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A general Ructuation-electrodynamic theory is developed to investigate radiative heat exchanges between
objects that are assumed to be small compared with their thermal wavelength (dipolar approximatidoxin
systems immersed in a thermal bath. This theoretical framework is applied to study the dynamic of heating or
cooling of three-body systems. We show that many-body interactions allow us to tailor the temperature beld
distribution and to drastically change the time scale of thermal relaxation processes.
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I. INTRODUCTION bodies, the numerical applications have been performed only
in the case of two bodies having several different geometries.
Recently, progress was made by investigating heat transfer
three-body systems. The case of three dig8laad three
arallel planar slai$*? has been described in detail. These
sults have shown promising ways, using many-body inter-
ctions, to produce interesting effects, such as the inhibition
r amplibcation of heat Bux, by exploiting the intrinsically

The absence of thermal equilibrium is at the origin of an
energy exchange between bodies having different temperatur
mediated by an electromagnetic beld. This radiative he
transfer was brst described by PlanckOs theory in the f
beld. The Stefan-Boltzmann law is valid only when the
distanced between the bodies is large compared to the therm
wavelength, 1 = lac/kgT (Wis PlanckOs reduced constant, ,naqgitive behavior of radiative heat transfer.
is the speed of light in vacuunkg is BoltzmannOs constant,  the gynamics of heat transfer in the near beld has also
andT is the temperature), which is of the order of somepeen recently addressed. In Ré8, the cooling or heating
microns at ambient temperatu’rét was later shown that in - ¢ 5 nanoparticle immersed in a thermal bath close to a
the near-beld regime, i.e., wheh 1, the heat transfer phianar surface is considered, discussing how it depends
can surpass its far-beld counterpart by several orders Qfn the particle-surface distance. Very recently, Yannopapas
magnitude. This effect was Pbrst predicted in the pioneeringnd vitano#* have extended this study to a collection of
work of Polder and van Ho¥eusing the approach based nanoparticles and outlined the possibility of thermal control
on Ructuation-electrodynamic theory developed by Rytov. by means of an external laser source. They investigated
According to this approach, each body is described by ahe possibilities of controlling the temperature distribution
distribution of Buctuating currents, whose statistical propertiesyithin a collection of metallic nanoparticles by means of an
are connected through the Buctuation-dissipation theorem texternal coherent laser beld (see also RBEf. However, the
the temperatures and dielectric properties of the bodies. interaction of nanoparticles with their surroundings is taken

It has been shown that the near-Peld ampliPcation is mainljzto account using a heuristic approach based on the intro-
due to the tunneling of evanescent photons, which do nagluction of an average absorption cross section. Furthermore,
participate in the exchange in the far P&RiThis amplib-  a quantum description of the heat transfer dynamics for two
cation is even more remarkable if the bodies support surfacglasmonic nanoparticles was developed in Réf.Finally, it
resonances, such as plasmons for metals or phonon polaritonsist be mentioned that other authors have considered both
for polar materials: in this case, the heat transfer is almostheoretically and experimentally the nanoscale control of the
monochromatic around the surface-resonance frequéhty. time-independent temperature proble for a system composed
The experimental conbPrmation of the near-peld enhancemenf metallic nanostructuré€®™® The nanoscale control (both
of heat transfer is now well-established in sphere-plane antime-dependent and time-independent) of the temperature
plane-plane geometrié§®! Moreover, the study of radia- distribution has proven to be crucial for several applications,
tive heat transfer can be relevant for several applicationssuch as heat-assisted nanochemi$tty or thermotherapy for
going from thermophotovolta?®®’ or solar thermal energy medical applications, in particular in the context of cancer
conversioR®?° to heat-assisted data storafe. treatmenf3®’

During the past three years, several theories have been In this work, we introduce a general theory to describe
developed to describe heat transfer at any separation distande time-dependent heat RBux and temperature distribution
between bodies with arbitrary geometries and dielectric propfor an arbitrary numbeN of particles, described using the
erties. Having in common the use of RBuctuation-dissipatiordipolar approximation, immersed in a thermal bath at con-
theorem, these approaches differ in the technique employegdtant temperature. Using a purely Buctuation-electrodynamic
scattering matrice$™3 GreenOs functio$® time-domain  approach, we deduce the expression of the power absorbed
calculations’® boundary-element method$and Ructuating by each particle, isolating the contributions coming from each
surface current®3® Although some of these theoriéé®  other particle and from the bath. Differently from Re#,
allow us in principle to treat the case of an arbitrary number ofwe provide a general derivation of all the contributions to the

1098-0121/2013/88(10)/104307(11) 104307-1 ©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.104307

