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ABSTRACT 

We present laser operation of a 750 µm diameter Er:YAG single crystal fibers pumped at 1470 nm. Laser output 

performances are numerically simulated, experimentally measured and compared. In Passive Q-switch regime, we

obtained pulse energy of 180 µJ around 500 Hz at 1617 nm without any spectral selecting element. Pulse duration is 33 

ns. By controlling the saturable absorber temperature, we succeeded to improve the output energy up to 270 µJ. These

results show the interesting potential of Er:YAG single crystal fiber for compact and low power consumption 

rangefinders. 
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1. INTRODUCTION 

One candidate as a laser source for applications requiring eye-safe emission in the atmosperic transmission window,

namely lidar, telemetry or active imaging, is resonantly pumped Er:YAG lasers. These systems has an extended choice 

of pump configurations. Indeed, depending on requirements, one can use Er:Yb fiber laser at 1533 nm [1], or laser

diodes at 1533 nm [2] or 1470 nm [3]. For these pump setups, the 10 mJ range is already achieved in actively Q-switch 

operation around 100 Hz. 

For some military applications, the total electrical consumption of the laser source is a critical specification. Hence, the

use of a fiber laser or a high power diode as a pump source is prohibited. Similarly, an acousto-optic modulator (AOM) 

or an electro-optic modulator (EOM) cannot be use to generate Q-switched giant pulses as these systems consume at 

least few hundreds watts of electrical power. In these context, the use of a saturable absorber and a low power pump

diode seems a good candidate for a laser emitter with a electrical consumption around 100W.  

To improve the range of the emitter without increasing pulses energy, one solution is to obtain laser operation at

1617 nm instead of 1645 nm because of residual absorption of methane at the latter wavelength. Unfortunately, the

natural emission of Er:YAG is 1645 nm as it requires a minimum population inversion of 9% to reach transparency,

compared with 16% for transparency at 1617 nm. A wavelength shift can occur thanks to an intra-cavity etalon [4], or a 

Cr:ZnSe saturable absorber [5] as its absorption cross-section is increasing between 1617 nm and 1645 nm.  

We present a passively Q-switched Er:YAG laser with a low diode-pump power of 14W at 1470 nm. Our target is to 

limit the overall electrical consumption to around 100 W to get few hundreds of µJ range pulse energy. We highlight the 

need to thermally control the Cr:ZnSe saturable absorber to improve output energy. We already presented a passively Q-

switch cavity with 40 W of pump power [6], but the decreased pump power by a factor of 3 is a challenge for a quasi-

three level system with an intra-cavity saturable absorber. 
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2. NUMERICAL SIMULATIONS OF Q-SWITCHED Er:YAG CAVITIES

2.1 Description of the numerical simulation

Because of the fiber-coupled diode pumping, the pump beam has a high divergence which greatly decrease the overlap

with the laser signal, and so the overall efficiency. One may use a high-doped and short gain crystal, but the efficiency

would be also impacted because of thermal effects. One solution is to use a single crystal fiber (SCF). Its low diameter

(1 mm or less) can confine the pump beam thanks to total internal reflections, greatly increasing the overlap with the

laser beam, and improving the population inversion along the crystal axis raise the efficiency and favour the emission at 

1617 nm. 

First, the pump density inside the whole volume of the gain crystal must be calculated. This is done by casting rays

according to the pump setup (pump spot diameter, laser diode brightness...) and propagating them along the crystal.

When hitting the crystal border, a new direction for the ray is calculated according to its position. Despite the high 

symetry of the cylindrical geometry, this process must be done in a 3D matrix. Fig. 1 shows the result of a raycasting 

inside an undoped YAG crystal. At this step, one can evaluate the pump density, the heat generation and the population 

inversion for each point of the crystal from the rate equations. 

Fig. 1 - Pump density inside an undoped YAG single crystal fiber, 6 mm long, 0.8 mm diameter. There is a noticeable confinement of

the pump density in the center of the crystal, thus improving the population inversion along the path of the laser signal.

To simulate a Q-switched cavity, a temporal resolution of the rate equations has to be done. The idea, already described

in [7], is to monitor and refresh the total number of photons inside the cavity. With this value, one can know the photon 

density in the crystal volume to compute the new population inversions (spatially resolved) and the evolution of the

photon number. Cross-sections for Er:YAG are given in [8]. Without temporal modulation of losses, this method will 

give the output power in continuous wave (CW) operation. Hence, time-dependent losses are inserted to simulate the 

cavity in active Q-switched regime. 

To simulate the passive Q-switch operation, we assume the Cr:ZnSe to be a 2-levels system, but with a saturated

transmission of 98.5% while totally bleached (it can't be 100% because of excited state absorption). The lifetime is fixed 

at 6 µs. Cr:ZnSe cross-sections at 1645 nm and 1617 nm don't depend on the temperature. Hence, the simulation doesn't 

take into account spectroscopic changes of ground state and excited state cross-sections with the temperature. Indeed, to

the far of our knowledge, there are no published measurements of these evolutions. 

