasicondensate regime,
the frequency doubling crossover requires very small quench
strengths ε.

II. NUMERICAL SIMULATIONS USING THE C-FIELD
METHODOLOGY

A. The c-field method

The c-field (or classical field) method is a proven approach
to studying the equilibrium properties and dynamics of de-
generate Bose gases at finite temperature [9]. The crux of the
technique is to treat the quantum Bose field ψ̂(x, t) as a clas-
sical field ψC(x, t), thus ignoring the discrete nature of the
particles that make up the field. The classical field approxi-
mation captures many features of weakly-interacting 1D Bose
gases. For instance, for thermal equilibrium configurations
it correctly describes the crossover from the ideal Bose gas
regime to the quasicondensate regime [10].

The energy functional of a classical Bose field confined in
a harmonic potential is

E({ψC})=
ˆ

dx E(x), (S9)

where

E(x) =
~2

2m

∣∣∣∣
∂ψC(x)

∂x

∣∣∣∣
2

+
1

2
mω2

0x
2|ψC(x)|2

+
g

2
|ψC(x)|4 − µ|ψC(x)|2. (S10)

Configurations corresponding to thermal equilibrium are ob-
tained from the Gibbs ensemble: the probability of a field con-
figuration ψC(x) is proportional to exp(−E({ψC})/kBT ).
Here µ is the chemical potential that fixes the mean particle
number.

A convenient method to sample configurations from the
Gibbs ensemble is to integrate the projected stochastic Gross-

Pitaevskii equation (SPGPE) for times long enough that the
memory of the initial state is lost. The SPGPE is

dψC(x, t) = PC

{
− i

~
LC + κth(µ− LC)ψC(x, t)dt

+
√

2κthTdW (x, t)

}
, (S11)

where

LCψC =

[
− ~

2m

∂2

∂x2
+

1

2
mω2

0x
2 + g|ψC|2

]
ψC, (S12)

dW (x, t) is uncorrelated complex white noise satisfying
〈dW ∗(x, t)dW (x, t′)〉 = δ(x − x′)dt, and PC{·} is the pro-
jector onto the computational basis. The value of the rate κth
has no consequence for the equilibrium configurations, and
hence can be chosen for numerical convenience [11].

At this point we make some comments about the classi-
cal field model to present its limitations and provide some
physical insight. For high energy modes of the classical field,
the interaction energy can be neglected and the energy func-
tional can be approximated by that for noninteracting parti-
cles. Given a mode of energy εm, the classical field model
predicts an energy of kBT , and thus a mean occupation num-
ber of nm = kBT/(εm − µ). Although this expression is
a good approximation to the Bose-Einstein distribution for
nm � 1, it overestimates the population for nm . 1, where
the Maxwell-Boltzmann distribution is a more appropriate
model. In 2D and 3D, this overestimation leads to an ultra-
violet divergence of the field density |ψC|2 at a fixed temper-
ature. To overcome this problem, one can introduce an en-
ergy cutoff: higher-energy modes are treated as an ideal Bose
gas [12–15], while the classical field is restricted to the low-
energy modes. With this separation of the field into a classi-
cal and a quantum part (in the sense that the discreteness of
particles is important), Eq. (S11) has a physical meaning: it
represents the “real” time evolution of the field with κth an ef-
fective collision rate that quantifies the thermal and diffusive
damping experienced by particles in the classical field region
due to the thermal reservoir (i.e. the quantum region) [9].

Although the inclusion of an energy cutoff is crucial in
higher dimensions in order to prevent a divergence of the
atomic density, its role is less crucial in 1D. In particular, the
1D classical field predictions for the atomic density do not
diverge, even in absence of an energy cutoff, and are quan-
titatively correct for degenerate gases [16]. The results we
present are correctly described solely by classical field theory
without a cutoff: for a given peak linear density and temper-
ature, the results do not depend on the cutoff once it is large
enough. The cutoff merely determines the size of the basis
used for the numerical calculations.

