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The heat transport mediated by near-field interactions in networks of plasmonic nanostructures is shown

to be analogous to a generalized random walk process. The existence of superdiffusive regimes is

demonstrated both in linear ordered chains and in three-dimensional random networks by analyzing the

asymptotic behavior of the corresponding probability distribution function. We show that the spread of

heat in these networks is described by a type of Lévy flight. The presence of such anomalous heat-

transport regimes in plasmonic networks opens the way to the design of a new generation of composite

materials able to transport heat faster than the normal diffusion process in solids.
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It is commonly admitted that heat conduction in a bulk
solid is governed by a normal diffusion process. Heat
carriers (phonons or electrons) move through the atomic
lattice of material following a random walk [1] with a step
length probability density which is a Gaussian. The heat
spatial spreading from regions of high temperature to
regions of low temperature is therefore intrinsically limited
both by the speed of heat carriers and by the distance
covered by them between two successive collision events.
To go beyond this transport mechanism and accelerate the
heat propagation within the medium, we propose here to
add a supplementary channel for heat exchanges with long-
range interactions such as those that exist in generalized
random walks (GRW), processes where the step length
probability is broadband. Lévy flights [2,3] are probably
the most famous class of GRW in which extremely long
jumps can occur as well as very short ones. The existence
of photonic Lévy flights has been recently demonstrated
[4] in self-similar materials, the so-called Lévy glasses. In
those media, appropriately engineered so that photons
perform random jumps with a probability distribution of
step lengths which decays algebraically, the transport of
propagative photons becomes superdiffusive. However, the
magnitude of heat flux which can be transported with
radiative photons is limited by the famous Stefan-
Boltzmann law [5] and is several orders of magnitude
smaller than the flux carried by conduction in solids. The
situation radically changes when these photons become
nonradiative. As predicted by Polder and Van Hove [6]

40 years ago and experimentally verified during the last
few years [7–10], when two media out of thermal equilib-
rium are separated by a small distance (compared with
their thermal wavelength), they exchange energy mainly
by photon tunneling. In such a situation, the heat flux
transported from one medium to the other one can surpass
by several orders of magnitude the flux exchanged between
two blackbodies [11,12] in the far field. In two recent
works [13,14], we have established that a similar exalted
heat transport can also exist at larger distances, thanks to
many-body interactions. In this Letter, we investigate
in detail how heat is transported throughout different
plasmonic nanostructure networks which are either
ordered or disordered. By analyzing the transport process
through these structures as a GRW of a passive tracer in a
medium, we demonstrate the existence of anomalous
(superdiffusive) regimes driven by the collective near-field
interactions.
To start this analysis, let us consider a three-dimensional

network of spherical particles of radius Ri at temperature
Ti, distributed inside an environment at temperature Tenv.
When the mean separation distance between two arbitrary
particles is larger than their respective diameters and their
size is small enough compared with the thermal wave-
lengths �Ti

¼ c@=ðkBTiÞ, then this network can be modeled

by a set of pointlike dipoles in mutual interaction and
coupled to the surrounding bath. The time evolution of
particle temperatures is governed by the following energy
balance:
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Ci

@Ti

@t
¼ X

j�i

P i$j þ P i$B þ Si; (1)

where Ci represent the nanoparticle heat capacity, respec-
tively, while P i$j, P i$B, and Si denote the net power

exchanged between two arbitrary particles, the power
exchanged between a particle and the thermal bath, and
the power received by a particle from an external source,
respectively. Using the Landauer formalism introduced in
Refs. [15,16] and extended in Ref. [13] to theN-body heat-
transport problem, it can be shown that

P i$j ¼ 3
Z 1

0

d!