2.2 Comparison in the case of active Q-switch 

To validate the simulation, we compared its result to an actively Q-switched Er:YAG cavity depicted in Fig.2. It uses a 

0.5 at.% Erbium doped YAG crystal, 30 mm long with a diameter of 750 µm. It is embedded inside a 3 mm thin copper

plate with the Taranis technology from Fibercryst to ensure a very good thermal dissipation of the crystal. The copper 

plate is water-cooled at 12°C. The acousto-optic modulator (AOM) uses a 6 cm long quartz crystal and 2 piezo-electric

actuators. M1 mirror is a dichroïc meniscus with a radius of curvature of 50 mm. It has high reflectivity for the laser over 

the 1600-1650 nm range and high transmission for the pump over the 1440-1500 nm range. The output coupler M2 has a 

radius of curvature of 100 mm and a reflectivity of 80% for both 1645 nm and 1617 nm wavelengths. The cavity length 

is 140 mm. An 100 µm thin etalon is inserted between the crystal and the AOM to shift the emitted wavelength from 

1645 nm to 1617 nm. This design sets the cold-cavity laser waist inside the crystal with a diameter of 220 µm. Compared 
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AOM 

A drop of around 20% is expected by Q-switching the cavity from active to passive configuration, and comes from the

small residual absorption (2% single-pass) of the saturable absorber. This drop is in accordance with the inserted losses

(4%) and the output coupler reflectivity (80%).

3. PASSIVE Q-SWITCH CAVITY WITH THREE DIFFERENT SATURABLE ABSORBERS

3.1 Experimental setup 

Cr:ZnSe absorbers with initial transmissions of 95%, 90% and 85% have been consecutively inserted in the same cavity

(Fig. 2) between the crystal and the AOM while the AOM is kept inactive to compare the performance in the same 

conditions. They are anti-reflection coated for both Er:YAG 1.6 µm emissions. First, there was a output wavelength shift

from 1645 nm to 1617 nm with the 85% of initial transmission saturable absorber. This effect has already been observed 

and described in previous publications [6]. 

3.2 Passive Q-switch with Cr:ZnSe absorbers 

From actively to passively Q-switch regimes, a small decrease was expected (Fig. 4) as saturable absorbers insert losses

while the Q-switch pulse is building until the saturation intensity is reached. In addition, these crystals exhibit a excited 

state absorption (ESA) cross-section which limits the maximum saturated transmission. Fortunately, the ESA remains

low compared to the ground state absorption (GSA) so the modulation depth is still usable for Q-switch operation.

The upper state lifetime is large (6 µs) towards our 100 ns-range pulse duration and shouldn't impacts the output energy,

and the saturation intensity of Cr:ZnSe crystal is easily exceeded as its value is very low (18 kW/cm2). However, we

experimentaly observed a decrease of around 65% of the performances from active to passive Q-switch (Fig. 4) instead

of 20%, implying a cut of the saturated transmission of the saturable absorbers. In this configuration, pulse energy

reached 110 µJ at 1617 nm, with long duration of 40 ns caused by the long cavity. 
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4.3 Origin of energy variations with Cr:ZnSe temperature 

Measurements of Cr:ZnSe excited state lifetime with temperature has been done by Sorokina [9] and are reproduced in 

Fig. 10. The lifetime τc decreases a lot from 300 K, from 5.5 µs down to under 1 µs. Stating that the saturation intensity

of a saturable absorber is Isat = 1/(σ∗τc), there is a factor 5, at least, on Isat, leading to a decrease of saturated transmission 

if the intra-cavity intensity isn't high enough.

For instance, if one has one order of magnitude of effective intra-cavity intensity (150 kW/cm2) beyond the room-

temperature saturation intensity of Cr:ZnSe (15 kW/cm2), it may not be enough if the Cr:ZnSe cristal is not cooled, as it 

will have an effective saturation intensity around 75 kW/cm2 at 150°C, which is half the  intra-cavity intensity, resulting 

in additional losses in the cavity.
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A drop of saturated transmissions is observed for high temperature, resulting from a raise of the saturation intensity with 

the temperature. The drop occurs later and is lower when the incident intensity is higher, in accordance to the theory and

previous observations. Measurements with temperature up to 220°C are planned. 

5. CONCLUSION

In conclusion, we obtained pulse energy up to 220 µJ at 830 Hz from an Er:YAG single crystal fiber at 1617 nm, with 

pulse duration of 40 ns. This result has been achieved by cooling the saturable absorber temperature down to 25°C.  

Without controlling the temperature, we measured operating temperature of the Cr:ZnSe crystal up to 150°C because of

residual absorption of pump (for a simple 2 mirrors configuration) and signal (as the transparency can't reach 100%

because of excited state absorption). This raise induces a drop (around 60%), unexpected from our simulations, of output

performances.

This highlights the need to cool the saturable absorber in order to improve the saturated transmission for better output 

performances.

Further studies, like ground-state and excited-state spectroscopic measurements or bleaching measurements with 

temperature over 120°C, can help for a better understanding of mechanisms that occur in a Cr:ZnSe crystal while used as

a saturable absorber at 1.6 µm. 
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