Our simulations were performed within the Hermite-
Gauss basis, which is the single-particle eigenbasis of an
harmonically-confined ideal gas, and therefore represents the
natural, most computationally efficient basis (see Eq. (39) of
[17] for an explicit expression of the SPGPE in the Hermite-
Gauss basis). Since these eigenstates well-approximate the
higher-energy, sparsely populated modes, simulation in the
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Hermite-Gauss basis imposes an energy cutoff that is in direct
proportion to the basis size. As discussed above, the variation
of this energy cutoff makes little difference to the resulting
equilibrium states.

After generating the equilibrium ensemble, the simulations
proceed by quenching the trapping frequency ω0 → ω1 and
evolving the ensemble in time using the simpler projected
Gross-Pitaevskii equation (PGPE) [which can be obtained by
setting κth = 0 in Eq. (S11)] [18, 19]. This equation then
conserves energy and number of particles. As pointed out
above, this classical field approximation fails to correctly cap-
ture the behavior of high energy modes. In contrast to the
equilibrium case, this can affect the dynamics, and in par-
ticular the damping rates, and the details can be sensitive to
the cutoff [20, 21]. Nevertheless, nonequilibrium properties
have been studied with some success using this type of clas-
sical field approximation, including the collective oscillations
of Bose gases [21, 22]. In our case, the results of dynamics
that we present here are found not to depend strongly on the
choice of the energy cutoff, demonstrating that the role of the
higher-energy states is relatively unimportant.

For consistency, we chose the same energy cutoff for both
the PGPE evolution after the confinement quench and the
SPGPE that generates the initial condition. However, the
Hermite-Gauss modes that represent the single-particle eigen-
basis depend upon the trapping frequency. This implies that
the number of Hermite-Gauss modes used for the PGPE evo-
lution, M̃cut, is related to the number of modes in the SPGPE
evolution Mcut via

M̃cut =

⌊
ω1

ω0
(Mcut + 1

2 )− 1
2

⌋
, (S13)

where bxc denotes the integer component of x.
Figure 1 illustrates PGPE evolution of the position density

and momentum distributions after a confinement quench in
three different parameter regimes. Although the density un-
dergoes breathing oscillations at frequency ωB '

√
3ω1 in

all three cases, the momentum distribution exhibits frequency
doubling (top row), a crossover between quasi-doubling and
no doubling (middle row), and no frequency doubling (bottom
row). This is consistent with the breathing oscillations pre-
dicted by our finite-temperature hydrodynamic theory within
the quasicondensate regime (see main text).

B. Details for comparison with finite-temperature
hydrodynamic theory in the quasicondensate regime

The thermal equilibrium properties of a harmonically
trapped Bose gas at temperature T0 and peak density ρ0(0)
can be parametrized by the three dimensionless quantities
γ0 = mg/[~2ρ0(0)], t0 = 2~2kBT0/(mg2), and ω̃ ≡
(lHO/ξ0) = ~ω0/[gρ0(0)]2, where lHO =

√
~/(mω0) and

ξ0 = ~/
√
mgρ0(0) are the harmonic oscillator length scale

and healing length, respectively. However, within the clas-
sical field approximation only two parameters are required
since features on the order of mean interparticle separation

1/ρ0(0) are neglected. Specifically, if the classical field is
scaled by ψ0 = [mk2BT

2
0 /(~2g)]1/6, the length scale by x0 =

(~4/(m2gkBT0))1/3, and the trapping frequency by ω̄ =
(kBT0

√
mg/~)2/3/~, then the thermal actionE({ψC})/kBT

[see Eqs. (S9) and (S10)], which determines the grand canon-
ical partition function, depends only on the dimensionless pa-
rameters η0 = [~2/(mg2k2BT 2

0 ]1/3µ and ω0/ω̄. Equivalently,
the gas can be described by the dimensionless parameters
χ0 = kBT/[~ρ0(0)

√
gρ0(0)/m] and ω̃ = ~ω/[gρ0(0)]; field

correlation functions of order q have previously been shown to
depend only on χ0 and ω̃, provided they are scaled to ρ0(0)q

and the lengths are scaled to ~2ρ0/(mkBT ) (cf. [10, 23]
which investigated the parameter dependence within the clas-
sical field approximation for a uniform Bose gas). For suffi-
ciently weak trapping frequencies, ω̃ → 0 and drops out of
the problem. This occurs if the size of the atomic cloud is
much larger than other microscopic correlation lengths of the
gas, therefore implying that the local density approximation
(LDA) is valid.

