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Propagation of collective pair excitations in disordered Bose superfluids

Samuel Lellouch, Lih-King Lim, and Laurent Sanchez-Palencia
Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ Paris Sud 11,
2 avenue Augustin Fresnel, F-91127 Palaiseau cedex, France
(Dated: April 17, 2015)

We study the effect of disorder on the propagation of collective excitations in a disordered Bose
superfluid. We incorporate local density depletion induced by strong disorder at the meanfield level,
and formulate the transport of the excitations in terms of a screened scattering problem. We show
that the competition of disorder, screening, and density depletion induces a strongly non-monotonic
energy dependence of the disorder parameter. In three dimensions, it results in a rich localization
diagram with four different classes of mobility spectra, characterized by either no or up to three
mobility edges. Implications on experiments with disordered ultracold atoms are discussed.

PACS numbers: 05.30.Jp, 05.70.Ln, 05.60.Gg, 67.85.-d

I. INTRODUCTION

The dynamics of correlated quantum systems attracts
a growing attention sparked by the recent development of
quantum devices with long coherence times and dynam-
ical control of parameters, e.g. superconducting circuits
and ultracold atoms [1]. An additional asset of the latter
is that disorder may be introduced in a controlled way [2].
Disorder may strongly affect dynamical processes, mainly
due to Anderson localization [3]. Understanding the in-
terplay of disorder and interactions in dynamical quan-
tum systems is thus of fundamental importance and lo-
calization in quantum systems is still the subject of active
research [4-11]. This topic has also been addressed in the
context of quasi-periodic systems [12, 13].

In correlated quantum systems, most basic dynami-
cal processes are determined by the transport properties
of their collective excitations [14]. An important start-
ing point in the understanding of localization in corre-
lated systems thus relies on classification according to
the symmetries of their excitations [15]. For Fermi sys-
tems, it is mostly based on the three classes of random
matrices [16] as well as chiral or particle-hole symme-
tries [17]. For Bose systems, a strong distinction arises
between Goldstone and non-Golstone modes [18]. For in-
stance, in a Bose superfluid, while localization is at its
strongest at low energy for particle-like excitations, it is
suppressed for phonon excitations [5, 7, 10]. This con-
clusion is based on a weak disorder analysis and holds
in dimension d < 2 where localization occurs for arbi-
trary weak disorder. It is, however, challenged in higher
dimension where the onset of the Anderson transition re-
quires sufficiently strong disorder, which may alter the
very nature of the excitations.

In this work we study the transport of collective excita-
tions in a disordered, weakly-interacting Bose superfluid
in dimension higher than one. We show that the compe-
tition of disorder, screening, and density depletion yields
a strongly non-monotonic and non-universal energy de-
pendence of the disorder parameter, which controls the
localization properties. In three dimensions (3D), our
analysis indicates that the localization diagram exhibits

Amplitudes (in arb. units)

Figure 1. One-dimensional cut of the density profile of a Bose
superfluid in a disordered potential: Exact numerical solution
of the GPE (1) [shaded area, n(r)] vs. self-consistent solution
using Eq. (2) [dashed line], for a disordered potential [full line,
V(r)] of amplitude Vr = 0.87u and correlation length or = &.
The density profile follows the modulations of the potential,
smoothed at the length scale of £, and may be locally depleted
around disorder maxima.

several classes of mobility spectra, characterized by either
no or several mobility edges. We finally discuss implica-
tions of these localization properties on quantum-quench
experiments with disordered ultracold atoms.

