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We investigate the superfluid-insulator transition of one-dimensional interacting Bosons in both deep and
shallow periodic potentials. We compare a theoretical analysis based on Monte-Carlo simulations in continuum
space and Luttinger liquid approach with experiments on ultracold atoms with tunable interactions and optical
lattice depth. Experiments and theory are in excellent agreement. It provides a quantitative determination of the
critical parameter for the Mott transition and defines the regime of validity of widely used approximate models,
namely the Bose-Hubbard and sine-Gordon models.

Introduction.— The interplay of repulsive interactions
and a periodic potential in a quantum fluid triggers a
superfluid-insulator transition known as the Mott transition,
provided the potential period is commensurate to the inverse
fluid density. The most familiar notion of Mott transition takes
place in the limit of a deep periodic potential. In this case the
lattice Hubbard model microscopically captures the dominant
interaction and hopping processes, the strengths of which, U
and J, strongly depend on the periodic potential amplitude V .
Then, the Mott transition is driven by the competition of these
sole two parameters at J ∼U [1, 2]. Quite strikingly in one
dimension (1D) a Mott transition can exist even for a van-
ishingly small periodic potential provided the repulsive inter-
actions are strong enough [3–5, 10]. In the limit of a shal-
low potential, its amplitude V becomes sub-relevant and the
transition is mostly controlled by the interaction strength g
alone [10].

Ultracold atoms provide a remarkable laboratory to study
this physics [7, 8]. So far the Mott transition has been ob-
served in both deep [9–13] and shallow [14] optical lattices.
However, the characterization of the Mott transition in shal-
low potentials remains a formidable challenge for both theory
and experiments, with direct consequences not only in the ul-
tracold atom realm but also in condensed matter for problems
such as spin chains for instance [10, 15, 16].

On the theoretical side, while the Hubbard limit is now well
documented [7, 8, 17] and its Mott transition has been exten-
sively studied [18–24] its regime of validity beyond the deep-
lattice limit is still unknown in 1D, with ab-initio results hav-
ing been reported so-far only for 3 dimensions (3D) [25]. In
the limit of a vanishing potential, an estimate of the transition
values may be found in the sine-Gordon model whose coeffi-
cients are determined perturbatively [14, 26]. This, however,
ignores the unavoidable renormalization of the field-theoretic
coupling parameters by the potential, which may significantly
affect the transition. On the experimental side, the Mott transi-
tion has been clearly observed in the shallow lattice limit using
modulation spectroscopy and transport measurements [14].

However, the experimental uncertainties did not allow to a
precise determination of the phase diagram.

In this Letter, we report the first quantitative joint theoret-
ical and experimental investigation of the Mott transition for
strongly-interacting 1D Bosons in a shallow periodic poten-
tial. Using continuous-space quantum Monte Carlo calcula-
tions, we determine the exact quantum phase diagram. Our
calculations confirm the field-theoretical universal predictions
and provide, in addition, an accurate quantitative values of the
critical parameters of the Mott transition. Experimentally, we
perform transport measurements on a Bose gas with tunable
interactions down to the limit of very shallow lattices and we
analyze them with a phase slip based model to determine ac-
curately the Mott transition. The numerical and experimental
results are in excellent agreement and show significant devia-
tion from the perturbative sine-Gordon theory using bare Lut-
tinger parameters.