MESSINA, TSCHIKIN, BIEHS, AND BEN-ABDALLAH PHYSICAL REVIEW B88, 104307 (2013)

energy exchanges (both between particles and with the externtdeorem,
thermal bath) based on the RBuctuation-dissipation theorem. In o
the case of three nanospheres, we use this knowledge to study (r.t) =S ji(rt) - E(r.b), @)

the dynamics of the temperatures when one of the particlegherej; - E is the power dissipated by Ohmic losses in the
is initially heated up, without any external energy sourcevolumeV;,j; = % being the local electric current density and
during the time evolution. We discuss the inBuence of thee the local electric beld at positian Thus, by transforming

geometrical conPguration as well as that of the coupling othe surface integral appearing in ) into a volume integral,

surface resonances. we cast Eq(1) into the form

This paper is organized as follows. In SH¢we introduce dT
the physical system and the main equations describing the iCiViﬁ = i(abs)(t,Tl, TN TD), (3)
time evolution and the power absorbed by each particle. In dt

Sec.lll, we Pnd a closed-form analytical expression for the, here the power @b%) apsorbed by the dipoleis given by
total dipole moment associated with each particle and for !

the electric Peld at the particle positions. Secligrcontains (abs) — . ) ,
the derivation of the power absorbed by each particle, identify- T T Th) v, Ji(rt) -E(rt) av
ing the contributions coming from each other particle and from dpi ()

the bath. In SecV, we provide some numerical applications: ——= - E(r t) . (4)

we study the dynamics of the temperatures in a three-particle dt

system, discussing the infRuence of geometry and surfacko calculate the absorbed power, we deduce in the next section
resonances; we also discuss how the distribution of particlean explicit expression of the electric beld and dipole moment.
can be used to produce different time-independent temperature

probles. Finally, in Sed/I we draw our conclusions. IIl. TOTAL DIPOLE MOMENT AND FEIELD

We start by decomposing the local PEI@) into its incident
II. PHYSICAL SYSTEM AND ENERGY BALANCE part (which corresponds to the bosonic PE® of the bath
without scatterers) and its induced p&t'® (from now on

We consigo_ler a disgrete set of .Ob_ngts ﬁt diﬁle[)en;c] we will work in the frequency domain and omit the frequency
temperatures; centered at positions inside a thermal bat dependence when only one frequency is concerned) as
(a free bosonic beld) which is maintained at temperature

To. While T, is assumed to be bxed, the temperatured; E(r) = E®O(r) + EMI(r). (5)

can vary in time. We suppose that the sizes of the objec : . .

are small compared with the smallest thermal wavelengt feter:]etr;ﬁggé%s_”g;?gg;val;t:czi%snpgfc;l}%ith;;lfncé”;e?%:d'c
1, = ¢l (kg T;) so that all individual objects can be modeled - P ’

as simple radiating electrical dipolps and magnetic dipoles b k 0

m;. Here we limit our discussion to nonmagnetic materials E(r) = EO(r) + > GOr,rpi, (6)

(i.,e., mi = 0). We assume that the time scale produced by i

radiative heat exchanges is large compared to the phonaRhere

thermalization time in each object (typically of the order of expk ) ik S1

some picoseconds for a nanoparticle). Under this hypothesis, GO(r,r)= 1+ ——= 1

whose validity will be discussed in Se¥, it is meaningful 4 k

to debne a temperatufg(t) for each particle as a function of 3(1S ik )SK? 2

time. Assuming also no phase and mass change of materials, + K2 2 )

the time evolution of thé& temperatured; is governed by the

following energy equations € 1,...,N): isthe dyadic Greentensorinfreespdce, /c ,r=r/r, =

r Sr,and =]| |. We now decompose each dipole moment
i into
dTi(t) _ « piin
iGVi——= =S r.t) -ds, 1 i
i~ Vi dt S ( ) ( ) pi = pi(8)+ I:)i(lnd), (8)
where pi(“) and pi(i”d) denote its RBuctuating and induced

where the left-hand side (LHS) is the time variation of the ) ) )
internal energy of objedt, with ;, Ci, andV; representing Parts, respectively. For the induced paft'” we use the
its mass density, heat capacity, and volume, respectively. Thdiscrete-dipole approximatici¥° according to Whicrpi('”d)
right-hand side (RHS) determines the energy Bux across thie expressed as a function of the exciting Peld, i.e., the local
oriented surfac& enclosing the particle with a dipole moment Peld atr = r; except the contribution of the dipoleas
pai (r,t) = pi(t) (r S r;) by integrating the Poynting vector