2�
½�ð!; TiÞ ��ð!; TjÞ�T i;jð!Þ; (2)

where

T i;jð!Þ ¼ 4

3

!4

c4
Imð�iÞ Imð�jÞTr½GijG

y
ij� (3)

denotes the monochromatic transmission coefficient
between the dipoles i and j expressed in terms of the
dyadic Green tensor Gij between the location of

two dipoles and the particle polarizability � while
�ð!;TÞ ¼ @!=½expðð@!=kBTÞÞ� 1� is the mean energy
of a harmonic oscillator at temperature T. The electric
polarizability is given by the simple Clausius-Mossotti
form � ¼ 4�R3ð"� 1Þ=ð"þ 2Þ; its imaginary part
sharply peaks at the particle plasmon resonance. We have
checked that the radiative correction [17] to this polar-
izability, which is proportional to ðk0RÞ3, is negligible for
nanoparticles in the Wien frequency range under consid-
eration. Note that we have dropped the magnetic dipole
contribution right from the start, which turned out to be
negligible for the considered systems. For calculating
the dyadic Green function (GF) in a system of N particles,
we use the coupled-dipole equation [18]

Eij ¼ �0!
2Gij

0 p
fluc
j�i þ

!2

c2
X

k�i

Gik
0 �kEkj; (4)

for i ¼ 1; . . . ; N, combined with the linear response of a
dipole source

Eij ¼ !2�0Gijp
fluc
j : (5)

Equation (4) gives the field exciting the particle i and
coming from particle j. It contains a direct contribution,
associated with the fluctuating dipole source pfluc

j , and the

contributions induced by all other particles. Here, Gij
0 ¼

ðexpðikrijÞ=4�rijÞ½ð1þðikrij�1Þ=k2r2ijÞ1þ ðð3�3ikrij�
k2r2ijÞ=k2r2ijÞr̂ij� r̂ij� is the free space GF defined with the

unit vector r̂ij � rij=rij, rij being the vector linking the

center of dipoles i and j, while rij ¼ jrijj and 1 stands for

the unit dyadic tensor. Note that in a transparent host
material, k ¼ nð!=cÞ, where n is its refractive index. In
the presence of interfaces, the free space GF must be
replaced by the appropriate tensor, which takes into

account the reflection and transmission of waves across
all diopters. The second term of the right-hand side of
Eq. (1) is the power exchanged in the far field with the
environment

P i$B ¼ �Cabs;i�BðT4
env � T4

i Þ; (6)

where �Cabs;i is the thermally averaged dressed absorption

cross section of the ith particle [19] and �B is the Stefan-
Boltzmann constant. In general, this coupling to the envi-
ronment depends on the geometrical setup and considered
time scale [20] and cannot be neglected a priori. But, for
the geometry studied here, the power exchanged between
the particles through near-field interactions is much more
significant than the power exchanged with the environment
at the beginning of the thermal relaxation process [21], so
that P i$B can be neglected with respect to the other terms
in Eq. (1).
In the following, we consider a situation near thermal

equilibrium and expand the power exchange between
dipoles [Eq. (2)]:

P i$j ¼ Gðjri � rjjÞðTj � TiÞ; (7)

where we have introduced the thermal conductance at
temperature Ti between dipoles i and j

Gðjri � rjjÞ �
@P i$jðTiÞ

@T
¼ 3

Z 1

0

d!

2�

@�ð!; TiÞ
@T

T i;jð!Þ:
(8)

Using this expression, the energy balance equation (1)
can be recast into a Chapman-Kolmogorov master equation

@Ti

@t
¼

Z

Rd
pðri; rÞTðr; tÞ�ðrÞ dr� Tðri; tÞ

�ðriÞ þ Ŝi; (9)

which formally describes a system which is driven by a
Markov process. The temperature distribution Tðr; tÞ
evolves in the same way as a generalized random walk,
where jumps between positions r and r0 occur with a
probability distribution function (PDF) of step length pro-
portional to pðr; r0Þ ¼ ð1=C�VÞ�ðrÞGðr� r0Þ at a rate
��1ðrÞ¼ð1=C�VÞRdr0Gðr�r0Þ. The generalized walkers
are injected at a rate ŜðrÞ ¼ SðrÞ=C. [Here, C is the heat
capacity per particle from Eq. (1), and �V ¼ �l3 is the
volume per particle in the system, �l being the average
distance.]
To analyze the transport of heat throughout the network,