Model and theoretical approach.— We consider zero-
temperature interacting 1D Bosons of mass m with a con-
tact interaction of strength g, subjected to a periodic poten-
tial V (x) = V sin2(kx) of spacing a = π/k and amplitude V .
Both the large V and small V limits have the possibility of
a Mott transition when the interactions are increased [17].
In spite of their qualitative different natures the two limiting
cases are, however, expected to belong to the same univer-
sality class for they both lead to the same low-energy sine-
Gordon model [4, 10, 17, 27]. Within the Tomonaga-Luttinger
liquid (TLL) approach, the homogeneous superfluid is param-
eterized by the Luttinger parameter K, which characterizes
the interaction strength. For weak interactions, the periodic
potential is essentially irrelevant, except in renormalizing the
effective value of the Luttinger parameter. For strong interac-
tions, the TLL may be unstable upon introducing a periodic
potential, which signals the Mott insulator phase. More pre-
cisely, the Mott transition may be triggered either by changing
the fluid density to commensurability at sufficiently strong in-
teractions (Mott-δ transition) or by increasing the interactions
at commensurability (Mott-U transition). The TLL theory
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Figure 1. (Color online) (a) QMC results for the number of particles per site, na, the compressibility κ , the superfluid fraction fs, and the
Luttinger parameter K, versus the chemical potential µ , for a periodic potential amplitude V = 2Er and an interaction strength g = 7h̄2/ma.
The various curves correspond to increasing system sizes, L/a = 30, 50, and 100 (blue, green, and red respectively). The vertical dotted lines
show the transition points determined from the criterion Kc = 1. (b) Phase diagram in the g-µ plane for the fixed amplitude of the periodic
potential V = 2Er. The black points joint by lines are determined from the Kc = 1 criterion, while the colored points show the results found
from the crossing point of the compressibility (red), the cusp of the compressibility (green), and the crossing point of the Luttinger parameter
(blue). The red crosses are the hard-core limits. The inside of the lobe (red region) and the dashed line correspond a density of one particle per
potential spacing. Inset: Mott gap versus interaction strength. The black dashed line is a fit to the BKT prediction (see text). The blue dashed
line is the prediction of the BH model and the blue cross is the corresponding tip of the lobe.

predicts the universal critical values Kc = 1/p2 and Kc = 2/p2

for the Mott-δ and Mott-U transitions respectively, where p is
the commensurability order [5, 10, 27].

However the TLL theory involves effective parameters that
are not easily related to the microscopic Hamiltonian parame-
ters and the critical curve gc(V ) is presently not quantitatively
known. To precisely determine the Mott transitions, we use
quantum Monte-Carlo (QMC) simulations. This allows us
(i) to determine quantitatively the phase diagram in terms of
the microscopic parameters and (ii) to compute explicitly the
Luttinger parameter K as a function of the microscopic ones
and make the link with field theory. We use the same imple-
mentation of the continuous-space worm algorithm [2, 3] in
the grand-canonical ensemble as used in Ref. [30], which is
numerically exact for all the physical quantities we study in
the following [31].

Incommensurate transition.— We start with the incom-
mensurate (Mott-δ ) transition, which may be triggered by
changing the chemical potential µ . In order to accurately de-
termine the critical point, several quantities are examined. The
particle density n is computed directly in QMC and the com-
pressibility κ ≡ ∂n/∂ µ is computed independently from par-
ticle number fluctuations. The hydrodynamic superfluid den-
sity ns is found from the superfluid stiffness ϒs, defined as the
response of the system to a twist of the boundary conditions,
which is computed using the winding-number estimator [31].
We then deduce the superfluid fraction fs = ns/n and the Lut-
tinger parameter K = π

√
nsκ .

The QMC results are shown versus the chemical poten-
tial in Fig. 1 for V = 2Er where Er = h̄2k2/2m is the recoil
energy, g = 7h̄2/ma, and various system sizes. The density

[Fig. 1(a1)] increases monotonically with the chemical poten-
tial µ and exhibits a plateau at commensurability, na = 1,
where the superfluid density drops to zero. This is the signa-
ture of the Mott-δ transition. The critical chemical potentials
µ±c corresponding to the two edges of the plateau are accu-
rately determined from the crossing points of the compress-
ibility for different system sizes [Fig. 1(a2)]. They can also be
found from the drop of the superfluid fraction fs, which yields
similar values for µ±c [Fig. 1(a3)]. At the Mott-δ transition,
the Luttinger parameter is expected to exhibit the universal
discontinuity from K = 1 to K = 0. Our data [Fig. 1(a4)] are
perfectly compatible with this prediction of the TLL theory.

Repeating the same calculations for various values of the
interaction strength, we find the Mott lobe in the g− µ plane
shown in Fig. 1(b). The black points and joining lines are de-
termined from the Kc = 1 criterion while the colored points are
extracted from the crossing point of the compressibility (red),
the cusp of the compressibility (green), and the crossing point
of the Luttinger parameter (blue). The different methods yield
results in excellent agreement all along the lobe within a few
percents. The Mott gap ∆ = µ+

c −µ−c is shown in the Inset of
Fig. 1 versus the interaction strength. The black dashed line
is a fit with the exponential closing ∆(g) ∝ exp(−b/

√
g−gc)

predicted by the Berezinskii-Kosterlitz-Thouless (BKT) the-
ory [7, 32, 34], with b and gc as fitting parameters. We find that
the fit is good for all values of g except very close to the hard-
core limit, g→ +∞. The fit also yields a fair estimate of the
critical value at commensurability, gc/(h̄2/ma) = 2.2± 0.1,
which corresponds to the tip of the lobe.