, _ K2
overS. In expressiorfl), the brackets represent the ensemble p_(md) = o E®+ & G-(O)p 9)
average over all the statistical realizations. In the context of : b e
a quantum treatment of beld and matter, this average (and
all the quantum averages from now on) has to be intendewhere ; represents the (frequency-dependent) polarizability
as a symmetrized averagdB sym= ( AB + BA )/2. At of dipolei (assumed for simplicity to be isotropic) and we have
local thermal equilibrium we have, according to the Poyntingintroduced the notatio; = E(r;) and seG{” = GO(ri,r;).

j=i
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Using EQs.(8) and (9), we obtain the following equality,
written in matrix form:

b
P1 Py’ EY
= 751 + TS1A (10)
(§
PN p&) Ef\,b)

A andT are N x 3N block matrices debned in terms of the

(i,j )N x N submatricesif = 1,...,N),

Tij = ijlé(lg ij)k2 iG-(»O)

i A= oil. (11)

For the local beld, we have, using E¢®) and(10),

3 o 25
. =DTSY :  + 1+DTS!A) . (12)
En p® E®
with
k2
Dj = —G{” (13)
0
It is easy to prove that
< 81 1 K -0
D=SA®T+B, Bj=j; —1+ -Gy , (19
0 i 0
and then
3 Py 2
. = (BTS'S ASY + BTS1A (15)
En Py EY
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Fourier transform. We now assume the general linear relations

P p{® E®
=M N
PN P EY)
B) (b) (17)
E]_ pl El
. = O . + P . 1
En P EY

and calculate the absorbed pow#6). In the following, a;
denotesthe Cartesian componeqf[( = 1,2,3 correspond-
ing to x,y,z, respectively) of the vectos;, whereasAj,
denotes the elemenf[] of the 3x 3 matrixAj; . From
now on, Latin indexes are associated with the dipoles while
Greek letters are used for Cartesian components. We have

pi, = Mj, p®+ Ny EP (18)
Eiy =

I8

Now, assuming no correlation between the Ructuat-
ing dipole moments and the bPbeld of the bath [i.e.,

pfﬂ)( )Ejfb)'( ) = Oforany and ,ij =1,...,N and

o, p®+pP; EY. (19)

, = X,y,z] we get
pi( )-E( )
= Mi, pPp® 0
i
+N;, EPE® P (20)

On the RHS, the prime is associated with quantities calculated
in , the others being calculated in. The correlation

Equations(10) and (15) contain the expression of the total f;nctions appearing in Eq20) can be deduced from the
dipole moment and local electric beld as a function of th%uctuation-dissipation theorem and read

Buctuating dipole moments and beld of the bath. These

expressions will be used to deduce, in the next section, the

total power absorbed by each dipole.

IV. EXCHANGED POWERS
Starting from Eq(4), we obtain

i(abS)(tyTll e !TN ,Tb)
+ d +

L d
=S i -
! 2

0 2 0
x pi( ) E()eis )
$ pi()E()eSN
by
0 2_ 0
xIm pi( ) E( )eis

=2

I\)|Q-

(16)

PP () =w oy i2 (8)
x[1+ 2n(,T i )] (22)
and

. ak?
EPOET ()= =mel 2 (8 )

x [1+ 2n(,T p)]. (22)
Here we have introduced
< K
p=im()S | ] (23)
and the Bose-Einstein distribution
T )= — S1 24
n(,T )= exp T (24)

where we consider only positive frequencies and we usat temperatureT. A discussion concerning the use of

the conventionf (t) = 2Re[, 3-f ( )e>'t ] for the time

instead of Im(;) is provided in AppendixA. By means of

104307-3



MESSINA, TSCHIKIN, BIEHS, AND BEN-ABDALLAH PHYSICAL REVIEW B88, 104307 (2013)

the expression for the correlations functions, we conclude thdh Appendix B, we discuss the cases of one and two
dipoles, showing analytically that the conditi¢?9) is met.

pi( )-E( ) Furthermore, we have veribed its validity for several higher

=2 (S8 ) values ofN and for random realizations of the geometrical
conbguration of the particles.

x By ([1+ 2n(,T)ITr(M; oj'i ) This condition allows us to write the net heat transfer on

particlei as a sum of exchanges with the other particles and

: with the bath.

