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Abstract: The cooperative electromagnetic interactions between discrete
resonators have been widely used to modify the optical properties of
metamaterials. Here we propose a general approach for engineering these
interactions both in the dipolar approximation and for any higher-order
description. Finally we apply this strategy to design broadband absorbers in
the visible range from simple n-ary arrays of metallic nanoparticles.
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1. Introduction

Engineering light-matter interactions is a longstanding problem in physics and is of prime im-
portance for numerous technological applications such as the photo and thermophovoltaic en-
ergy conversion [1, 2], the optical manipulation of nanoobjects [3] or the quantum information
treatment [4]. Light interaction with resonant structures embedded inside a material is a natural
way to modify its optical properties. To date, a large number of resonant structures have been
developped following such a strategy. Among these, metamaterials based on metallo-dielectric
structures have been proposed to operate at frequencies ranging from the microwave domain
[5] to the visible [6].

The design of artificially constructed magnetodielectric resonators which strongly interact
cooperatively is a very recent and promising way to generate metamaterials that highlight inno-
vative physical [7, 8] and transport [9, 10] properties. However, so far, only heuristic approaches
have been followed to identify the convenient meta-structures which display target functional-
ities. In this paper, we present a general theory to describe the multiple scattering interactions
mechanisms in discret networks of resonators embedded in a host material and we propose a
general method to identify the appropriate inner structure of networks that highlight a targeted
optical property either by considering the interacting objects as simple (electric and magnetic)
dipoles or as multipoles of arbitrary order. To illustrate the strong potential of cooperative inter-
actions to tailor the optical properties of materials we design a broadband light absorber made
with simple binary lattices of metallic nanoparticles immersed in a transparent host material.



2. Scattering by nanoparticle networks in the dipolar approximation

To start, let us consider a set of objects dispersed inside a host material as depicted in Fig. 1.
Suppose this system is higlighted by an external harmonic electromagnetic field of wavelength
much larger than the typical size of objects. In this condition, we can associate to each object an
electric (E) and magnetic (H) dipole moment pm;A(A = E,H) (the higher orders contributions
are discussed in the next paragraph). The local electromagnetic field Aext(rm) at the dipoles
location rm results from the superposition of external incident field, the field generated by the
others dipoles and the auto-induced field which comes from the interactions with the interfaces.
Therefore it takes the form [11, 12, 13]

Aext
m = Ainc

m − iω ∑
B=E,H

ΓAB(∆G
AB
mmpm;B + ∑

n6=m
GAB

mnpn;B), (1)

where
(

ΓEE ΓEH
ΓHE ΓHH

)
≡
(

iωµ0 ω/c
ω/c −iωε0

)
and GAB

mn is the dyadic Green tensor in the host

material which takes into account the presence of interfaces [14] and gives the field A at the
position rm given a B-dipole located in rn. ∆GAB defined as ∆GAB ≡ GAB −GAB

0 gives the
contribution of interfaces only.

Here GAB
0 (rm,rn) =

exp(ikrmn)
4πrmn

×

{[(
1+ ikrmn−1

k2r2
mn

)
1+ 3−3ikrmn−k2r2

mn
k2r2

mn
r̂mn⊗ r̂mn

]
i f A = B

ikrmn−1
krmn

L i f A 6= B
is

the free space Green tensor in the host material defined with the unit vector r̂mn ≡ rmn/rmn.
rmn denotes here the vector linking the center of dipoles m and n, while ri j =| ri j |, k is the

wavector,1 the unit dyadic tensor and L=

 0 −r̂mn,z r̂mn,y
r̂mn,z 0 −r̂mn,x
−r̂mn,y r̂mn,x 0

. Beside the dipoles

location the auto-induced part of field does not exist anymore and it takes the simplified form

Aext(r) = Ainc(r)− iω ∑
B=E,H

ΓAB∑
j
GAB(r− r j)p j;B. (2)