Commensurate transition.— In order to characterize the
commensurate (Mott-U) transition more precisely, we now



3

0.0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

70

80

90
l c
/a

0.5 0.6 0.7 0.8 0.9 1.0 1.1

1/γ

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

K

0 10 20
x/a

10−4
10−3
10−2
10−1

100

g 1

10−1 100 101

x/a

0.5

1.0

g 1

Figure 2. (Color online) Analysis of the correlation function g1(x) =
〈 ψ̂†(x)ψ̂(0)〉 for V/Er = 2. The decay is exponential in the insu-
lator (left inset, γ = 7) and algebraic in the superfluid (right inset,
γ = 1.25). Left: Correlation length in the insulator. Right: Luttinger
parameter in the superfluid extracted from the decay of the correla-
tion function (black) and from the formula K = π

√
nsκ (red). The

QMC results are the points, connected by straight lines to guide the
eye. Note that the inflection of the correlation length curve close to
the transition is due to finite size effects.

vary the interaction strength γ ≡ mg/h̄2n at commensurabil-
ity, na = 1. We compute the one-body correlation function
g1(x) = 〈ψ̂†(x)ψ̂(0)〉, where ψ is the field operator, from the
statistics of endpoints on open world lines in the QMC [2, 3].
When increasing γ along the line with na = 1 (dashed line in
Fig. 1), we observe a clear change of behavior of the g1 func-
tion from algebraic for γ < γc to exponential for γ > γc (see
Insets of Fig. 2). This is the signature of the Mott-U transi-
tion. The finite correlation length lc in the insulating phase in
shown in the left panel of Fig. 2. It is of only a few lattice
sites long for strong interactions and increases up to a value
comparable to the system size for γc ∼ 2. This is compati-
ble with the expected divergence of the correlation length at
the transition. In the superfluid phase, the algebraic decay
of the correlation function is compatible with the TLL theory
prediction g1(x) ∝ 1/x1/2K . The two values of the Luttinger
parameter found from a fit to this prediction and from the ther-
modynamic prediction K = π

√
nsκ are in good agreement (see

right panel of Fig. 2). When increasing the interaction towards
the insulating phase, the Luttinger parameter decreases down
to K ' 2 as predicted by the TLL theory.

To locate the Mott-U transition point accurately, we resort
to the BKT renormalization group equations to perform the
finite size scaling of the Luttinger parameter [31]. The re-
sults are shown in Fig. 3 (black points). In the strong potential
limit, the results are compatible with the prediction of the BH
model with the critical value (J/U)c = 0.297± 0.01 [21, 22]
and the hopping J and interaction strength U calculated from
the exact Wannier functions [20]. In the vanishing potential
limit, the results converge to the critical value γc(V = 0)' 3.5
(red cross in Fig. 3) found from the exact relation K(g) for
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Figure 3. (Color online) Phase diagram in the g-V plane at commen-
surability (na = 1). The black and green points, both with errorbars)
are the Monte Carlo and experimental results, respectively. The blue
line is the BH prediction using exact Wannier functions and the criti-
cal value (J/U)c = 0.297±0.01 (the shaded area corresponds to this
error bar). The red cross indicates the critical interaction strength
gc such that K(gc) = 2 in the Lieb-Liniger model. Along the whole
transition line the effective Luttinger parameter remains K = 2. The
red line is the result of the bare sine-Gordon theory [26].

the integrable Lieb-Liniger model [35]. However, in the inter-
mediate regime, we find a strong deviation from the pinning
transition line (red dashed line) computed in Ref. [26] from
the perturbative sine-Gordon theory using the bare Luttinger
parameters. This shows that to quantitatively obtain the phase
diagram the renormalization of the Luttinger parameters by
even relatively weak interactions is significant and cannot be
ignored in the perturbative field theory.