bk? .
+ —[1+ 2n(,T p)ITr(N IMGO)P*);i . (25) @t T, TN, T)
0
* 4 G181
Using Eqs(10) and(15), we obtain e Z_b ] I|2J nji ()Tr TflTiSil
J I
PiC)-E( ) LA Sim GO T8
=2 ($§ ) |||2nbl() jkTrT ImG Ty ,
1 K o a
X B j[1+2n(,T )l o + _Ogii (30)

j i

1 &1 where we have introduced the differences
x Tr TPIT),

1 ) ni ()=n(T:)Sn(T) (31)
Sbo i[1+2n(,T i)]TTr T Equation(30) is one of the main results of this paper. It
) provides the expression of the instantaneous power absorbed
+ %[1+ 2n(,T )] 1 + k_g by any dipolei formally written as a sum of contributions
ii

associated with each other dipgleand the thermal bath. We
remark that this expression includes the nonadditivity of heat

x THTSIAIMGOA TSEY, (26)  transfer, and thus writing the power absorbed by partice
a sum of two-body exchanges is a purely formal choice. This
where we have debned property results from the fact that E¢$0) and(15) constitute

a self-consistent formulation of the physical problem. The non-
G(O) = 9(0)1 = a+i— 1, a R, (27)  additivity is evident from the dependence, in Eg0), of the
6c exchange between particleandj on the position and proper-
ties of all the other particles. This expression contains the po-
larizabilities of theN dipoles through the terms and ; and
n the dependence on the geometrical conbguration through
he matrice§ andG(©. In the following, we provide some nu-
merical applications of this formula to the case of three dipoles.

and we introduced the (formally inbPnite) real partof
the diagonal Green functloﬁaflo), which will not play any
role in the Pnal results. Using the fact the the exponentia,
factor é( S )t in Eq. (16) becomes irrelevant with respect to

the imaginary part because of the delta functign S )

appearing in Eq.(26), we obtain after simple algebraic
manipulations, V. NUMERICAL RESULTS

| . £ In this section, we present several numerical applications
mpi( )-E( ) of the main formulg30), applied to both time-dependent and
B time-independent conbgurations, in order to explore near-peld

=2 (s )W o [1+2n(.T )] many-body effects. We discuss here the case of three dipoles,
. ! . the simplest one in which entangled interactions exist and

x Tr TflTjSil' S[+2n(,T)Im TrT3t where the heat transfer is not additive. We brst study some
examples of time evolution of the temperature distribution

+ K1+ 2n(,T p)] i Tr T9Um GYY) TS . by varying the distance between the particle and thus show

ik the role played by near-beld interactions. Then, we discuss

(28) the importance of surface resonances and their coupling by
varying the material properties of one of the three particles.
It is physically evident that the net power absorbed by anyFinally, we consider a time-independent case and show that
dipolei mustbe zero at thermal equilibrium. As a consequencethe ability to control the temperature of one of the particles
the following condition must hold for=1,...,N: combined with the geometrical distribution of the three dipoles
can be exploited to tune the two other temperatures.

Tr JTSTSY Sim T
]. A. Near-beld heat exchange in a three-body system
5 In this section, we consider three identical spherical
+ k2 j TSllm G(O) Tfil' = 0. (29)  nanoparticles having radR; = 50 nm { = 1,2,3) and made
ik of silicon carbide (SiC). For the dielectric response of SiC, we
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use the simple mod& in time with respect to the equilibrium value of 300 K. The
28 241 situation is clearly different in the case depicted in Hifr),
()= —L (32)  correspondingtoanequilateral triangle. Inthis case, as obvious
28 2+ from symmetry arguments, dipoles 2 and 3 follow exactly
where =67, = 1827x 104 rad$! = 1.495x the same evolution, and the bgure shows the existence (as
104 rad $1 and = 09x 102 rad$! This model im- [N the two-dipole case) of a different time scale associated

with near-peld interactions. The third and last case [Kig],

in which the dipoles are aligned and the minimum distance is
200 nminstead of 400 nm, proves brst of all that this time scale
. is extremely sensitive to the distance between the dipoles. In
O(y=4R? i()S1 (33) this case, dipole 3 is heated faster than dipole 2, coherently
: i)+ 2 with the fact that it is closer to dipole 1. Nevertheless, it is

The (dressed) polarizability;( ) for each dipole is then clear that reducing the distance between dipoles 3 and 2 as

obtained by applying the radiative correction, discussed, fo‘ge" n(;ak_es dipole 3kacgllike a kl)rid%_e bet\;veen dipole;s Il and
example, in Refs62 and63, producing a remarkable acceleration (of approximately one

order of magnitude) of its temperature dynamics. In this last

plies a surface-phononBbpolariton resonance,at 1.787 x
10 rad $1. For each particld, we debne the Clausius-
Mossotti polarizability as

~ Oy case, we can clearly identify an interval of time during which
i( )= W@)() (34)  thermalization between dipoles is produced, at a temperature
6 1 signibcantly different from that of the bath. In this case, we