It immediately follows that, the dipolar moments associated to each object reads

pm;A = χA
←→
α m;AAext

m (3)

where χA represents either the vacuum permittivity ε0 or the vacuum permeability µ0 and←→α i,A
is the free polarizability tensor of mth object under the action of field A. By inserting the external
contribution (1) of local field into relation (23) we get the following system which relates all
dipole moments

pm;A = χA
←→
α m;A[Ainc

m − iω∑
n

∑
B=E,H

GAB
reg(rm,rn)pn;B]. (4)

Here, where we have introduced the regularized Green tensor

GAB
reg(r,r

′
) =

{
ΓABG

AB(r,r
′
) i f r 6= r

′

ΓAB∆GAB(r,r
′
) i f r = r

′ . (5)

In the particular case of n-ary periodic lattices made with n arbitrary dipoles of free electric
and magnetic polarizability←→α m;A=E,H distributed in a unit cell we have, according to the peri-
odicity, the supplementary relations for the incident fields Ainc

jβ
= Ãβ exp(ik//.r jβ ) and for the

dipolar moments p jβ ;A = p̃β ;Aexp(ik//.r jβ ). Here r jβ is the position vector of the β th dipole
inside the unit cell j of lattice and k// is the parallel component of wavector.



Fig. 1. Multiple light scattering interactions in a set of subwavelength plasmonic structures
embeded in a transparent host material of refractive index nh. In the dipolar approximation
each object is replaced by both a dipolar electric moment and a magnetic moment. The
external field felt by each object decomposes into (1) the incident field, (2) the field radiated
by the other objects and (3) the auto-induced field which comes from the interface after
being emitted by the object itself. All dipoles radiate (4) in their surrounding.

Accordingly, Eq. (4) can be solve with respect to the incident field to give(
p̃E
p̃H

)
= A −1H

(
Ẽ
H̃

)
. (6)

Here we have set p̃A=E,H =
(

p̃1,A, · · · , p̃n,A
)t and Ã =

(
Ã1, · · · , Ãn

)t
and we have

define the block matrixes

H = diag(ε0
←→
α 1;E , . . . ,ε0

←→
α n;E ,µ0

←→
α 1;H , . . . ,µ0

←→
α n;H) (7)

and

A =



(1+UEE
11 ) UEE

12 · · · UEE
1n UEH

11 · · · UEH
1n

UEE
21

. . .
...

...
...

...
. . . (1+UEE

nn ) UEE
n−1,n UEH

n1 · · · UEH
nn

UEE
n1 · · · UEE

n,n−1 (1+VHH
11 ) VHH

12 · · · VHH
1n

VHE
11 · · · VHE

1n VHH
21

. . . . . .
...

...
...

...
. . . . . . VHH

n−1,n
VHE

n1 · · · VHE
nn VHH

n1 · · · VHH
n,n−1 (1+VHH

nn )


(8)

with
UEA

lk = iε0ω
←→
α l;E∑

j
GEA

reg(r0l ,r jk)e
ik//.(r jk−r0l), (9)



VHA
lk = iµ0ω

←→
α l;H∑

j
GHA

reg (r0l ,r jk)e
ik//.(r jk−r0l). (10)

These summations can calculated directly or using the Ewald’s method [15, 16] as in solid-state
physics. Relation (6) defines the dressed polarizability tensor [17]

Λ≡A −1H =

(
ΛEE ΛEH

ΛHE ΛHH

)
(11)

of resonators system within the unit cell of lattice. It takes into account both the intrinsic prop-
erties of isolated objects and their interactions with the environnement [18] (particles and inter-
faces). The dipspersion relations of resonant modes inside the system of coupled resonators is
then given by the eigenvalues of the dress polarizability tensor.

