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Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles
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A general fluctuation-electrodynamic theory is developed to investigate radiative heat exchanges between
objects that are assumed to be small compared with their thermal wavelength (dipolar approximation) in N-body
systems immersed in a thermal bath. This theoretical framework is applied to study the dynamic of heating or
cooling of three-body systems. We show that many-body interactions allow us to tailor the temperature field
distribution and to drastically change the time scale of thermal relaxation processes.
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I. INTRODUCTION

The absence of thermal equilibrium is at the origin of an
energy exchange between bodies having different temperatures
mediated by an electromagnetic field. This radiative heat
transfer was first described by Planck’s theory in the far
field. The Stefan-Boltzmann law is valid only when the
distance d between the bodies is large compared to the thermal
wavelength, Aq, = fic/kgT (h is Planck’s reduced constant, ¢
is the speed of light in vacuum, kg is Boltzmann’s constant,
and T is the temperature), which is of the order of some
microns at ambient temperature.! It was later shown that in
the near-field regime, i.e., when d < Ay, the heat transfer
can surpass its far-field counterpart by several orders of
magnitude. This effect was first predicted in the pioneering
work of Polder and van Hove® using the approach based
on fluctuation-electrodynamic theory developed by Rytov.?
According to this approach, each body is described by a
distribution of fluctuating currents, whose statistical properties
are connected through the fluctuation-dissipation theorem to
the temperatures and dielectric properties of the bodies.

It has been shown that the near-field amplification is mainly
due to the tunneling of evanescent photons, which do not
participate in the exchange in the far field.*” This amplifi-
cation is even more remarkable if the bodies support surface
resonances, such as plasmons for metals or phonon polaritons
for polar materials: in this case, the heat transfer is almost
monochromatic around the surface-resonance frequency.'®!!
The experimental confirmation of the near-field enhancement
of heat transfer is now well-established in sphere-plane and
plane-plane geometries.'>>! Moreover, the study of radia-
tive heat transfer can be relevant for several applications,
going from thermophotovoltaic’>~?7 or solar thermal energy
conversion’®? to heat-assisted data storage.*’

During the past three years, several theories have been
developed to describe heat transfer at any separation distance
between bodies with arbitrary geometries and dielectric prop-
erties. Having in common the use of fluctuation-dissipation
theorem, these approaches differ in the technique employed:
scattering matrices,>!'=33 Green’s functions,>*3° time-domain
calculations,*® boundary-element methods,?” and fluctuating
surface currents.’®3 Although some of these theories®*°
allow us in principle to treat the case of an arbitrary number of
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bodies, the numerical applications have been performed only
in the case of two bodies having several different geometries.

Recently, progress was made by investigating heat transfer
in three-body systems. The case of three dipoles*’ and three
parallel planar slabs*'*? has been described in detail. These
results have shown promising ways, using many-body inter-
actions, to produce interesting effects, such as the inhibition
or amplification of heat flux, by exploiting the intrinsically
nonadditive behavior of radiative heat transfer.

The dynamics of heat transfer in the near field has also
been recently addressed. In Ref. 43, the cooling or heating
of a nanoparticle immersed in a thermal bath close to a
planar surface is considered, discussing how it depends
on the particle-surface distance. Very recently, Yannopapas
and Vitanov* have extended this study to a collection of
nanoparticles and outlined the possibility of thermal control
by means of an external laser source. They investigated
the possibilities of controlling the temperature distribution
within a collection of metallic nanoparticles by means of an
external coherent laser field (see also Ref. 45). However, the
interaction of nanoparticles with their surroundings is taken
into account using a heuristic approach based on the intro-
duction of an average absorption cross section. Furthermore,
a quantum description of the heat transfer dynamics for two
plasmonic nanoparticles was developed in Ref. 46. Finally, it
must be mentioned that other authors have considered both
theoretically and experimentally the nanoscale control of the
time-independent temperature profile for a system composed
of metallic nanostructures.*’* The nanoscale control (both
time-dependent and time-independent) of the temperature
distribution has proven to be crucial for several applications,
such as heat-assisted nanochemistry>*=? or thermotherapy for
medical applications, in particular in the context of cancer
treatment.>’

In this work, we introduce a general theory to describe
the time-dependent heat flux and temperature distribution
for an arbitrary number N of particles, described using the
dipolar approximation, immersed in a thermal bath at con-
stant temperature. Using a purely fluctuation-electrodynamic
approach, we deduce the expression of the power absorbed
by each particle, isolating the contributions coming from each
other particle and from the bath. Differently from Ref. 44,
we provide a general derivation of all the contributions to the
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energy exchanges (both between particles and with the external
thermal bath) based on the fluctuation-dissipation theorem. In
the case of three nanospheres, we use this knowledge to study
the dynamics of the temperatures when one of the particles
is initially heated up, without any external energy source
during the time evolution. We discuss the influence of the
geometrical configuration as well as that of the coupling of
surface resonances.