We remark here that the use of the dressed polarizal@4y also compare the three-body result to the two-body case at
makes the quantity; appearing in Eq(21) always positive, a distance of 200 nm. We clearly identify an interval of
and thus the energy RBux is always in the correct direction, i.etime during which dipole 2 has a temperature still close to
from hotter to colder particles. This is associated with the facB00 K, while the temperature of dipole 3 deviates from 300 K
that Eq.(34) correctly takes into account radiation damping following the two-body dynamics. This clearly proves that
(see Refsb8and62 for more details). the time scale associated with the dynamics at a distance of
For any geometrical conbguration, we solve the systen200 nm is signibcantly faster than the one corresponding to
of three differential equation@), where the absorbed power d = 400 nm.
is calculated using Eq€30), (11), and (7). To reduce the From this numerical example, it becomes apparent that the
number of degrees of freedom we place dipole 1 at the origismallest distance between particles determines the time scale
(R1 = 0)anddipole 2 in positioR, = (0,0,z,) atadistance of on which the heat Bux is exchanged between the particles.
Z, = 400 nm (see Fidl). Asfor dipole 3, we bxitgcoordinate  Further, for the distances considered in the present work, this
aszz = zp/ 2and vary ity coordinate. In Figl, we showthree time scale is still several orders of magnitude larger than the
different conbgurations in which the distances between dipolesne associated with internal phonon thermalization inside each
1 (or 2) and 3 are 700 nm [panels (a) and (b)], 400 nm [paneldipole. This justiPes the assumption made at the beginning
(c) and (d)], and 200 nm [panels (e)D(g)]. For each geometrysee Secll) allowing us to associate a temperature with each
we study the time evolution of the three temperatures withparticle as a function of time.
the initial conditions(T1(0),T2(0),T3(0)) = (350,300,300) K Some more insight into the temperature dynamics is given
andT, = 300 K. We thus assume that from a conbguration inby panels (b), (d), (f), and (g) of FidlL, where the power
which the entire system was at thermal equilibrium at ambienabsorbed by dipole 2 is represented for the three cases under
temperature, we heat one of the particles (dipole 1) up tecrutiny. This power is decomposed in the three contributions
350 K. The evolution of the three temperatures is comparedoming from dipole 1, dipole 3, and from the bath. For small
to the evolution of one single dipole heated up to 350 K (red, the power absorbed by dipole 2 comes almost entirely from
curve in Fig.1) and to the case of two dipoles (1 and 2) at adipole 1, as expected. Moreover, in panel (b) the distance
distance of 400 nm (black curves in FiD. Our interestis in  between dipoles 3 and 2 is such that the power exchanged
particular to show how the presence of a third particle modibebetween them is negligible, while arourid= 10°? s the
the thermalization process of particle 2. temperature difference between dipoles 1 and 2 is such that
As expected on physical grounds, Fighows thatthe three the (negative) power absorbed by dipole 2 and coming from
dipoles thermalize to the temperature of the b@ghs 300 K.  the bath starts being comparable (and later on larger) to the
For our choices of materials and distances, this process takexchange between dipoles 1 and 2. This comparison shows
approximately 1 s in the presence of one, two, or three dipolethat, even in the near Peld, at some point the temperature
and is apparently almost independent from the geometricalifference and the intradipole thermalization bx the time
conbguration. On the contrary, it is manifest that a differentinterval during which only the far-pPeld exchange with the
time scale exists associated with a thermalization procedsath matters. As far as panel (d) is concerned, no power is
taking place between the three particles. In the prst case [sexchanged between dipoles 3 and 2, since their temperatures
Fig. 1(a)], the distance between dipoles 1 (or 2) and 3 is suctalways coincide. Nevertheless, it is interesting to emphasize
that the presence of dipole 3 plays a negligible role in thehat in this case the power exchanged with the bath is (slightly)
dynamics of the temperatures of dipoles 1 and 2, which isnodiPed with respect to the brst case. This proves that
very close to the two-body case. In this case, dipoles 1 and @ven the far-peld interaction is affected by the geometrical
thermalize between each other arotirrd 10°? s, whereasthe  conbguration and near-beld properties. The third case (with the
temperature of dipole 3 is modibed very weakly and locallythree dipoles aligned) has a dramatically different power-time
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FIG. 1. (Color online) Panels (a), (c), and (e): time evolution of the temperatures in a three-body conbguration. The distance between
particles 1 and 2 is always 400 nm, while the distances between dipoles 1 (or 2) and 3 are (a) 700 nm, (c) 400 nm, and (e) 200 nm. The blue
lines correspond to the three-body conbguration (solid line for dipole 1, dashed line for dipole 2, and dot-dashed line for dipole 3). The black
lines correspond to the two-body case (solid line for dipole 1, dashed line for dipole 2), while the red solid line corresponds to dipole 1 alone. In
panel (e), we also show the two-body dynamics associated with dipoles 1 and 3 at a distance of 200 nm (orange solid line for dipole 1, orange
dot-dashed line for dipole 3). Panels (b), (d), (f), and (g) describe the time dependence of the power absorbed by particle 2. The solid line is
the contribution coming from dipole 1, the dot-dashed line is the contribution coming from dipole 3, and the dashed line is the power absorbed
from the bath.