Beside the spectrum of nanoresonators network we can calculate the amount of energy which
is dissipated by the electromagnetic field inside each resonator. According to the Pynting’s
theorem [19] the power dissipated at a frequency ω inside the mth resonator is given by the rate
of doing work by the electric and mgnetic fields inside the resonator volume Vm

Pm(ω) =
1
2 ∑

A=E,H

∫
Vm

Re[j∗m;A(r,ω).A(r,ω)]dr. (12)

Here A denotes either the local electric or magnetic field E and H while jE and jH are the
corresponding local current density. In the dipolar approximation jm;A = −iωpm;Aδ (r− ri),
expression (12) can be recasted into the discrete form

Pm(ω) =−ω

2 ∑
A=E,H

{Im[p∗m;A(ω).Aext
m (ω)]− ω3µ0

2
p∗m;AIm[GAA

0 (rm,rm)]pm;A}. (13)

By inverting (1) after having replaced the dipole moments by their expression with respect to
Aext

m , we can express Aext
m in term of Ainc and explicitely calculate the power dissipated in each

object under an external lighting.
For spherical particles of radius R the polarizability is straightforwardly derived from the

Mie scattering theory [20, 21]. If those particles, of refractive index nm, are immersed inside a
medium of index nh, we have←→α A = αA1 with

αE
−1 = k3

0
nh

6π
(CE − i), (14)

αH
−1 = k3

0
n3

h
6π

(CH − i). (15)

Here k0 is the wavevector inside vacuum and

CE =

ρ2
m−ρ2

h
ρ2

mρ2
h
(Cosρh +ρhSinρh)(Sinρm−ρmCosρm)+ρmCosρhCosρm +ρhSinρhSinρm

ρ2
h−ρ2

m
ρ2

mρ2
h
(Sinρh−ρhCosρh)(Sinρm−ρmCosρm)−ρmSinρhCosρm +ρhCosρhSinρm

, (16)

CH =
−ρ2

hCosρh(Sinρm−ρmCosρm)+ρ2
mSinρm(Cosρh +ρhSinρh)

ρ2
h Sinρh(Sinρm−ρmCosρm)−ρ2

mSinρm(Sinρh−ρhCosρh)
(17)

with ρh = k0nhR and ρm = k0nmR, nm being the refractive index of resonator. According to Eqs.
(13), (16) and (17) it follows that the power dissipated in each particle can be expressed both in



term of absorption cross-sections and of incident external field

Pm(ω) =−ω

2
{ε0

nhω3

6πc3 Im[Eext∗
m (CE

←→
α
∗
E,m
←→
α E,m)Eext

m ]

+µ0
n3

hω3

6πc3 Im[Hext∗
m (CH

←→
α
∗
H,m
←→
α H,m)Hext

m ]}
(18)

3. Generalization of scattering problem beyond the dipolar approximation

So far, we have only considered interactions between electric (resp. magnetic) dipoles. In this
paragraph we describe how to take into account the multipolar interactions. The electromagntic
field inside a medium of refractive index nh can be expressed in term of ingoing (-) and outgoing
(+) vector spherical wave functions (which form a complete basis)

ψ
±
pq =

(
E±pq
H±pq

)
(19)

where we have adopted the usual convention for the multipolar index (m,n) which are replaced
by a single index p = n(n+ 1)+m and where q set the polarization state (i.e. q = 1 for T E
waves and q = 2 for TM waves).

The outgoing wave functions ψ+
pq are solutions of Maxwell’s equation (using the e−iωt con-

vention) {
∇×E+

pq = iωµH+
pq +HS

pq

∇×H+
pq =−iωεE+

pq +ES
pq

. (20)

with the source term ψS
pq =

(
ES

pq
HS

pq

)
(i.e. the multipole pq) defined by{

ES
pq = 0

HS
pq = in1/2

h r.Dm
n

. (21)

for the magnetic contributions and by{
ES

pq =−in−1/2
h r.Dm

n

HS
pq = 0

. (22)

for the electric ones where Dm
n expresses in term of partial derivative of the Dirac distribution

δ as

Dm
n =

i
(2k0nh)nn!