Experiment.— Having quantitatively characterized the
Mott transition from theory, we now turn to the experimental
investigation. The experiment starts with a Bose-Einstein con-
densate of 35 000 39K atoms with tunable scattering length at
a broad Feshbach resonance [36]. The BEC is split into about
1000 vertical 1D tubes by adiabatically loading a strong hor-
izontal 2D optical lattice. Each tube contains on average 36
atoms and the transverse trapping frequency, ω⊥ = 2π × 40
kHz corresponds to an energy higher than all other energy
scales, realizing an effective 1D geometry. In the longitudi-
nal direction we then adiabatically rise a weak optical lattice
with spacing a = λ/2 =532 nm and normalized amplitude
V/Er ranging from 1.0(1) to 4.0(4). The temperature of the
system, T ' 30 nK, is below the 1D degeneracy temperature
TD ' 50 nK [37]. A magnetic field along the vertical direction
holds the system against gravity and a residual harmonic trap
potential, with frequency ωz = 2π × 160 Hz, makes it inho-
mogeneous. By varying the 3D scattering length a3D, we can
tune the Lieb-Liniger parameter γ in the range 0.07−7.4. The
system parameters are chosen to obtain a mean atom number
per potential period 〈na〉=1. This implies that in most of the
tubes there are one or two regions with local commensurate
density, na=1, which can undergo a Mott-U transition. There



4

101 102

a3D(a0)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p c

(h
/λ

)

0 1 2 3 4

t(ms)

0.0
0.1
0.2

p(
h
/λ

) pc

Figure 4. (Color online) Critical momentum pc as a function of the
scattering length a3D for four periodic potential depth values: V/Er=1
(red), 2 (orange), 2.8 (green), 4 (blue). A piecewise second-order
polynomial fit determines the critical values for the SF-MI transition:
respectively ac/a0=392±12, 214±6, 160±30, 122±8. Inset: time
evolution of the momentum distribution peak p for a3D =109a0 and
V/Er=2. The solid line is the theoretical damped oscillation fitting
the data p < pc before the dynamical instability sets in. The error
bars represent the root mean square of the imaging resolution and
statistical uncertainties.

is however a fraction of the tubes for which na < 1 which can-
not become insulating [31].

To detect the Mott transition we excite a sloshing motion
of the system through a shift of the trapping potential, ob-
tained by suddenly switching off the magnetic field gradi-
ent [12, 14]. We let the atoms evolve in the trap for a vari-
able time t, after which all optical potentials are switched off
and time-of-flight absorption images are recorded. An ex-
ample of the time evolution of the momentum distribution
peak p(t) is shown in the inset of Fig. 4: One can notice
an initial increase of p followed by a subsequent decrease.
We analyze this behavior in the frame of a phase slip based
model [12, 13]. Phase slips, i.e. the dominant excitations in
1D, make the system dynamics dissipative already at small
momenta: p(t) can be fit with a damped oscillation function
of the form p(t) = pmaxe−Gt sin(ω ′t), where the frequency ω ′

is renormalized by the damping rate G and by the lattice [31].
At larger momenta one observes a clear deviation from such
behavior, with a sudden increase of the damping that signif-
icantly reduces the growth of p. We identify the momentum
where the experimental data points deviate with respect to the
theoretical curve as the critical momentum pc for the occur-
rence of a dynamical instability, driven by a divergence of the
phase slip rate [12]. The critical momentum pc is expected to
vanish at the superfluid-insulator transition [13].

The behavior of pc as a function of the scattering length a3D

is reported on Fig. 4 for several values of the lattice depth. The
measured pc initially decreases for increasing a3D, and then
reaches a finite constant value. We interpret the onset of the
plateau as the Mott transition for the commensurate regions

of the system, which drives all the corresponding tubes into
an effective insulating regime (i.e. transport along individ-
ual tubes is globally suppressed). The fraction of tubes that
does not reach the critical density na=1 keeps instead mov-
ing also beyond this point, originating the observed plateau
for pc. This interpretation is corroborated by the observed in-
crease of pc at the plateau for decreasing V , since the increase
of the interaction strength that is necessary to reach the insu-
lating regime produces an overall decrease of the density of
the 1D systems, hence an increase of the fraction of tubes that
does not reach na=1. For each set of measurements with a
given value of V , we therefore identify the critical scattering
length value ac to enter the insulator regime by determining
the beginning of the plateau with a piecewise fit. We use a
second-order polynomial fit, which is justified by the phase
slip based model [13, 14, 31]. We clearly see that as V de-
creases, ac – and thus also γc – increases.