we investigate the distribution of step lengths x ¼ jr� r0j.
If the PDF pðxÞ is Gaussian, all its moments MðnÞ ¼R
xnpðx; tÞdx are finite so that the regime of transport is

diffusive on large scales. On the other hand, if it decays
algebraically, so that at least one of its moments is diver-
gent, the heat-transport regime becomes superdiffusive.
We first consider the case of linear chains (d ¼ 1) of

nanoparticles periodically dispersed in a transparent me-
dium. Electromagnetic energy transport along linear chains
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of metallic nanoparticles has been intensively studied in
the past (see, for example, Refs. [22–24] and references
therein). However, so far, very few studies have been
devoted to heat transfer in these plasmonic systems [25].
The thermal conductance between a central particle and
another one at distance �x is plotted in Fig. 1 for different
filling factors (2R=h). We observe, for any density, that the
large-distance tail of GðxÞ asymptotically decays as G ¼
Oð1=x2Þ. By neglecting finite-size effects and remarking
that � is almost uniform [i.e., �ðxÞ � �0], pðx; xÞ is a
function of x� x0 only and the spatial Fourier transform
of Eq. (9) gives

@ ~Tðk; tÞ
@t

¼ 1

�0
½~pðkÞ � 1� ~Tðk; tÞ þ ~̂Si: (10)

In the small wave number approximation (i.e., hydrody-
namic limit), we get, after expanding ~pðkÞ around k ¼ 0
and coming back to the real space, the 1D Fokker-Planck
equation which describes the transport process

@Tðx; tÞ
@t

¼ ATðx; tÞ �V
@Tðx; tÞ

@x
þD

@2Tðx; tÞ
@2x

þ Ŝ; (11)

where A ¼ ð1=�0Þ½~pð0Þ � 1�, V ¼ �ð1=�0Þðd~pð0Þ=dkÞ,
and D ¼ ð1=�0Þðd2 ~pð0Þ=dk2Þ denote the transport coeffi-
cient, the drift term, and the diffusion coefficient, respec-
tively, inside the chains. By noting that D is proportional
to the second moment of the PDF, we immediately see

according to the asymptotic behavior of the conductance
tail (see Fig. 1) that the diffusion coefficient is diverging,
demonstrating so the superdiffusive behavior of heat trans-
port in 1D dipolar chains. Besides, we clearly observe on
these curves the transition between the region where the
electrostatic regime (�x � �T) dominates and the region
where interactions take place at distances longer than the
wavelength. In the first case, we distinguish two different
behaviors. When h ¼ 6R, the thermal conductance follows
a power law in the G� ð�xÞ�6 analog to what is usually
observed between two isolated dipoles [26,27]. In denser
chains, the dependence of the conductance on the inter-
particle distance is no longer the same. We see even in
Fig. 1 that the thermal conductance tends to saturate at
close separation distances in chains where extreme near-
field interactions take place (i.e., h ¼ 3R). This saturation
could result from collective effects due to the multiple
interactions between the particles [25,28], in particular,
from strong dielectric screening of the electrostatic fields
due to the high density. However, this behavior still
remains an open problem today. At long distances (com-
pared with �T), we see that G�Oð1=x2Þ for any chain. In
the diluted chain (h ¼ 50R in Fig. 1), all dipoles can be
considered as isolated and they exchange heat in the far
field mainly with their nearest neighbors [29]. As for the
field magnitude (and that of the dyadic Green’s tensor), it
evolves from each dipole as 1=x, so that the thermal con-
ductance follows a 1=x2 power law.
Now, let us discuss the heat-transport process mediated