diagram with respect to the brst two cases. In this case, aftéhe cases in which one particle at a time is replaced with a
a strong exchange with dipole 1, dipole 2 starts absorbinglifferent material.

more energy from dipole 3, which is hotter than dipole 2  To be more specibc, we consider a set of coordindies

[see Fig.1(e). We also see that intradipole power exchanges, R, = (0,0,400) nm, andR; = (0,200,200) nm. Two among
become negligible arounti= 10°% s, the time at which the three particles are made of SiC, while the third one is made
the thermalization between the particles has almost Pnishedf gold, described using a Drude model,

Finally, panel (g) shows, in the same power scale of the

2
previous ones, that the exchange with the bath is again modibed ()=18 _ (35)
by near-bpeld properties, and in particular accelerated by about ( +i)
one order of magnitude. with = 1.37x 10 rad$! and = 0.4x 10" rad$1.

In the next section, we will see how changing the materiaLI-he th
properties of one of the three dipoles affects near-beld effec
and temperature dynamics.

ree cases in which one of the SiC particles is replaced
t&y a gold one are compared in Fig.to the case of three
SiC patrticles. The choice of gold is motivated by the fact that
the plasmon resonance it supports lies in the ultraviolet range,
thus both far from the resonance of SiC and outside the region
where the populatiom(,T ) takes non-negligible values at

In the previous section, the three particles were alwayshe chosen temperatures.
considered to be made of the same material (SiC). Itis well In Fig. 2(a) the standard case of three SiC particles
known that even in a stationary conbguration this choicds represented. We see the effects already discussed in the
maximizes the heat Bux, since it produces the best possiblarevious section, and in particular the possibility of modifying
coupling between surface modes (phonon-polaritons, in théhe time scale of thermalization thanks to near-peld interac-
considered case of a polar material), which give the mairtions. Figure2(b) represents the case in which particle 1, the
contribution to heat transfer in near P&ldo see how the only particle heated up to 350 K in the system, is made of
dynamics changes if this coupling is no longer present, weyold. We observe two phenomena: brst of all, the coupling
consider a specibc geometrical conpguration, and we analytetween particle 1 and particles 2 and 3 is almost absent,

B. Dependence of dynamic relaxation on surface resonances
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FIG. 2. (Color online) Time evolution of the temperatures in a three-body conbguration. Same color convention ds (a)Ftree SiC
particles. In panels (b), (c), and (d), particles 1, 2, and 3 are, respectively, replaced by a gold nanosphere. We remark that in (b) the red and
black curves relative to particle 1 are almost superposed. The same is true in (c), while in (d) the blue and black curves relative to particles 1
and 2 are superposed.

and the temperatures of both particles 2 and 3 remain closabsorbed by particles 2 and 3 [using Eg8D)], and we impose

to 300 K during the entire process. Moreover, the time scal¢hat these powers are zero in order to Fp@ndTs.

of thermalization toward the temperature of the bath is also To reduce the number of degrees of freedom, we consider
modiPed. This modibcation is due to the fact, anticipatedhe case in which particle 1 is placed at the origin, particle
before, that the resonance of gold is at a frequency at whicB has coordinateR, = (0,0,z,), and particle 3 is located in
the populatiom(,T ) is negligible, and as a consequence theR3z = (0,y3,22/ 2). We are left with two independent variables,
coupling (even with the bath) is much weaker with respect tmamely z, and y3;, as a function of which we study the
the case of SiC. In Fi(c), the second particle is replaced with equilibrium temperatur&, of particle 2. The result is shown
a gold one. In this case, we see that its temperature is at any Fig. 3, wherez, varies in the range [200 nh um] andys
time indistinguishable from 300 K, meaning that it does notin [0,1] um.

feel any coupling to particles 1 and 3. For these particles, we

observe, on the contrary, a typical two-body dynamics, with a

thermalization between the dipoles taking place more quickly

than the one toward the bath temperature. In #{d), Pnally,

we observe a two-body dynamics between particles 1 and 2

[the same described by black curves in Ri@), while particle

3, made of gold, does not participate in the energy exchange.

Figures2(c)and2(d) present indeed two different temperature

dynamics, the difference being the fact the particles 1 and 3

are closer than particles 1 and 2.