This paper is organized as follows. In Sec. II, we introduce
the physical system and the main equations describing the
time evolution and the power absorbed by each particle. In
Sec. III, we find a closed-form analytical expression for the
total dipole moment associated with each particle and for
the electric field at the particle positions. Section IV contains
the derivation of the power absorbed by each particle, identify-
ing the contributions coming from each other particle and from
the bath. In Sec. V, we provide some numerical applications:
we study the dynamics of the temperatures in a three-particle
system, discussing the influence of geometry and surface
resonances; we also discuss how the distribution of particles
can be used to produce different time-independent temperature
profiles. Finally, in Sec. VI we draw our conclusions.

II. PHYSICAL SYSTEM AND ENERGY BALANCE

We consider a discrete set of N objects at different
temperatures 7; centered at positions r; inside a thermal bath
(a free bosonic field) which is maintained at temperature
T,. While T, is assumed to be fixed, the N temperatures T;
can vary in time. We suppose that the sizes of the objects
are small compared with the smallest thermal wavelength
A, = ch/(kgT;) so that all individual objects can be modeled
as simple radiating electrical dipoles p; and magnetic dipoles
m;. Here we limit our discussion to nonmagnetic materials
(i.e., m; = 0). We assume that the time scale produced by
radiative heat exchanges is large compared to the phonon
thermalization time in each object (typically of the order of
some picoseconds for a nanoparticle). Under this hypothesis,
whose validity will be discussed in Sec. V, it is meaningful
to define a temperature 7;(¢) for each particle as a function of
time. Assuming also no phase and mass change of materials,
the time evolution of the N temperatures 7; is governed by the

following energy equations (i = 1,...,N):
dT;(t
pcv ol =~ [ (mway - as. (M)
dt s,

where the left-hand side (LHS) is the time variation of the
internal energy of object i, with p;, C;, and V; representing
its mass density, heat capacity, and volume, respectively. The
right-hand side (RHS) determines the energy flux across the
oriented surface S; enclosing the particle with a dipole moment
poi (r,t) = p;(t)8(r — r;) by integrating the Poynting vector IT
over S;. In expression (1), the brackets represent the ensemble
average over all the statistical realizations. In the context of
a quantum treatment of field and matter, this average (and
all the quantum averages from now on) has to be intended
as a symmetrized average (AB)ym = ((AB) + (BA))/2. At
local thermal equilibrium we have, according to the Poynting
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theorem,
V - (r,t) = —ji(r,t) - E(r,1), )

where j; - E is the power dissipated by Ohmic losses in the
volume V;, j; = dp“’ being the local electric current density and
E the local electrlc field at position r. Thus, by transforming
the surface integral appearing in Eq. (1) into a volume integral,
we cast Eq. (1) into the form

dT;(1)
dt
(abs)

piCiV; = Ke);abs)(l,Tl, ..

I, Ty), 3

where the power ;" absorbed by the dipole i is given by

p;abS)(t’Th”"TN’Tb) = /(ji(r,t).E(r,t»dV
Vi

i

<dpmﬂ
dt

To calculate the absorbed power, we deduce in the next section
an explicit expression of the electric field and dipole moment.

E(r;, )> “

III. TOTAL DIPOLE MOMENT AND FIELD

We start by decomposing the local field E(r) into its incident
part (which corresponds to the bosonic field E® of the bath
without scatterers) and its induced part E™ (from now on
we will work in the frequency domain and omit the frequency
dependence when only one frequency is concerned) as

E(r) = E®(r) + E™(r). ®)

We then express the latter with respect to the electric dyadic
Green tensor G = GFF as a function of all dipolar moments,

k2
Er) =E®m) +— > GO rp;, 6)
€0 ;
where
(ko) ikp — 1
GOy = exp(i | 1
r) 4mp + k% p?
31 —ikp) — k*p* o _ L
+ 1202 PP (7

is the dyadic Green tensor in free space, k = w/c,F =r/r,p =
r' —r,and p = |p|. We now decompose each dipole moment
p; into

pi =p\"” +p"?, (8)

and p(i"d) denote its fluctuating and induced
(ind)

where p(ﬂ)
parts, respectively. For the induced part p,

discrete-dipole approximation,”®" according to which p;
is expressed as a function of the exciting field, i.e., the local
field at r = r; except the contribution of the dipole i, as

ol L) o

&o
J#i

we use the
(ind)

where «; represents the (frequency-dependent) polarizability
of dipole i (assumed for simplicity to be isotropic) and we have
introduced the notation E; = E(r;) and set G(O) GO(r;,r)).
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Using Egs. (8) and (9), we obtain the following equality,
written in matrix form:

pi p(lﬁ) E(lb)
=T s | +TA | (10)
Py Py E(,\t;)
A and T are 3N x 3N block matrices defined in terms of the
(i,j) N x N submatrices (i,j = 1,...,N),

