Evidence of the Bean-Livingston barrier in type-II superconductors

William Magrini, Ivan S. Veshchunov, Sergei V. Mironov, Jean-Baptiste Trebbia, Philippe Tamarat, Alexandre I. Buzdin, Brahim Lounis

To cite this version:

HAL Id: hal-01208123
https://hal-iogs.archives-ouvertes.fr/hal-01208123
Submitted on 5 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evidence of the Bean-Livingston barrier in type-II superconductors

William Magrini\textsuperscript{1,2,3}, Ivan Veshchunov\textsuperscript{1,2}, Sergey Mironov\textsuperscript{3}, Jean-Baptiste Trebbia\textsuperscript{1,2}, Philippe TAMARAT\textsuperscript{1,2}, Alexander Buzdin\textsuperscript{1,2}, Brahim Louini\textsuperscript{1,2}

\textsuperscript{1}University of Bordeaux, LP2N, F-33405 Talence, France
\textsuperscript{2}Institut d’Optique & CNRS, LP2N, F-33405 Talence, France
\textsuperscript{3}University of Bordeaux, LOMA, F-33405 Talence, France

Abstract

A magneto-optical imaging (MOI) system capable to resolve single vortices is combined with a focused laser beam to reorganize vortex matter in dense vortex clusters. The local heating of the superconductor with the laser produces a temperature profile which induces an attraction of the vortices towards the center of the laser spot. We analyze the collective vortex dynamics under high-power laser irradiation. The formation of vortex clusters is described with a model very similar to the one describing the first vortex entry into a type-II superconductor.

Experimental Setup

Magneto-optical imaging system capable to resolve single vortex on a Niobium film 450 nm thick and focused laser beam with \( \lambda = 575 \text{ nm} \):

- Closed cycle cryostat, \( T_{\text{cryo}} = 4 \text{ K} \)
- Single lens N.A. = 0.5
- Two Glan polarizers

At low temperature, we have extinction ratio \( C = 1.4 \times 10^{-3} \), MO contrast : \( C = 0.52 \) with SNR=10.

Study of the Bean-Livingston barrier

Sample is cooled down at \( T = 4.7 \text{ K} \) under external magnetic field and heated by the focused laser beam with power \( P = 1.5 \text{ mW} \).

Simulation with Biot-Savart’s law for a current loop gives a good approximation of the magnetic field profile during heating:

\[
H(r, z) = \frac{2}{\sqrt{(1+r)^2 + z^2}} \left[ K(k) + \frac{1}{(1+r)^2 + z^2} \right] E(k)
\]

K and E are complete elliptic integrals of the first and second kinds.

Estimation of \( H_{\text{BL}} \) is given by the ratio between the radius of normal spot during heating \( R_0 \) and the radius of the cluster after penetration of vortices in the sample \( R \).

Conclusion & perspectives

We use the temperature gradient induced by a laser beam focused on a superconductor cooled down under external magnetic field to structure the vortex matter into dense clusters. In a high pinning Niobium sample, we evidence the Bean-Livingston barrier preventing the vortex entry into the superconductor. We also observe the screening currents circulating around the heated area. The measured magnetic field profiles obtained during laser heating can be qualitatively reproduced by using a Dirac radial current distribution in the calculation of the magnetic field. A quantitative study will require a more realistic superconducting current radial distribution. The model used to calculate the Bean-Livingston critical field will also be extended to low pinning samples by considering the repulsion of vortices during the creation of the cluster.

References