C. Steady state and temperature control in a three-body system

In this subsection, we focus our attention on a stationary
problem, that is, the distribution of temperatures among the
particles fort + . In this limit, the LHS of Eq(3) is zero
suchthat i(abs)is zero for all particles. Itis evident that, for any
choice of initial temperatureg (0), without an external source
of energy, the temperatures in the long-time limit coincide with
Tp. We thus assume in this section that one of the particles, say
particle 1, is heated up to 350 K as in the time-dependent
simulations, but kept at this temperature by means of a FiG. 3. (Coloronline) Equilibrium temperature of particle 2 when
thermostat. We are interested in showing how the positionge three particles have coordinaRs= (0,0,0), R, = (0,0,2,), and
of particles 2 and 3 modify the temperatures these particl®, = (0,ys,z,/ 2). Particle 1 is kept at a temperatufe= 350 K
assume fot + . Toward this aim, for a given geometrical and the bath has a temperatdie= 300 K. The black dashed line
conbguration we calculate the matrideandG©, the power  corresponds td, = 325 K.
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We immediately notice that for any considered geometrythe number of particles, by understanding whether collective
the temperatur@; lies, as expected, in the range [3880] K,  phenomena can occur. Furthermore, heat spreading can be
i.e., between the temperatures of particle 1 and of the battstudied using our formalism in order to see whether anomalous
Moreover, we see that starting from valuesygfof the order  propagation regimes are possible because of the presence of
of 500 nm, the presence of particle 3 no longer plays a roleN -body interactions. Finally, the problem of how multipolar
on a given horizontal line we are left with the distribution of contributions inBuence the many-body coupling has to be
equilibrium temperature particle 2 would have in the presencaddressed as well.
of particle 1 only. As expected, this distribution goes to 300 K
(toTp) whenz; increases, and in particular forabove 700 nm.

On the contraryJ; is close_ to 350 K (td_'l) for Z sma!ler than ACKNOWLEDGMENTS

300 nm. When the coordinayg of particle 3 is modibed, the

dependence df, onz; is deeply affected, and in particularfor ~ The authors thank F. J. G&a& de Abajo, G. Dedkov, C.
smallys, between 0 and 200 nm, even s largeasfimthe  Henkel, K. Joulain, and A. I. Volokitin for fruitful discussions.
temperaturd is still close to the average betwe€nandT,.  P. B.-A. acknowledges the support of the Agence Nationale
This gives alternative evidence of the fact that the presence @fe la Recherche through the Source-TPV project ANR 2010
particle 3 can act as a bridge for near-beld interaction betweeBLANC 0928 01. M. T. gratefully acknowledges support from
the external particles 1 and 2. Moreover, this calculation show#e Stiftung der Metallindustrie im Nord-Westen.

that localized heating and the use of a few external energy

sources can be actively exploited to produce a desired time-

independent temperature proble in a collection of dipoles by APPENDIX A: ELUCTUATION-DISSIPATION

acting on their geometrical distribution. THEOREM FOR A DIPOLE

In this Appendix, we discuss the derivation of the cor-
VI. CONCLUSIONS relation functions of a Ructuating dipole at temperatlire

We have used a purely Buctuational-electrodynamic ap9'Veén N Eg.(21)_ In particular, we justify the use of; =
proach to deduce the power absorbed by each particle in l( j) S & j|?instead of the simpler factor Imy) typically
collection ofN particles described d¢ dipoles immersed in  used in the literature. The quantity was already recently
athermal bath. These powers have been used to study the titigéed in Ref.64, without providing a detailed derivation.
evolution of N temperatures with respect to different initial The derivation of the correlation functiorusj("g)( )pj(B])' ()
conditions. We have also addressed the study of the distributioappearing in Eq.(21) starts from the calculation of the
of temperatures when one of the particle temperatures is kegbrrelation functions of the electric beld emitted by the
pxed in time by applying a thermostat. Buctuating dipole, demanding a careful use of the Buctuation-

First of all, we have shown that near-Peld interactionsdissipation theorem. The assumption of having bodies at bxed
introduce a different time scale of thermalization comparedifferent temperatures out of thermal equilibrium is usually
with the one associated with far-peld exchanges with theeferred to as local thermal equilibrium. Starting from the
thermal bath. At short distances, in the regime of near-belgioneering work of Polder and van Hdvand RytoV? this
interaction (typically for distances of the order of 100 nm), hypothesis is considered to be equivalent to the statement
the system shows brst a thermalization between the particlehat the beld emitted by each body has the same statistical
which then behave as a complex system thermalizing towargroperties it would have if the body under scrutiny was at
the bath temperature. The difference between these two timbermal equilibrium at its temperature. This issue is discussed
scales can go up to approximately two orders of magnitudén detail, for example, in several works presenting general
by tuning the interaction between the nanoparticles. Weheories for Casimir force and heat transfer out of thermal
have shown numerically that the intraparticle relaxation isequilibrium34
extremely sensitive to the distance, and we have also shown Let us then consider a RBuctuating dipole at temperature
that, evenin the simple case of three particles, the third particlat thermal equilibrium. The debnition of thermal equilibrium
modibes the temperature dynamics of the two others and alsmplies that the dipolenustbe immersed in a bath at the
the time-dependent power they exchange between each otheame temperature in such a way that the power radiated by
We have also proved that this phenomenon depends strongllie dipole equals the one absorbed from the bath. For this
on the existence and the frequency of surface resonances: thgstem, the total beld in any point of space is the sum of the
coupling decreases drastically if the particles do not share ane emitted by the dipole, the one coming from the bath, and
common surface mode. Finally, we have also considered thie one scattered by the dipole. Being at thermal equilibrium,
case in which the temperature of one of the particles is bxethe RBuctuation-dissipation theorem can be directly applied to
in time, showing that the positions of the other particles carthe total beld. The correlation functions of the Peld coming
be used to manipulate their equilibrium temperature. from the bath, described as a free bosonic beld, are known.