Ty =81 — (1 — 8 )k*; G

iy’

A,’j = 5,’j800[,‘]].. (11)

For the local field, we have, using Egs. (6) and (10),

E, b B
=DT! +(@+DT A |, (a2
Ey e EY
with
k2
Dy = 8—G§j.’>. (13)
0

It is easy to prove that

1
D=-A"'T+B, B;= a,j(—ll + G“”) (14)

00 )
and then
E; P(1ﬂ) E(lb)
=BT '—AYH] : |+BTAl : |. 15
Exn pég) E;I\t;)

Equations (10) and (15) contain the expression of the total
dipole moment and local electric field as a function of the
fluctuating dipole moments and field of the bath. These
expressions will be used to deduce, in the next section, the
total power absorbed by each dipole.

IV. EXCHANGED POWERS
Starting from Eq. (4), we obtain

p;abs)(t’Tl’ Ty Ty
too dw +0o do'
0 21 0 27T
X [(Pz(w) . E:.r(a)/))e—i(w—w’)r
— (pl(@) - Ei(@)e@ ]

T dw T do
= 2[ —a)/
0 27 0 27

x Im[ (pi(@) - Ef(@"))e @], (16)

where we consider only positive frequencies and we use
the convention f(¢#) =2Re[ fo *do 52 f (w)e™'®'] for the time
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Fourier transform. We now assume the general linear relations

fl
pi py” E®
=M - | +DN} |,
b
Py Py Ey 17
(fl) (b) a7
E, P E|
= ® + ]P : )
(fl) (b)
Ey Py Ey

and calculate the absorbed power (16). In the following, a; o
denotes the Cartesian component [a; ], (¢ = 1,2,3 correspond-
ing to x,y,z, respectively) of the vector a;, whereas A,; g
denotes the element [A;;],s of the 3 x 3 matrix A;;. From
now on, Latin indexes are associated with the dipoles while
Greek letters are used for Cartesian components. We have

Pia =Y (Mijapph + Nijup ET). (18)
7B

Ei,a :Z((Dljaﬂpjﬂ+IPljaﬁE(b)) (19)
7B

Now, assuming no correlation between the fluctuat-
ing dipole moments and the field of the bath [i.e.,

(PI@)EP) (@) = 0 for any w and ', i,j = 1,....N and
o,f =x,y,z] we get
(pi(@) - E(@))
@ Moyt
= ZZZ ij.ap (P p Py )0 pra
a i BB
®) ' Of\p'T
+INij’“ﬁ(EJ sEjip >IP/ i B a] (20)

On the RHS, the prime is associated with quantities calculated
in ', the others being calculated in w. The correlation
functions appearing in Eq. (20) can be deduced from the
fluctuation-dissipation theorem and read

(piﬂ;(w)pﬂ);/(w’)) =heodjjdpp xj2mS(w — )
x [1+2n(w,T))] 21
and
(EPH@E ) (@)) = —Im(G§3> 5)278(0 — @)

x [1 + 2n(w, Ty)]. (22)

Here we have introduced

k3

x; = Im(a;) — a|ozj|2 (23)

and the Bose-FEinstein distribution

hw -1
n(w,T) = |:exp<kB—T) — 1] 24)

at temperature 7. A discussion concerning the use of y;
instead of Im(c;) is provided in Appendix A. By means of

104307-3



MESSINA, TSCHIKIN, BIEHS, AND BEN-ABDALLAH

the expression for the correlations functions, we conclude that

(pi(@) - E}(@))
= 2n8(w — ')

|:h80 > %1+ 2n(e, THITE(M;; O

J

2
- ’%[1 + 2n(e, T)Tr(N Im(G) P »}. (25)
0

Using Eqgs. (10) and (15), we obtain

(pi(@) - El())
=278(w — &)
x | he Zx-[l + 2n(w,T;)] ! + k—zg@*
0 - J () 8()0[? 0 ii
X Tr(’]l’i;l’]l“;[”)

—heoxi[l + 2n(w, T)]LTr(’JI‘ )

€0
hk? 1 k% o
+ —[1 + 2n(w,Tp)] —8ii
eol; €o
x Tr(’]P_lAIm(G(O))ATT_”),-,}, (26)

where we have defined
GV =01 = (a +ii>11, acR, (27
67 c

and we introduced the (formally infinite) real part a of
the diagonal Green function G” , which will not play any
role in the final results. Using the fact the the exponential
factor ¢/~ in Eq. (16) becomes irrelevant with respect to
the imaginary part because of the delta function §(w — ')
appearing in Eq. (26), we obtain after simple algebraic
manipulations,

m(p;(w) - ERw/»
= 218(w — w) [Zx1[1+2n(w T)]
x Tr(T5'T;) = [1 + 2n(e, T)m[ey Tr(T;;") ]
+E[1+ 2n(@,T0)] Y a0 Tr(T; Im(G) T }
Jjk
(28)

It is physically evident that the net power absorbed by any
dipole i must be zero at thermal equilibrium. As a consequence,
the following condition must hold fori =1, ...,N:

Tr|:ZX] 1'II‘ It _ Im(;; T;;")

+i2Y ja;T;Im(G;‘Q)TM”} =0. (29
Jk
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In Appendix B, we discuss the cases of one and two
dipoles, showing analytically that the condition (29) is met.
Furthermore, we have verified its validity for several higher
values of N and for random realizations of the geometrical
configuration of the particles.