by the near-field interactions in three-dimensional disor-
dered networks made of N identical nanoparticles of iden-
tical radius R randomly distributed within a fictitious cubic
box of side a as depicted in the inset of Fig. 2. Each
realization is generated with a uniform distribution proba-
bility, and a minimum distance rmin � 2R is imposed
between two adjacent particles in order to keep the dipolar
approximation valid. Moreover, in any generated realiza-
tion, a nanoparticle P0 occupies the center of the simula-
tion box and is used as a reference for the calculation of
thermal conductance. The mean conductance hGðxÞi is
calculated by a double average: over a thin spherical shell
of radius x centered at P0 and over realizations of the
dipolar network. The results are plotted in Fig. 2 vs dis-
tance x for different filling factors f ¼ NV=a3. Inspection
of this figure shows that hGðxÞi decays in power law as
�=x� with an exponent � which depends only on the filling
factor f. According to this, the energy balance equation (9)
(its statistical averaging) can be recast into a fractional
diffusion equation

Ci

@Ti

@t
¼ �	ð��Þ�=2TðriÞ þ Si; (12)

with � ¼ �� d. Here, ð��Þ�=2 is the fractional Laplacian
[30,31]

FIG. 1 (color online). Thermal conductance G in log-log scale
for a chain of SiC spherical particles with different interparticle
distances h and different particle numbers N as a function of the
separation distance �x ¼j r� r0 j at temperature T ¼ 300 K.
All particles are identical (radius of R ¼ 100 nm), and their
electric polarizability is given by the simple Clausius-Mossotti
form � ¼ 4�R3½ð
� 1Þ=ð
þ 2Þ� [17]. The dielectric permittiv-
ity of the particles is described by a Drude-Lorentz model [32].
The maximum distance for a given system is at half the chain
length.
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ð��Þ�=2TðrÞ ¼ cd;�P
Z

Rd

TðrÞ � Tðr0Þ
jr� r0jdþ�

dr0; (13)

with cd;� ¼ ½2���1þd=2=ð�ð1 þ �=2Þ�ððd þ �Þ=2Þ�
sinð��=2ÞÞ� and where P denotes the principal part. In
Eq. (12), 	 ¼ �=ð�Vcd;�Þ is the fractional diffusion coef-

ficient inside the plasmonic structure. The smaller the
parameter � in the fractional Laplacian, the larger is the
range of interactions through the medium. When � ¼ 2,
we recover the classical Laplacian, and the heat transport
becomes diffusive. If �> 2, the transport is subdiffusive,
while for �< 2, it is superdiffusive. The long-range (non-
local) interactions through the network are responsible for
the existence of anomalous heat transport. At low f, the
exponent � is close to 5 (i.e., � is close to 2 but still
smaller). Even at low filling, the exponent � is slightly
smaller than 5, so that the heat transport in a 3D network is
already superdiffusive. This regime corresponds to plas-
monic networks where the mean separation distance
between the nearest particles is �l > 6:6R. In this situation,
heat exchange is not limited to the closest neighbors and
collective effects continue to play a role despite the
medium being quite dilute. At higher densities, �
decreases, showing that the heat transport becomes more
and more nonlocal. At f ¼ 20%, i.e., in networks where
extreme near-field interactions occur (�l ’ 2:7R), we have
� ’ 0:64, so that the heat transport becomes unambigu-
ously superdiffusive.

We have demonstrated that the heat transport mediated
by photon tunneling in plasmonic networks can be
extremely superdiffusive. This nonlocal heat-transport

mechanism allows us to go beyond the standard diffusion
limit in solids. The ability to design nanocomposite mate-
rials able to transport heat faster than with phonons in
solids opens new perspectives. It could find broad applica-
tions in different fields of material sciences that require
ultrafast thermal management. Many fascinating questions
on the links between the spatial structuration of plasmonic
structure networks and the transport of heat through them
remain open. For instance, the role played by the disorder
and the presence of localized and delocalized modes is one
of them. Also, the phonon-photon coupling within the
plasmonic structures embedded in solids is a fundamental
issue because it affects the transition between the super-
diffusive regime and the classical diffusive transport.
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Lévy Flights and Related Topics in Physics, edited by
M. F. Shlesinger, G.M. Zaslavsky, and U. Frisch,
Lecture Notes in Physics Vol. 450 (Springer-Verlag,
Berlin, 1995).

[3] F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-
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