For each periodic potential depth we get the Mott-U transi-
tion point converting ac into γc for na = 1. The experimental
results are shown as green points in Fig. 3. Within our uncer-
tainties [41], the experiment is in very good agreement with
the numerical simulations, except for the case V/Er=1, where
the finite size of the system might start to play a role. Our re-
sults are also consistent with those reported in Ref. [14] within
their uncertainties. Our experiment confirms the clear devia-
tion of the transition line from the bare sine-Gordon prediction
observed in the QMC results. Note that, surprisingly enough,
while the BH model is justified only for V � Er, both numer-
ics and experiments show that the BH prediction for the Mott-
U transition is quite accurate down to the limit V → 0. This
agreement is however rather accidental and the breakdown of
the BH model is manifest in other quantities. For instance, the
BH prediction for the Mott gap deviates significantly from the
exact QMC result [see Inset of Fig. 1(b)].

Conclusions.— We have studied, both theoretically and
experimentally, the Mott transition of strongly-interacting 1D
Bosons in a periodic potential from deep to shallow potentials.
Our ab-initio QMC calculations validate the field-theoretic
universal predictions and in addition provide a quantitative de-
termination of the phase diagram. It shows that the renormal-
ization of the Luttinger parameter is significant even for weak
periodic potentials. The numerical analysis give excellent
agreement with experiments for the Mott-U transition. The
experimental observation of our numerical phase diagram for
the Mott-δ transition is still beyond reach for ultracold atomic
systems due to the requirement of a fine control of atom num-
ber in box-shaped potentials. In spite of recent progress in
that direction [42, 43], it remains a great challenge for future
studies.

This research was supported by the EU FET-Proactive
QUIC (H2020 grant No. 641122), the ERC ALoGlaDis
(FP7/2007-2013 grant No. 256294), Marie Curie IEF
(FP7/2007-2013 grant No. 327143), MIUR (grant
No. RBFR12NLNA), and the Swiss NSF under Division II.
Numerical calculations were performed using HPC resources
from GENCI-CCRT/CINES (grant No. c2015056853) and
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the GMPCS cluster of the LUMAT federation (FR LUMAT
2764), and make use of the ALPS scheduler library and
statistical analysis tools [44–46].

Note added.— During the completion of this manuscript,
a preprint appeared reporting the numerical study of the Mott-
U transition with results consistent with ours [47].
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–Supplemental Material–
Mott Transition for Strongly-Interacting 1D Bosons in a Shallow Periodic Potential

In this Supplemental Material we give additional details on the methods and the analysis we have performed in the main
Letter. In particular we provide a detailed description of i) the quantum Monte Carlo calculations, ii) the determination of the
superfluid density, iii) the finite-size scaling analysis, and iv) the experimental methods.

Quantum Monte Carlo calculations

We consider 1D interacting Bosons at zero temperature
governed by the continous-space Hamiltonian,

Ĥ =
∫

dx
[

h̄2

2m
∇ψ̂

†
∇ψ̂ +

g
2

ψ̂
†
ψ̂

†
ψ̂ψ̂ +V (x)ψ̂†

ψ̂

]
, (S1)

where ψ̂(x) is the Bose field, m is the particle mass, g is the
contact interaction strength, and V (x) = V sin2(kx) is a peri-
odic potential of spacing a = π/k and amplitude V .

We study the interacting quantum system from first prin-
ciples, by means of quantum Monte Carlo (QMC) numerical
simulations. Path-integral QMC approaches allow us to com-
pute the exact thermodynamic properties of a generic, inter-
acting bosonic quantum system in any dimensions. This is
achieved by means of the path-integral representation of the
grand-canonical partition function Z = Tr[e−β (Ĥ−µN̂)], where
β = 1/kBT with kB the Boltzman constant and T the temper-
ature, µ is the chemical potential, and N̂ =

∫
dx ψ̂†ψ is the

total particle number operator. The quantum partition func-
tion is expressed as an equivalent classical partition function
of interacting polymers living in dimension D+ 1, where the
additional dimension is the imaginary-time direction [1]. The
equivalent classical partition function can be treated stochas-
tically by means of Monte Carlo sampling. An efficient way
of sampling the associated partition function is given by the
worm algorithm [2, 3].