II. TRANSPORT THEORY OF COLLECTIVE
EXCITATIONS

A. Meanfield scattering theory

To study the transport of collective excitations in the
presence of disorder, it is worth devising a scattering
problem. For weakly-interacting Bose superfluids, we
may rely on meanfield theory [19]. The background
density field n.(r) obeys the Gross-Pitaevskii equation
(GPE),

[—1*V?/2m+ V(1) — p+ gne(r)]Vne(r) =0, (1)

where m is the particle mass, p is the chemical poten-
tial, and g > 0 is the coupling constant of short-range
repulsive interactions. The disordered potential V' (r) is
chosen to be spatially homogeneous, isotropic, and of
vanishing statistical average. For weak disorder, Eq. (1)



can be solved perturbatively [20, 21]. Below, we con-
sider regimes of strong disorder and it is necessary to
extend this approach, including possible local depletion
of the density around the disorder maxima. To do so, we
generically write the density field in the form

ne(r) = [ —n(r) + Al/g, (2)

where the field n(r) describes the modulations of the den-
sity due to the disorder, and the quantity A is a shift in
the chemical potential. The latter allows us to impose the
conventional condition that 7)(r) is of zero statistical aver-
age. Notice that since the density is positive everywhere,
ne(r) > 0, the field 7(r) is bounded above, n(r) < p+ A.
We then insert Eq. (2) into the Gross-Pitaevskii equa-
tion (1), and linearize it, which yields

A+ V() 1}, )

nr) = (n+4) mm{ﬁm/zv

where, in Fourier space,

- V(q)

V(q) = Trelq? (4)

The quantity V(r) is a generalized smoothed poten-
tial [20], where the healing length is renormalized by the

shift A to the value {a = h/\/4m(u + 3A/2). The zero-
average condition, (n(r)) = 0, then yields

0=A+ (min{V(r),u + A/2}), (5)
where (...) denotes statistical averaging. Note that

Eq. (5) ensures that pu+ 3A/2 > 0, so that {a is well
defined. In general, the density field n.(r) is therefore
found by solving self-consistently Eqgs. (4) and (5) for A
and V(r), and Eq. (3) for n(r).

This self-consistent solution is in good agreement with
the exact numerical solution of the GPE (1) (see Fig. 1).
As expected, the density modulations 7)(r) follow those
of the disorder, smoothed at the length scale of the
healing length [20, 21]. However, both the amplitude
of the smoothed potential and the healing length are
renormalized by the energy shift A. Moreover, for
strong disorder, the field 7n(r) locally saturates to the
constant value p + A at positions where f/(r) typically
exceeds the chemical potential p (more precisely, where
V(r) > pu+A/2). In those regions, which will be referred
to as depleted regions, we thus have n.(r) = 0 (see Fig. 1).
In order to interpret the shift A, we may rewrite Eq. (5)

in the form A = [, dV P(V)[V — (4 A/2)], where

P(V) is the probability distribution of the smoothed
potential and the integral is restricted to the depleted
regions. The quantity A can thus be assimilated to the
weight of the part of the smoothed potential that is
truncated in the depleted regions. In particular, in the
case of weak disorder for which V(r) never exceeds yu, we
find A = 0 and we recover the solution given by usual

perturbation theory [20, 21]. For stronger disorder, A is
finite, and our approach accounts for the local depletion
of the density around the disorder maxima.

Knowing the density field n.(r), we now treat the
collective excitations. The phase and density fluctua-
tions, § and &n, are readily found by developing the
many-body Hamiltonian up to order two in the opera-
tor B(r) = 6n(r)/2/ne(r) +iy/ne(r)f(r). The resulting
quadratic Hamiltonian is then diagonalized by the Bo-
goliubov transform B(r) = Ea{us(r)55+v;(r)él}, where
b. is the annihilation operator of an elementary pair ex-
citation of energy e. It yields the Bogoliubov-de Gennes
equations [19, 22]

Lo (Z) +U(r) (’;) =c (z) : (6)

where
h2Vv2
- +pu+2A +u+A
EO - m h2v2
—u—A + —pu—2A
2m
and

Ulr) = <+V(r) —2(r)  —n(r) ) _
) V@) + 20()

In this form, Eq. (6) devises a well-defined two-wave
scattering problem. The dynamics of a given excitation
at energy ¢ is governed by the homogeneous propagator
Ly and scattering from a disordered medium defined by
U(r). The latter combines the two random fields V (r)
and 7(r), which are strongly correlated [see Eqgs. (3) to
(5).