This condition allows us to write the net heat transfer on
particle i as a sum of exchanges with the other particles and
with the bath,

K‘)i(abS)(t’T] y e aTNaTb)
T g Axixi _
_ / 2—‘“hw 3 A @y (T )
0 7T P lex; |
4k* Xi 0) —1
+ e — Ny () Za aZTr(’]TUlIm(GSk) N1,
Q; ik
(30
where we have introduced the differences
nij(®) = n(,T;) — n(w,T)). (3D

Equation (30) is one of the main results of this paper. It
provides the expression of the instantaneous power absorbed
by any dipole i formally written as a sum of contributions
associated with each other dipole j and the thermal bath. We
remark that this expression includes the nonadditivity of heat
transfer, and thus writing the power absorbed by particle i as
a sum of two-body exchanges is a purely formal choice. This
property results from the fact that Egs. (10) and (15) constitute
a self-consistent formulation of the physical problem. The non-
additivity is evident from the dependence, in Eq. (30), of the
exchange between particles i and j on the position and proper-
ties of all the other particles. This expression contains the po-
larizabilities of the N dipoles through the terms «; and x; and
on the dependence on the geometrical configuration through
the matrices T and G(©). In the following, we provide some nu-
merical applications of this formula to the case of three dipoles.

V. NUMERICAL RESULTS

In this section, we present several numerical applications
of the main formula (30), applied to both time-dependent and
time-independent configurations, in order to explore near-field
many-body effects. We discuss here the case of three dipoles,
the simplest one in which entangled interactions exist and
where the heat transfer is not additive. We first study some
examples of time evolution of the temperature distribution
by varying the distance between the particle and thus show
the role played by near-field interactions. Then, we discuss
the importance of surface resonances and their coupling by
varying the material properties of one of the three particles.
Finally, we consider a time-independent case and show that
the ability to control the temperature of one of the particles
combined with the geometrical distribution of the three dipoles
can be exploited to tune the two other temperatures.

A. Near-field heat exchange in a three-body system
In this section, we consider three identical spherical

nanoparticles having radii R; = 50 nm (i = 1,2,3) and made
of silicon carbide (SiC). For the dielectric response of SiC, we
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use the simple model®!

w? —wlz—i—i[‘w

e(w)y=¢ -
-l +ilTw

(32)

where &5 = 6.7, @ = 1.827 x 10" rads™!, w, = 1.495 x
10" rads™!, and T = 0.9 x 10'2 rads~!. This model im-
plies a surface-phonon—polariton resonance at w, = 1.787 x
10" rads~!. For each particle i, we define the Clausius-
Mossotti polarizability as

gi(w) — 1
8,’(6()) + 2

The (dressed) polarizability «;(w) for each dipole is then
obtained by applying the radiative correction, discussed, for
example, in Refs. 62 and 63,

a¥(w) = 47 R} (33)

0
af ()

— Y o (34)
1-iLa® )

ai(w) =

We remark here that the use of the dressed polarizability (34)
makes the quantity x; appearing in Eq. (21) always positive,
and thus the energy flux is always in the correct direction, i.e.,
from hotter to colder particles. This is associated with the fact
that Eq. (34) correctly takes into account radiation damping
(see Refs. 58 and 62 for more details).

For any geometrical configuration, we solve the system
of three differential equations (3), where the absorbed power
is calculated using Eqs. (30), (11), and (7). To reduce the
number of degrees of freedom we place dipole 1 at the origin
(Ry = 0) and dipole 2 in position R, = (0,0, z;) at a distance of
72 = 400 nm (see Fig. 1). As for dipole 3, we fix its z coordinate
as z3 = zo/2 and vary its y coordinate. In Fig. 1, we show three
different configurations in which the distances between dipoles
1 (or 2) and 3 are 700 nm [panels (a) and (b)], 400 nm [panels
(c) and (d)], and 200 nm [panels (e)—(g)]. For each geometry,
we study the time evolution of the three temperatures with
the initial conditions (77(0),7>(0),73(0)) = (350,300,300) K
and T, = 300 K. We thus assume that from a configuration in
which the entire system was at thermal equilibrium at ambient
temperature, we heat one of the particles (dipole 1) up to
350 K. The evolution of the three temperatures is compared
to the evolution of one single dipole heated up to 350 K (red
curve in Fig. 1) and to the case of two dipoles (1 and 2) at a
distance of 400 nm (black curves in Fig. 1). Our interest is in
particular to show how the presence of a third particle modifies
the thermalization process of particle 2.