In our implementation, the imaginary-time propagator en-
tering the path-integral representation is written as

〈{ri}|e−εĤ |{r′i}〉 =
N

∏
i=1

ρ
(0)
ε (ri,r′i)

N

∏
i=1

e−U(1)
ε (ri,r′i)×

×∏
i< j

e−U(2)
ε (ri,r j ,r′i,r

′
j), (S2)

where ρ
(0)
ε (ri,r′i) =

√
m/2π h̄2

ε × e−m|ri−r′i|
2/2h̄2

ε is the free-

particle propagator. The one-body contribution e−U(1)
ε (ri,r′i) =

〈ri|e−ε[p̂2/2m+V (r̂)]|r′i 〉/ρ
(0)
ε (ri,r′i) is computed exactly by

matrix squaring [1]. The two-body interaction is taken
into account at the pair-product level, thanks to the explicit

expression for the two-body propagator e−U(2)
ε (ri,r j ,r′i,r

′
j) =

〈ri,r j|e−ε[(p̂2
i +p̂2

j )/2m)+gδ (r̂i−r̂ j)]|r′i,r′j 〉/ρ
(0)
ε (ri,r′i)ρ

(0)
ε (r j,r′j)

which is known [4]. The systematic error coming from the
discretization of the path-integral along the imaginary-time
direction is smaller than the statistical errorbars reported in
our results.

Superfluid density

The stiffness ϒs = − mL
β h̄2

∂ 2 lnZ
∂θ 2

0

∣∣∣
0

measures the response of

the system when the periodic boundary conditions are twisted
by an angle θ0. It is directly computed by QMC using the
usual winding number estimator [1]. However, this quantity
strongly depends on the ratio β/L [5]. The relevant quantity
to study is the superfluid density ns appearing in the hydrody-
namic action

S[θ ] =
∫ L

0
dx
∫ h̄β

0
dτ

[
h̄2ns

2m
(∂xθ)2 +

h̄2
κ

2
(∂τ θ)2

]
. (S3)

Computing the partition function Z =
∫

Dθ e−S[θ ]/h̄, cor-
rectly taking into account winding configurations of the form
θ(x,τ) = 2πkx/L with k ∈ Z, one deduces the relation

ϒs = ns

(
1−4π

2ns

h̄2
β

mL
∑
+∞

k=−∞
k2e−2π2nsk2h̄2

β/mL

∑
+∞

k=−∞
e−2π2nsk2h̄2

β/mL

)
. (S4)

In our calculations, we invert this relation and extract ns from
the stiffness ϒs computed by QMC.

Finite size scaling

To precisely determine the Mott-U critical interaction
strength gc, we study the evolution of the Luttinger parame-
ter K for the increasing system sizes L/a = 30, 50, and 100.
When L is increased, the temperature T is lowered by keep-
ing the ratio β/L constant in order to consistently compute
ground-state properties. We resort to the known Berezinkii-
Kosterlitz-Thouless (BKT) renormalization group (RG) equa-
tions to perform the finite size scaling and determine the crit-
ical interaction strength in the thermodynamic limit. In par-
ticular, the finite-size behaviour of the Luttinger parameter K
and of renormalized potential strength V are governed by the
renormalization equations [6–10],

dK
d`

=−π6

16

(
V
Er

)2

K2 ;
dV
d`

= (2−K)V. (S5)

Dividing these two equations one by another, one finds that
the quantity

ζ ≡ 2
K
+ ln

(
K
2

)
− π2

16

(
V
Er

)2

(S6)

is conserved along the RG trajectories. The separatrix be-
tween the superfluid and the insulating phases then corre-
sponds to K = 2 and V = 0, i.e. ζ = 1. In practice, we use
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the values the Luttinger parameter K1 and K2 for two system
sizes L1 and L2, and compute ζ using the integral relation∫ K1

K2

dK
K2(lnK/2−ζ )+2K

= ln(L2/L1). (S7)

The Mott-U critical point is then determined using the crite-
rion ζ = 1.