At this point, one could wonder whether the Bogoli-
ubov approach is valid even in the presence of strong den-
sity depletion. The main approximation here is the trun-
cation of the many-body Hamiltonian at second order in
the Bogoliubov operator. Since the latter is equivalent to
the linearization of the time-dependent Gross-Pitaevskii
equation (tGPE) [23], it can be tested by comparing the
meanfield dynamics predicted by the exact tGPE on the
one hand and by the linearized tGPE on the other hand.
Our results show excellent agreement between the two
in all regimes, namely the phonon, particle, intermediate
regimes for weak to strong density depletion (for details,
see appendix. A). It validates the use of the Bogoliubov
approach used here.

B. One-parameter scaling theory

Universal transport properties can now be inferred
using the one-parameter scaling (OPS) approach [24],
which can be extended to the case of excitations, as we
outline here. It consists in developing a renormalization-
group (RG) analysis of the size-dependent conductance.



The latter is identified to the Thouless number [25],
which is the ratio of the energy scale associated to dif-
fusion across a finite sample of size L, de = hDy/L?
(with Dy = w.ls/d the classical diffusion constant, w. =
h~1|0e/0Kk| the excitation velocity, and I; the Boltzmann
transport mean free path), to the energy-level spacing,
Ae = 1/N(g)L? (with N () the density of states per unit
volume). In diffusive regimes, if k. is the momentum as-
sociated to the energy e, then N(g) o< k9=1/|0e/0k| =
kd=t/hw., so that G(L) o (kely)(k-L)?72, and 8 =
dlogG/dlogL ~ d — 2. In localized regimes, the con-
ductance is exponentially small, G(L) ~ exp(—L/L,..)
with L, the localization length, and 8 ~ logG. For
d < 2, B(G) is strictly negative and G(L) always flows
down to the localized regime. Then, all states are local-
ized, with the localization length L,,. « Iz in 1D and
log(Ly,./ls) o kelg in 2D. Conversely, for d > 2, the
RG flow has an unstable fixed point at k.ly ~ 1, known
as the mobility edge or the Anderson localization transi-
tion [24]. Since the above scaling laws are independent
of the dispersion relation, these features are all universal,
except the transition point, which is determined by the
value of the inverse disorder parameter (IDP) k.l;.

C. Disorder parameter

In order to estimate the IDP for the scattering prob-
lem (6), we follow the approach of Ref. [7, 10] and
extend it to strong disorder with possible local den-
sity depletion (see details in appendix B). In brief, we
note that the homogeneous propagator Ly does not sup-
port only plane-wave modes with momentum k. such
that A%k2/2m = \/e2 + (p+ A)? — (u + 2A), but also
evanescent modes of penetration length 7= ! such that
R2y2/2m = \/e2 + (u+ A)2 + (u + 2A). The latter en-
sures that for a scattering length larger than the pene-
tration length, the excitation modes (u.,v.) can be de-
composed into two fields (g, g- ), where the second one
is enslaved by the first one. Retaining only the leading
disorder terms, the behavior of the excitation is then en-
tirely determined by the field g, which fulfills the closed
equation

h2kZ W oo 4 +
P () = o g + V) () ()
where
Ve(r) = V(r) — f(e)n(r), (8)
with f(e) = 2VERA A4 8) e g6 called screened

Vet (ut+A)?
potential Ve (r) results from the competition of the bare
disorder V (r) and the meanfield repulsive interaction, de-
termined by the field 7(r). This competition is strongly
energy dependent due to the factor f(e). Equation (7)
describes an equivalent scattering problem, which can

/j : . ‘ ’\,\ 1 :[%/;

Figure 2. Schematic view of the two-impurity model defined
by Eq. (10). It is made of two types of impurities with, re-
spectively, positive (+V;") and negative (—V; ) amplitudes.
The impurities are randomly and independently spread over
in space. Each impurity is Gaussian shaped with a width og.