Consider now the post-quench dynamics investigated in this
paper. They are a priori parametrized by the dimensionless
parameters γ0, A =

√
8/χ0 =

√
8/(γ

3/2
0 t0), ε, and ω̃. Within

the classical field approximation, if we rescale the PGPE [cf.
Eqs. (S11) and (S12)] as done for the equilibrium case, we
find that γ0 drops out. Additionally, we chose parameters for
our c-field simulations such that the dynamics only depend
upon A and ε. That is, we required a sufficiently weak ω̃
such that the size of the cloud was always much larger than
the typical correlation length l(0)φ = ~2ρ0(0)/(mkBT0) (re-

call that l(0)φ is the typical phase correlation length of the gas,
itself larger or on the order of the density-density correlation
length). Similarly to the equilibrium case, one then expects
a dynamical LDA to be valid, ensuring that the parameter ω̃
is irrelevant. This further fulfilled the high temperature con-
dition required for the (S)PGPE, whilst still ensuring that the
number of modes was numerically tractable.

In order to compute Acr for a given quench strength ε,
we fixed t0 and varied A. For each A, K was extracted
by fitting B1 exp(−b1t)[

√
K cos(νt) −

√
1−K cos(2νt)] +

B2 exp(−b2t) to the HWHM of the momentum distribution
at each time point t (here B1, B1, b1, b2, ν, and K are free fit-
ting parameters); see the red curves of Fig. 1 for example fits.
The rates b1 and b2 account for the damping present in the
PGPE evolution, which is absent from our hydrodynamic the-
ory. This gave a dataset (A,K); the pointAcr whereK = 1/2

was determined by fitting 1
2 [tanh[a(A−2/3 −A−2/3cr )] + 1] to

this dataset, with free fitting parameters a and Acr.
The equilibrium momentum distributions generated by the

SPGPE differ slightly to those generated from Eq. (10) of the
main text. This is not unexpected; various assumptions that go
into Eq. (10) (such as a Thomas-Fermi density profile and the
LDA) are relaxed in the SPGPE. A fairer comparison to our
finite-temperature hydrodynamic theory is therefore obtained
by fitting the equilibrium momentum distribution predicted by
Eq. (10) of the main text to the c-field equilibrium momen-
tum distribution (with A and ~ω0/[gρ0(0)] as free parame-
ters). This shifts the dataset (A,K) → (A′,K); the c-field
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FIG. 1. (Color online). Results of PGPE simulations illustrating the breathing mode oscillations of a harmonically trapped, weakly-interacting
1D Bose gas after a confinement quench. (a) Density; (b) momentum distribution; (c) rms width ∆x̃ of the density; and (d) half-width-at-half-
maximum ∆k̃HWHM of the momentum distribution; all as a function of the dimensionless time τ = ω1t. The three examples correspond,
respectively, to: ε = 0.563, A = 104, t0 = 106 and ~ω0/[gρ0(0)] = 3.0 × 10−3 – top row; ε = 0.778, A ≈ Acr = 2.3, t0 =
103, and ~ω0/[gρ0(0)] = 0.07) – middle row; and ε = 0.1, A = 1.15, t0 = 106, and ~ω0/[gρ0(0)] = 0.1 – bottom row. In (d)
the black points are c-field data, with the error bars indicating 95% confidence intervals, whilst the solid red curves are fits of the form
B1 exp(−b1t)[

√
K cos(νt)−

√
1−K cos(2νt)] +B2 exp(−b2t).

values of Acr reported in Fig. 1 of the main text are computed with respect to this latter dataset.
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