Experimental methods

In the experiment, a Bose-Einstein condensate of 39K atoms
is split in about 103 1D subsystems (potential tubes) by means
of a 2D optical lattice. The overall Thomas-Fermi distribu-
tion of atoms in the tube labelled by i and j along the two
horizontal directions is given by Ni, j = N0,0[1− 2πN0,0(i2 +
j2)/5NT]

3/2, where NT = 3.5× 104 is the total atom number
and N0,0 ' 50 is the atom number in the central tube. On NT

there is a 6% statistical error while a 30% systematic uncer-
tainty is due to the imaging calibration. Along the vertical
direction of the tube, where we load the weak periodic po-
tential, the trapping frequency is ωz = 2π × 160 Hz. A good
estimate of the mean atomic density for each tube is provided
by the largest of the Thomas-Fermi and the Tonks value [11].
The mean site occupation 〈na〉 is then calculated by averag-
ing over all the tubes. During the lattice loading we employ an
optimal value of the 3D scattering length to get commensura-
bility on average, i.e. 〈na〉= 1. Given ωz and NT, the optimal
value is a3D = 220a0.

After the lattice loading, by varying the 3D scattering
length a3D, we tune the 1D scattering length a1D = `2

⊥(1−
1.03a3D/`⊥)/2a3D, and thus the Lieb-Liniger parameter γ ,
where `⊥ =

√
h̄/mω⊥ is the harmonic transverse size of a

tube, fixed by the 2D lattice. The value of γ is estimated
by averaging over all the tubes 1/(nmaxaa1D), where the peak
occupation nmaxa is the largest of the Thomas-Fermi and the
Tonks value. The mean peak occupation, i.e. the peak occu-
pation averaged over all the tubes, is n̄maxa' 1.2 and the peak
density in the central tube is less than two, thus preventing
localization mechanisms at occupations other than one. De-
spite the inhomogeneity of our system, at sufficiently strong
interactions we clearly observe a suppression of the system
dynamics. We interpret the latter as due to the fact that within
each tube, a part of the atoms reaches the localization con-
dition na = 1 stopping also the remaining adjacent parts with
different occupation. We estimate that about one quarter of the
atoms resides in tubes where the occupation is always na < 1,
justifying the plateau in pc shown in Fig. 4 of the main paper.

The complete model we use to fit the time dependence of
the momentum, p(t), as shown in Fig. 4 of the main paper, is
p(t) = pmaxe−Gt sin(ω ′t) with amplitude pmax = m∗ω∗2z0/ω ′,
frequency ω ′ =

√
ω∗2−G2 and damping rate G. Here m∗ is

the effective mass due to the shallow lattice, z0 ' 3 µm is the
trap displacement, and ω∗ = ωz

√
m/m∗ is the lattice renor-

malized frequency.

In the absence of an exact theoretical model for the criti-
cal momentum pc to enter the dynamical instability regime at
finite interaction, we use a quantum phase slips based model
to predict the interaction dependence of pc. Along the lines
of Ref. [12] we use the equation for the quantum phase slip
nucleation rate [13, 14]

Γ =BL(U)
√

naJU
√

π/2− pλ/2h̄×√
7.1(π/2− pλ/2h̄)5/2

2π
√

U/naJ
×

exp
[
−7.1

√
naJ/U(π/2− pλ/2h̄)5/2

]
.

(S8)

Here L(U) ' 2U1/3 is the mean length of the tubes and B is
a phenomenological constant. Assuming that the system en-
ters the strongly dissipative regime when the nucleation rate Γ

exceeds a constant critical value, from Eq. (S8) we can obtain
pc for each given value of the interaction U . Since this re-
lation is valid in the Bose-Hubbard regime, we can employ
it to estimate the critical momentum pc(U) for the experi-
mental case with V/ER = 4. The phenomenological param-
eter B is arbitrarly adjusted to reproduce the measured pc at
one interaction value, U = 2.4J. In Fig. S1 we compare the
measured and the predicted pc as a function of the scattering
length a3D ∝ U . The quantum phase slip-based model well
reproduces the experimental behaviour of pc with the interac-
tion, showing a quadratic dependence of pc on a3D. This result
justifies the choice of a quadratic polynomial fit in Fig. 4 of
the main paper, at least for the measurements with larger V .
For shallower lattices the Tomonaga-Luttinger Liquid model
for the nucleation rate could in principle be used [13], but this
would require the Luttinger parameter K as a function of the
interaction γ in the presence of the lattice, which is still un-
known.
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