-
y

now be solved by standard quantum transport the-
ory [26]. In the on-shell approximation [27], it yields

1 27m? dQg .
@ S | 2ol (1—cos 0)C.[2k. sin(6/2)],
9)

where d2; denotes the infinitesimal solid angle in d di-
mensions and C.(q) « (|V-(q)|?) is the power spectrum
of the screened potential. Notice that in 1D, the angular
integral in Eq. (9) reduces to § = 7 so that one recovers
the result of Ref. [7, 10] for the Lyapunov exponent.

It is worth pointing out that the previous ap-
proach describes only excitations of energy ¢ > ¢. =
V2A(u+3A/2). Otherwise, we have k2 < 0 and all
modes of Ly are evanescent. In the following, we will
thus disregard the case of excitations ¢ < e., which in
most cases reduces to a very narrow energy range at the
bottom of the spectrum, since A < pu. It should as well
be pointed out that since it retains only leading terms in
disorder, our theory is not expected to be quantitatively
exact, but rather to provide a qualitative description of
the relevant physics. Possible extensions of the approach
are discussed in the conclusion.

III. LOCALIZATION OF BOGOLIUBOV
QUASIPARTICLES IN AN IMPURITY MODEL

A. The impurity model

We can now discuss the behavior of the disorder pa-
rameter of the excitations. For concreteness, let us con-
sider a generic impurity model described by the potential

V(r) = Zvjh(r_rj) -V. (10)

The impurities are independent Gaussian-shaped poten-
tials of width oy, h(r) = exp(—r?/202), randomly dis-
tributed in space with density p, and with amplitudes



V; that take the values +V;" > 0 or =V, < 0 with
equal probability (see Fig. 2). The constant term V =
p(V27may)4(Vy" — V) /2 ensures that the potential V(r)
is of vanishing statistical average. The square disorder
amplitude is V2 = (V2) = p(y/7or)[(VyH)? + (V5 )?]/2.
This two-impurity model generalizes the one-impurity
model, which is widely used in studies of Anderson lo-
calization in non-interacting systems [28, 29]. Here,
we introduce two types of impurities, namely repulsive
(V; = +V;" > 0) and attractive (V; = =V, < 0) ones.
In contrast to non-interacting systems, it is crucial to dis-
tinguish repulsive and attractive impurities in the present
work because they have radically different effects on the
density background. For instance, only repulsive impuri-
ties can induce local density depletion. The two-impurity
model is generic in the sense that it is the simplest one
to describe a disordered system where different kinds of
impurities are present. In addition, controlled impurity
models can be realized in ultracold-atom systems where
the impurities are made of individual atoms trapped at
some random sites of an optical lattice [30]. So far, only
one-impurity models have been realized [31] but they can
be extended to models with different kinds of impurities
using different atomic species.

B. Behavior of the disordered parameter

To compute the IDP for the previous impurity model,
we first numerically determine the density background
n(r) and A following the previous self-consistent proce-
dure. This permits to compute the screened potential
Eq. (8) and its power spectrum, from which the IDP is
inferred using Eq. (9). Figure 3 shows the energy de-
pendence of the IDP for the 3D balanced impurity case
(VoF = V), plotted as a function of k.£. Qualitatively
similar curves are found for lower dimensions and for im-
balanced impurity cases (V5™ # V; ). Depending on the
disorder strength, the IDP exhibits three generic behav-
iors. Notice that k.£ — 0 corresponds to ¢ — e..