√
8π(−1)m(2n+1)(n−m)!

n(n+1)(n+m)!
×

{
z(

∂

∂x
+ i

∂

∂y
)− (x+ iy)

∂

∂ z

}(n+m)

(− ∂

∂x
+ i

∂

∂y
)(n)δ .

(23)

Let us consider an isolated particle of arbitrary shape immersed inside a host medium of
index nh and highlighetd by an external electromagnetic field. By definition, this field can be
decomposed on the complete basis of ψ±pq as

Ainc(r) = ∑
pq

Apq
inc

ψ+
pq(r)+ψ−pq(r)

2
. (24)



Fig. 2. On the first column, absorption of simple and binary hexagonal lattices made with
Ag and Au nanoparticles 30 nm radius immersed at h = 100nm from the surface in a trans-
parent host medium of index nh = 1.5 with respect to the density in particles. On the second
column, this absoption is compared with the absorption of single particles without multi-
ple scattering interaction and, on the last column, with the results given by the effective
medium theory with the same filling factor.

As for the diffracted field, which is an outgoing field, it reads

Adi f f (r) = ∑
pq

Apq
di f f ψ

+
pq(r). (25)

To calculate the components Apq
di f f of the diffracted field we first calculate, by reciprocity

and using the Lorentz relations [19] , the action of the sources ψS
p′q =

(
ES

p′q
HS

p′q

)
(with

p′ = (n,−m)) on the incident field. Then using the fact that ψ±pq functions form a complete
basis they satisfy the following orthogonality relations{

< ψ±pq,ψ
±
p′q′ >=−4iδpq,p′q′

< ψ±pqψ
∓
p′q′ >= 0

. (26)

where the brackets < ., . > represents the scalar product in the Lorentz sens defined by

< ψ
1
pq,ψ

2
pq >=

∮
(E1×H2−E2×H1).ndS. (27)



Here, integration in taken over an oriented surface (with the vector n) surrounding the particle.
It follows by applying the Lorentz relation with the field ψ

+
p′q generated by a source ψS

p′q and
the incident field Ainc that

< ψ
+
p′q,Ainc >=

∫
ψ

S
p′q(r).Ainc(r)dr ≡ I

ψS
p′q
[Ainc]. (28)

Note that Iψ [A] is the action of the distribution on the test function ψ [22]. Then using the
orthogonality relations (26) and according to (24)

Apq
inc =

i
2

I
ψS

p′q
[Ainc]. (29)

Then, using the matrix T which relates the vectors Ainc of components of incident field to the
vector Adi f f of diffracted field we have

Apq
di f f =

i
2∑

pq
Tpq,p′q′ IψS

p′q
[Ainc], (30)

Now, interactions between distinct particles dispersed inside a multilayer can be studied using
a generalized form of the translation matrix as introduced by Stout et al. [23] to express the
field generated by a source inside a particle in term of components of incident field on another
particle.

4. Broadband absorber design

Now the general theoretical framework needed to describe the cooperative electromagnetic in-
teraction inside a network of optical resonators we discuss in this paragraph how to use it to
design targeted optical properties. To start with this objective ans show the strong potential of
cooperative interactions we first consider the simple geometric configurations as illustrated in
Fig. 2, that is single and binary metallic [24] particle arrays dispersed in regular hexagonal lat-
tices of side length d and compare their absorption spectra with that ones of isolated particles
and of homogeneous metallic film. All lattices are immersed in a transparent material of refrac-
tive index nh = 1.5 and are maintained at a distance h = 100nm from the surface. The results
plotted in Fig. 2 clearly show that the resonance peaks in single particle lattices are essentialy
centered at the resonance frequency of free particles. On the other hand the absorption spec-
trum of nanoparticles lattices is much broder and does not simply consist in a superposition
of single particle spectra. Moreover, we see that the cooperative interactions allow increasing
the absorption even in diluted lattices where the filling factor f is smaller than 3%. Finally,
the comparison of the overall absorption of nanoparticle lattices with that of simple metallic
films with a thickness defined, using the effective medium theory, from the nanoparticle filling
factors points out the prime importance of cooperative effects to magnify the absorption level.
In binary lattices, new configurationnal resonances add up to the resonances of single lattices
and naturally enlarge the absorption spectrum.