As expected on physical grounds, Fig. 1 shows that the three
dipoles thermalize to the temperature of the bath, 7, = 300 K.
For our choices of materials and distances, this process takes
approximately 1 s in the presence of one, two, or three dipoles
and is apparently almost independent from the geometrical
configuration. On the contrary, it is manifest that a different
time scale exists associated with a thermalization process
taking place between the three particles. In the first case [see
Fig. 1(a)], the distance between dipoles 1 (or 2) and 3 is such
that the presence of dipole 3 plays a negligible role in the
dynamics of the temperatures of dipoles 1 and 2, which is
very close to the two-body case. In this case, dipoles 1 and 2
thermalize between each other around ¢t = 1072 s, whereas the
temperature of dipole 3 is modified very weakly and locally

PHYSICAL REVIEW B 88, 104307 (2013)

in time with respect to the equilibrium value of 300 K. The
situation is clearly different in the case depicted in Fig. 1(c),
corresponding to an equilateral triangle. In this case, as obvious
from symmetry arguments, dipoles 2 and 3 follow exactly
the same evolution, and the figure shows the existence (as
in the two-dipole case) of a different time scale associated
with near-field interactions. The third and last case [Fig. 1(e)],
in which the dipoles are aligned and the minimum distance is
200 nm instead of 400 nm, proves first of all that this time scale
is extremely sensitive to the distance between the dipoles. In
this case, dipole 3 is heated faster than dipole 2, coherently
with the fact that it is closer to dipole 1. Nevertheless, it is
clear that reducing the distance between dipoles 3 and 2 as
well makes dipole 3 act like a bridge between dipoles 1 and
2 producing a remarkable acceleration (of approximately one
order of magnitude) of its temperature dynamics. In this last
case, we can clearly identify an interval of time during which
thermalization between dipoles is produced, at a temperature
significantly different from that of the bath. In this case, we
also compare the three-body result to the two-body case at
a distance of 200 nm. We clearly identify an interval of
time during which dipole 2 has a temperature still close to
300 K, while the temperature of dipole 3 deviates from 300 K
following the two-body dynamics. This clearly proves that
the time scale associated with the dynamics at a distance of
200 nm is significantly faster than the one corresponding to
d = 400 nm.

From this numerical example, it becomes apparent that the
smallest distance between particles determines the time scale
on which the heat flux is exchanged between the particles.
Further, for the distances considered in the present work, this
time scale is still several orders of magnitude larger than the
one associated with internal phonon thermalization inside each
dipole. This justifies the assumption made at the beginning
(see Sec. II) allowing us to associate a temperature with each
particle as a function of time.

Some more insight into the temperature dynamics is given
by panels (b), (d), (f), and (g) of Fig. 1, where the power
absorbed by dipole 2 is represented for the three cases under
scrutiny. This power is decomposed in the three contributions
coming from dipole 1, dipole 3, and from the bath. For small
t, the power absorbed by dipole 2 comes almost entirely from
dipole 1, as expected. Moreover, in panel (b) the distance
between dipoles 3 and 2 is such that the power exchanged
between them is negligible, while around ¢ = 1072 s the
temperature difference between dipoles 1 and 2 is such that
the (negative) power absorbed by dipole 2 and coming from
the bath starts being comparable (and later on larger) to the
exchange between dipoles 1 and 2. This comparison shows
that, even in the near field, at some point the temperature
difference and the intradipole thermalization fix the time
interval during which only the far-field exchange with the
bath matters. As far as panel (d) is concerned, no power is
exchanged between dipoles 3 and 2, since their temperatures
always coincide. Nevertheless, it is interesting to emphasize
that in this case the power exchanged with the bath is (slightly)
modified with respect to the first case. This proves that
even the far-field interaction is affected by the geometrical
configuration and near-field properties. The third case (with the
three dipoles aligned) has a dramatically different power-time
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FIG. 1. (Color online) Panels (a), (c), and (e): time evolution of the temperatures in a three-body configuration. The distance between
particles 1 and 2 is always 400 nm, while the distances between dipoles 1 (or 2) and 3 are (a) 700 nm, (c) 400 nm, and (e) 200 nm. The blue
lines correspond to the three-body configuration (solid line for dipole 1, dashed line for dipole 2, and dot-dashed line for dipole 3). The black
lines correspond to the two-body case (solid line for dipole 1, dashed line for dipole 2), while the red solid line corresponds to dipole 1 alone. In
panel (e), we also show the two-body dynamics associated with dipoles 1 and 3 at a distance of 200 nm (orange solid line for dipole 1, orange
dot-dashed line for dipole 3). Panels (b), (d), (f), and (g) describe the time dependence of the power absorbed by particle 2. The solid line is
the contribution coming from dipole 1, the dot-dashed line is the contribution coming from dipole 3, and the dashed line is the power absorbed

from the bath.

diagram with respect to the first two cases. In this case, after
a strong exchange with dipole 1, dipole 2 starts absorbing
more energy from dipole 3, which is hotter than dipole 2
[see Fig. 1(e)]. We also see that intradipole power exchanges
become negligible around ¢ = 1073 s, the time at which
the thermalization between the particles has almost finished.
Finally, panel (g) shows, in the same power scale of the
previous ones, that the exchange with the bath is again modified
by near-field properties, and in particular accelerated by about
one order of magnitude.