Our results show that many-body near-beld interaction§ince the connection between the induced dipole and the
constitute a promising tool to tailor both time-dependent andexternal beld is established [see ], the scattered beld is
time-independent heat Buxes and temperature distributiodenown as well. Finally, the correlation functions of the emitted
in a complex plasmonic system. This work paves the waypeld can be deduced. This procedure is described in detail in
to several interesting developments. First of all, it will be Ref. 33 for an arbitrary body (not necessarily in the dipolar
interesting to understand how these phenomena depend approximation).
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The beld emitted by the Ructuating dipole can then beand then Eq(28) becomes
written as

g R Impi( ) E( )
R (A1) . B,
d =2 (S )W 11+ 2n(, T 1)]Tr(1)
whereRy = |Rgq| =|R S Rp| (Rp being the position of the = !
dipole) and g represents the gradient with respecRtoThe S[1+2n(,T )lim( 1)Tr(1)

E(dip)(R, )= RX RX p(ﬁ)

4

result previously obtained and the preceding equation Pnally + KL+ 2n( Tp)ll *TrimGY . (B2)
allows us to prove directly the dipolar correlation functions ] ) )
appearing in Eq(21). From this equation we clearly see that no net power is

exchanged between the dipole and the bathr{or T,, and

APPENDIX B: CASES OF N = 1 AND 2 we Pnally deduce the simple formula

We provide in this section the explicit expression of The Imp( )-E )=2 ( 3 )%3 oi( ), (B3)

in the case of one and two dipoles immersed in a thermal bath.
For these two cases, we analytically show that the net absorbeféscribing the spectral power density associated with the

power is zero at thermal equilibrium. thermalization of a single dipole in a thermal bath.
1. One dipole
In this case it follows immediately from E¢l1)that 2. Two dipoles
T=T75=1, A= o4, (B1) In this case, we have

1 K2 .82
= = & 1
T= 1 Sk ,G08K ,GQ 1, T1St= g o0 L (B4)
K 2 P
' & @ L% OGO
Sl. _ . . — &S
TS = :2 &0 . P, P=1SK 1 GGy (B5)
1P P

We now calculate E(28)fori = 1 (the casé = 2 is equivalent). We have

. -~ ]
Impy( ) El( )=2 (§ )ﬁ

S+ 2n(, T OIm 4Tr TS+ K1+ 2n(,T o)ITr | o2T34m 9 15

AL+ 2n(\T OITr TSITSS + o[L+ 2n(,T )ITr THATS

+ 1 LTI G T3+ 5 THIm G T +1 oTHm 6Y T3 (B6)
and then
. . b 1 cQc
Impy( )-E( )=2 (S )@ 1+ (T O oo+ oL+ 2n(LT Ik of'Tr =550

5 1 1 k
S[1+ 2n(, T Tr =  + K1+ 2n(,Tp)]Tr — 21
[ n(,T )lim 4Tr P [ n(,T p)]Tr PP- | 4l 6

K5 o o)
+ 6—| 1 2PGOGY + K3 12 ,im GO GO+ K3 4% am G GO . (B7)

We conclude that

x 1 1 cOGOr
mpy( ) E( ) =2 (S Yoy — O+ 2n( T oo + K oL+ 20( T Tr 2270
1 PP PP
& 1 1 1 Kk K5 .
S[1+ 2n(,T 1)]im —lTr 5t K2[1+ 2n(,T u)]Tr 557 5 Lt g 2126 QcY
+ 2k?Im G(Zol) Re ZG(lOZ) . (B8)
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This quantity is zero at thermal equilibrium, and can thus be rewritten into the form of an exchange with particle 2 and with the bath,

: - GGy
Impy( ) E( )=2 (S ) nul )2mk* o oTr PP
23 1 1 k4 . .
()T oo =1+ ] APGRGE + Zkim G Re ,G) (89)
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