In light of these results we can introduce a rational design of cooperative electromagnetic
interactions to optimze the optical properties of a composite structure made with a distribution
of nanoparticles. For this purpose we present the inverse design of a broadband absorber in
the visible range [6, 25, 26, 27] made with a n-ary array metallic spherical nanoparticles. A
n-ary lattice is defined from a unit cell C of a two dimensional paving with a certain thickness
(see Fig. 3). In the unit cell of a lattice we consider a set of n vectors ri and n positive reals
Ri that represent the location of particles center and the radius of particles, respectively. To
avoid the particle interpenetration these vectors must satisfy to the supplemental constraint
| ri− r j |> Ri +R j .



Fig. 3. Evolutionary algorithm to optimize a n-ary lattice. (a) A random population of
periodic lattices (a physical view of an unit cell is plotted on the left) is randomly generated.
(b) The best individus basd on the fitness function are selected as parents for the crossing
over. (c) The next generation is created by linear crossing and completed by new individus
(d) to keep the total population constant. (e) Mutations are aaplied on a few number of
individus (typically 5%) in the current generation.

To design the n-ary lattice in order to maximize its overalll absorption we have to explore
the large and complex space of all possible configurations. To do that we employ a genetic
algorithm (GA) [28] which is a stochastic global optimisation method that is based on natural
selection rules in a similar way to the Darwin’s theory of evolution. Evolutionary optimization
has been yet successfully applied in numerous fields of optics [29, 30].

Basically, a GA uses an initial population (Fig. 3) of typically few hundreds of structures
also called individus which are randomly generated in size and position. For each individu we
calculate the fitness parameter which is here the mean absorption (for a given polarization) A =

(λmax− λmin)
−1 ∫ λmax

λmin
A(λ )dλ over the spectral range [λmin;λmax] where we want to increase

the absorption. The monochromatic absorption A(λ ) at a given wavelength is simply given by
the the sum of power dissipated inside the particles of the unit cell normalized by the incident
flux φinc(λ ) on its surface S that is

A(λ ) =
∑

m∈Cell
Pm(λ )

S φinc(λ )
. (31)

The GA consists in maximizing the fitness function of structures (i.e. A→ max). To do so, we
select 90% of the highest fitness as future parents for the next generation of selecting process.
Those parents are linear crossed and the new ’child’ generation is completed by new individual
structures (randomly generated) to keep the same total number of lattices for any generation. To



Fig. 4. Light absorption spectrum at normal incidence of a binary Au-Ag lattice (red dashed
curve) optimized by GA by taking into account all multipolar interactions until the second
order (quadrupoles) and of a multilayer based on Au-Ag films of thickness defined with the
filling factor in nanoparticles (i.e. effective medium theory). Circles curve shows the result
obtained by solving the Maxwell’s equations with a finite element method.