In the next section, we will see how changing the material
properties of one of the three dipoles affects near-field effects
and temperature dynamics.

B. Dependence of dynamic relaxation on surface resonances

In the previous section, the three particles were always
considered to be made of the same material (SiC). It is well
known that even in a stationary configuration this choice
maximizes the heat flux, since it produces the best possible
coupling between surface modes (phonon-polaritons, in the
considered case of a polar material), which give the main
contribution to heat transfer in near field.®> To see how the
dynamics changes if this coupling is no longer present, we
consider a specific geometrical configuration, and we analyze

the cases in which one particle at a time is replaced with a
different material.

To be more specific, we consider a set of coordinates Ry =
0,R, = (0,0,400) nm, and R, = (0,200,200) nm. Two among
the three particles are made of SiC, while the third one is made
of gold, described using a Drude model,

2
(,()pl

gw)=1— (35)

w(w+1iy)
with @p = 1.37 x 10" rads™! and y = 0.4 x 10" rads~".
The three cases in which one of the SiC particles is replaced
by a gold one are compared in Fig. 2 to the case of three
SiC particles. The choice of gold is motivated by the fact that
the plasmon resonance it supports lies in the ultraviolet range,
thus both far from the resonance of SiC and outside the region
where the population n(w,T’) takes non-negligible values at
the chosen temperatures.

In Fig. 2(a), the standard case of three SiC particles
is represented. We see the effects already discussed in the
previous section, and in particular the possibility of modifying
the time scale of thermalization thanks to near-field interac-
tions. Figure 2(b) represents the case in which particle 1, the
only particle heated up to 350 K in the system, is made of
gold. We observe two phenomena: first of all, the coupling
between particle 1 and particles 2 and 3 is almost absent,
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FIG. 2. (Color online) Time evolution of the temperatures in a three-body configuration. Same color convention as in Fig. 1. (a) Three SiC
particles. In panels (b), (c), and (d), particles 1, 2, and 3 are, respectively, replaced by a gold nanosphere. We remark that in (b) the red and
black curves relative to particle 1 are almost superposed. The same is true in (c), while in (d) the blue and black curves relative to particles 1

and 2 are superposed.

and the temperatures of both particles 2 and 3 remain close
to 300 K during the entire process. Moreover, the time scale
of thermalization toward the temperature of the bath is also
modified. This modification is due to the fact, anticipated
before, that the resonance of gold is at a frequency at which
the population n(w, T) is negligible, and as a consequence the
coupling (even with the bath) is much weaker with respect to
the case of SiC. In Fig. 2(c), the second particle is replaced with
a gold one. In this case, we see that its temperature is at any
time indistinguishable from 300 K, meaning that it does not
feel any coupling to particles 1 and 3. For these particles, we
observe, on the contrary, a typical two-body dynamics, with a
thermalization between the dipoles taking place more quickly
than the one toward the bath temperature. In Fig. 2(d), finally,
we observe a two-body dynamics between particles 1 and 2
[the same described by black curves in Fig. 2(a)], while particle
3, made of gold, does not participate in the energy exchange.
Figures 2(c) and 2(d) present indeed two different temperature
dynamics, the difference being the fact the particles 1 and 3
are closer than particles 1 and 2.

C. Steady state and temperature control in a three-body system

In this subsection, we focus our attention on a stationary
problem, that is, the distribution of temperatures among the
particles for t — +o0. In this limit, the LHS of Eq. (3) is zero
such that ggi(abs) is zero for all particles. It is evident that, for any
choice of initial temperatures 7;(0), without an external source
of energy, the temperatures in the long-time limit coincide with
T,. We thus assume in this section that one of the particles, say
particle 1, is heated up to 350 K as in the time-dependent
simulations, but kept at this temperature by means of a
thermostat. We are interested in showing how the positions
of particles 2 and 3 modify the temperatures these particle
assume for  — 4-00. Toward this aim, for a given geometrical
configuration we calculate the matrices T and G?, the power

absorbed by particles 2 and 3 [using Eq. (30)], and we impose
that these powers are zero in order to find 75 and 73.