avoid the convergence toward local extrema, every m (typically 10) generations, we introduce
also some mutations that is to say random perturbations with a probability of about 5% on the
value of parameters we are optimizing. The results presented in Fig. 4 for superposed binary
Au-Ag lattices (with the radius rAu = 77nm and rAg = 39nm, the separation distances from
the surface hAu = 120nm and hAg = 242nm, the lattice constants dAu = dAg = 200nm and the
off-centring ex = 56nm and ey = 10nm ) exhibit a broad absorption band in the visible range.
By taking into account the multipolar interactions until the second order (i.e. quadrupolar in-
teractions) we see that the level of aborption becomes close to one. The comparaison of these
results with full electromagnetic simulations based on the finite element method shows that the
higher order multipole moments do not contribute significantly to the overall absorption. The
absorption enhancement can be understood by examinating the electromagnetic cooperative ef-
fects inside the structure. These effects are highlighted in Fig. 5 at two different wavelengths by
plotting the local losses inside the gold (resp. silver) nanoparticles within the optimized binary
lattice in presence or without silver (resp. gold) nanoparticles. At λ = 550nm, that is to say, at
the resonance of gold particles (which corresponds to the region where we observe in Fig. 4 an
important bump in the absorption spectrum when it is calculated in the dipolar approximation)
we see that the presence of silver nanoparticles enhance by 20% the losses inside the gold par-
ticles. Similarly, at λ = 650nm, the gold particles enhance by a factor of 60% the dissipation
inside the silver particles. However, because of the weakness of intrinsic losses inside isolated
Ag particles this cooperative effect is not sufficiently important to increase the overall absorp-
tion of the structure. At low wavelength we have checked (not plotted in Fig. 5) that the high
absorption levels as shown in Fig. 4 results from cooperative effects between the gold particles
themselves. The silver particles do not play any role in the exaltation mechanism.

Interestingly, the numerical simulations have shown also that the cooperative effects are not



Fig. 5. Local losses at λ = 550nm in the particles of a gold nanoparticle lattice (a) with
the same geometric parameters as in the optimized structure. Losses ℑ(ε)|ESG|2 in the
single particle lattice are normalized by the maximum loss. In (b) we show the normalized
difference ℑ(ε)|EDG|2−ℑ(ε)|ESG|2 of losses inside Au particles in presence and without
Ag particles (white regions). Analogously, in (c) and (d) the cooperative effect induces by
the presence of Au particles on the dissipation in the Ag particles is shown at λ = 650nm.

very sensitive to the presence of disorder. In Fig. 6 we show, by disturbing the optimal structure
with a -random perturbation of particles locations by a maximum displacement of 20nm, that
the discrepancy between the optimal structure and the perturbed ones, given by the mean square
error ζ = [

∫
λmax
λmin

(A(λ )−Aopt(λ ))
2dλ ]1/2, remains small. For some realization a broadening of

spectrum can be observed around 650 nm. This effect can attributed to the presence of new
modes supported which give rise to new channels for dissipating light energy within the struc-
ture. However, the detailed study of random structures goes far beyond the scope of the present
work and it will be carried out in a future work.

5. Conclusion

In conclusion, we have proposed a general method for engineering the cooperative electromag-
netic interactions in resonators networks both in the dipolar approximation and for arbitrary
multipolar orders. Our results have demonstrated the strong potential of these interactions to
tailor the optical properties spectrum. We believe that this approach opens the way to a ratio-
nal design of metamaterials and it could find broad applications in various fields of applied
physics, as for instance, in the domain of photovoltaic energy conversion for the conception of
more efficient solar cells, in optical information treatement for the design of quantum informa-
tion systems and, according to the reciprocity principle [31], in light extraction technologies to



Fig. 6. Impact of disorder on the light absorption spectrum at normal incidence in a binary
Au-Ag lattice.The spatial location of particles is randomly perturbated by a displacement of
20nm. The red ciurve corresponds to the spectrum (in polarization TM at nomrla incidence)
of the optimized structure and the dotted blue curve is the spectrum of a particular random
realization (results in polarization TE, not plotted here are similar). The dashed area shows
the maximum and minimm values of absorption spectrum of different random realizations.
The histogram shows the discrepancy with the optimal fintess for different realizations
of the structure. The red line on the histogram shows the mean error with respect to the
number of realizations.The disorder is mimicked by using pseudoperiodic particle array
with sufficiently large unit cells.

improve the performances of light emitting diodes.
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