To reduce the number of degrees of freedom, we consider
the case in which particle 1 is placed at the origin, particle
2 has coordinates R, = (0,0,z,), and particle 3 is located in
Rj3 = (0,y3,22/2). We are left with two independent variables,
namely z, and y;, as a function of which we study the
equilibrium temperature 7, of particle 2. The result is shown
in Fig. 3, where z, varies in the range [200 nm,1 pum] and y3
in [0,1] pwm.

N | .

300 310 320 330 340 350

O0.2 0.4 0.6 0.8 1
z, (um)

FIG. 3. (Color online) Equilibrium temperature of particle 2 when
the three particles have coordinates Ry = (0,0,0), R, = (0,0,z,), and
R; = (0,y3,22/2). Particle 1 is kept at a temperature 7; = 350 K
and the bath has a temperature 7, = 300 K. The black dashed line
corresponds to 7, = 325 K.
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We immediately notice that for any considered geometry,
the temperature 7> lies, as expected, in the range [300,350] K,
i.e., between the temperatures of particle 1 and of the bath.
Moreover, we see that starting from values of y; of the order
of 500 nm, the presence of particle 3 no longer plays a role:
on a given horizontal line we are left with the distribution of
equilibrium temperature particle 2 would have in the presence
of particle 1 only. As expected, this distribution goes to 300 K
(to Ty,) when z; increases, and in particular for z, above 700 nm.
On the contrary, 73 is close to 350 K (to T7) for z, smaller than
300 nm. When the coordinate y; of particle 3 is modified, the
dependence of T, on z; is deeply affected, and in particular for
small y3, between 0 and 200 nm, even for 7, as large as 1 um the
temperature 75 is still close to the average between 77 and Ty,.
This gives alternative evidence of the fact that the presence of
particle 3 can act as a bridge for near-field interaction between
the external particles 1 and 2. Moreover, this calculation shows
that localized heating and the use of a few external energy
sources can be actively exploited to produce a desired time-
independent temperature profile in a collection of dipoles by
acting on their geometrical distribution.

VI. CONCLUSIONS

We have used a purely fluctuational-electrodynamic ap-
proach to deduce the power absorbed by each particle in a
collection of N particles described as N dipoles immersed in
a thermal bath. These powers have been used to study the time
evolution of N temperatures with respect to different initial
conditions. We have also addressed the study of the distribution
of temperatures when one of the particle temperatures is kept
fixed in time by applying a thermostat.

First of all, we have shown that near-field interactions
introduce a different time scale of thermalization compared
with the one associated with far-field exchanges with the
thermal bath. At short distances, in the regime of near-field
interaction (typically for distances of the order of 100 nm),
the system shows first a thermalization between the particles,
which then behave as a complex system thermalizing toward
the bath temperature. The difference between these two time
scales can go up to approximately two orders of magnitude
by tuning the interaction between the nanoparticles. We
have shown numerically that the intraparticle relaxation is
extremely sensitive to the distance, and we have also shown
that, even in the simple case of three particles, the third particle
modifies the temperature dynamics of the two others and also
the time-dependent power they exchange between each other.
We have also proved that this phenomenon depends strongly
on the existence and the frequency of surface resonances: the
coupling decreases drastically if the particles do not share a
common surface mode. Finally, we have also considered the
case in which the temperature of one of the particles is fixed
in time, showing that the positions of the other particles can
be used to manipulate their equilibrium temperature.

Our results show that many-body near-field interactions
constitute a promising tool to tailor both time-dependent and
time-independent heat fluxes and temperature distributions
in a complex plasmonic system. This work paves the way
to several interesting developments. First of all, it will be
interesting to understand how these phenomena depend on
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the number of particles, by understanding whether collective
phenomena can occur. Furthermore, heat spreading can be
studied using our formalism in order to see whether anomalous
propagation regimes are possible because of the presence of
N-body interactions. Finally, the problem of how multipolar
contributions influence the many-body coupling has to be
addressed as well.
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APPENDIX A: FLUCTUATION-DISSIPATION
THEOREM FOR A DIPOLE

In this Appendix, we discuss the derivation of the cor-
relation functions of a fluctuating dipole at temperature T
given in Eq. (21). In particular, we justify the use of x; =
Im(e;) — % o |2 instead of the simpler factor Im(c j) typically
used in the literature. The quantity x; was already recently
used in Ref. 64, without providing a detailed derivation.
The derivation of the correlation functions ( pf}, (w) pi-‘?’)g,(a)/))
appearing in Eq. (21) starts from the calculation of the
correlation functions of the electric field emitted by the
fluctuating dipole, demanding a careful use of the fluctuation-
dissipation theorem. The assumption of having bodies at fixed
different temperatures out of thermal equilibrium is usually
referred to as local thermal equilibrium. Starting from the
pioneering work of Polder and van Hove? and Rytov, this
hypothesis is considered to be equivalent to the statement
that the field emitted by each body has the same statistical
properties it would have if the body under scrutiny was at
thermal equilibrium at its temperature. This issue is discussed
in detail, for example, in several works presenting general
theories for Casimir force and heat transfer out of thermal
equilibrium.3!-34

Let us then consider a fluctuating dipole at temperature 7
at thermal equilibrium. The definition of thermal equilibrium
implies that the dipole must be immersed in a bath at the
same temperature in such a way that the power radiated by
the dipole equals the one absorbed from the bath. For this
system, the total field in any point of space is the sum of the
one emitted by the dipole, the one coming from the bath, and
the one scattered by the dipole. Being at thermal equilibrium,
the fluctuation-dissipation theorem can be directly applied to
the total field. The correlation functions of the field coming
from the bath, described as a free bosonic field, are known.
Since the connection between the induced dipole and the
external field is established [see Eq. (9)], the scattered field is
known as well. Finally, the correlation functions of the emitted
field can be deduced. This procedure is described in detail in
Ref. 33 for an arbitrary body (not necessarily in the dipolar
approximation).

104307-8



FLUCTUATION-ELECTRODYNAMIC THEORY AND ...

The field emitted by the fluctuating dipole can then be
written as

E(dip)(R, w) =

1 gl R
Vi x Vg x | p® . (AD
€0 Rd

where R; = [Ry| = IR — R,| (R, being the position of the
dipole) and Vg represents the gradient with respect to R. The
result previously obtained and the preceding equation finally
allows us to prove directly the dipolar correlation functions
appearing in Eq. (21).

APPENDIX B: CASES OF N =1 AND 2

We provide in this section the explicit expression of the T
in the case of one and two dipoles immersed in a thermal bath.
For these two cases, we analytically show that the net absorbed
power is zero at thermal equilibrium.

1. One dipole

In this case it follows immediately from Eq. (11) that
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and then Eq. (28) becomes
m(pi(e) - E*(a/»

= 2né(w — a)) [X1[1 + 2n(w, T))]Tr(1)

—[1+ 2n(a),T1)]Im(a1)Tr(]l)

+ P14 2n(w, T)llea PTr(Im(G)))]. - (B2)

From this equation we clearly see that no net power is
exchanged between the dipole and the bath for 7} = Ty, and
we finally deduce the simple formula

hk?

m(pi() - B} (@) = 278w — w')7X1nb1(w), (B3)

describing the spectral power density associated with the
thermalization of a single dipole in a thermal bath.

2. Two dipoles

In this case, we have

T=T"=1, A =gy 1, (B1)
|
1 k2alﬂoz)
T=(1 -G -Gy 1), T'=[F . (B4)
kz()lzi L
P P
1 k2 *G(O)T
T—IT — PT o @ i , P=1 k4(¥1052G(0)G(0) (BS)
k2 *G(l2) 1
a P Pr
We now calculate Eq. (28) fori = 1 (the case i = 2 is equivalent). We have
h _ _
Im(p (o) - E{ (&) = 278(w — w/)millz{ xi[1 + 200, THITe (T T + xal1 + 2n(w,T2)]Tr(1r;; Tz,”)
— 1+ 2n(w, T)Nm[oy Tr(T7) ] + K21 + 20w, T)I Tt Jo [P T Im(G}) T},
+ono; T Im(Gﬁoz))Tm” + “2“*T1211m(G(201))T11H + | |* T, Im(G(Z%)) _ll]}’ (B6)
and then
1 G(O)G(O)T
Im(p; (o) - El (@) = 278( — w)l i {X1[1 + 2n(w, Tl)]Tr(]PIPT) + xa[1 + Zn(w,Tz)]k4|al|2Tr<#)
1 5 1 , k
= [1+2n(0, T)lm| e Tr( & ) | + K71+ 200, T)ITr{ o flen P 1
kS
+ e 2102 GO G + k2o P Im(GY) G + ke |2a21m(Gg?)G§g>D } (B7)
We conclude that
_]_ 4 cYey!
N\ PN
Im(p;(w) - E| (")) = 278(w w)hxl{ | 2| [1+2n(w, Tl)]Tr<]P]PT) + k" o1 + 2n(a),T2)]Tr( PP )
1 1 1 [k K ©ra(0)
—[1+ 2n(w,T1)]Im|:a—TTr<E>:| + K2[1 4 2n(w, Tb)]Tr(]P]PT [6 + a|ozz|2<13112<1312T
+zk21m(@;ﬂ>)Re(a2@§g>)D } (B8)
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This quantity is zero at thermal equilibrium, and can thus be rewritten into the form of an exchange with particle 2 and with the bath,

PPt

©) (O)F
Im(pi () - B} (@) = 278(w — w/){”Zl(w)th“XleTr(_]z 2 >

k3, 1T K 0O © O
+ 1 (@) ——=Tr —1 4+ —or* GG}, + 2k Im(G)3)Re(2 G}y ) | ) - (B9)

PPt
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