For weak disorder (case A in Fig. 3), the IDP shows a
non-monotonic energy dependence, which can be under-
stood as follows. At high energy, the excitations are in-
sensitive to the density background and behave as parti-
cles in the bare disorder potential. Conversely, at low en-
ergy, the excitations are strongly affected by the density
background, which screens the disorder and suppresses
scattering. More precisely, this holds when the chemical
potential exceeds the maximum of the smoothed poten-
tial, i.e. for V;"h(0) — V < p where h(r) is the smoothed
impurity. Then, the density background as no depleted
region. The power spectrum of the screened potential,
C:(q), can be computed explicitly as a function of that
of the bare disorder, C'(q), and of the excitation energy
¢ using Eq. (8). It yields
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Figure 3. Inverse disorder parameter (IDP) versus pair-

excitation momentum for the 3D balanced impurity model,
with o = &, poi = 2 x 1074, and for various values of the
disorder amplitude Vo = V3" = V. Shown are the results of
Eq. (9), where the screened power spectrum C.(q) is calcu-
lated with the full screened disorder of Eq. (8) (dots) or with
Eq. (11) (solid line), as well as the contributions of the bulk
(dashed lines) and depleted (dotted lines) regions.

Inserting this Eq. (11) into Eq. (9), we find the solid line
in Fig. 3, which reproduces very well the data in the full
energy range for case A. Notice that the same formula as
found from Egs. (9) and (11) was inferred from calcula-
tions of the scattering mean free path using a different
approach in Ref. [32]. Equation (11) generalizes the 1D
case [7, 10]. Tt defines a screening function [prefactor
in the rhs of Eq. (11)], which can also be identified in
single-scattering processes [21] and renormalizes the dis-
order by the interactions. The behavior of the IDP can
now be found by inspection of Egs. (9) and (11). For
ke > &1 o7t the screening is irrelevant and we can
replace C.(q) by C(q) in Eq. (9). We then recover the
free-particle behavior [27, 33],

MQUR 5 -1 _—1
kelg ~ VR2§ (ksg) ) L (12)

Conversely, for k. < ¢t 051, the screening strongly
enhances k.l; compared to the free-particle case and we
find

N2§d d 1 1
kel ~ (V2 d) (kgg)‘ , ke K& o, (13)
RUR

This result is in agreement with the universal behav-
ior expected for Goldstone modes [18]. Both low-energy
and high-energy scalings reproduce the behavior of case
A and locate the minimum of the IDP at kM ~
min(1/£,1/0y). Note that a non-monotonic behavior of
the IDP is also found in the propagation of other kinds
of waves, such as photonic [34] and acoustic [35] ones.
For intermediate to strong disorder (cases B and C in
Fig. 3), the energy dependence of the IDP found from the
solution of the full scattering problem [Egs. (8) and (9)]
strongly differs from the weak disorder case at low energy,
where k.lz now increases with the energy. To understand



this, it should be noticed that, for V0+;L(O) —V > pu, the
background density is now locally depleted around the
positive impurities. Hence, during its propagation, an
excitation goes through two types of regions, namely the
density depleted region, and the rest, which constitutes
the density bulk. In the bulk, the field n(r) may be ap-
proximated by V(r), provided we neglect the quantity
A, which is valid for low impurity density, po? < 1.
It yields a non-monotonic contribution to k.lp similar
to case A, with a smaller overall magnitude due to the
truncation around the positive impurities (dashed lines
in Fig. 3). Conversely, in the depleted regions, the field
n(r) saturates to the value p+ A. The bare disorder
in those regions is thus protected against screening and
Eq. (8) may be replaced by Ve (r) ~ V(r) — (u+ A) f(e).
In this field, the excitations behave as (non-Goldstone)
free particles, yielding a monotonic contribution to k.ly
(dotted lines). In the white-noise limit (k.op < 1), this
contribution is
kol ~ (k€)41, k. <ot (14)
The various behaviors of the IDP observed in Fig. 3 can
then be interpreted as follows. Neglecting the correla-
tions between the contributions of the bulk and depleted
regions, the disorder parameter (k.l) ! is approximately
the sum of these two contributions. Its inverse (the IDP
kels, which is plotted in Fig. 3), is thus dominated by
the smallest corresponding contribution. At low energy,
because of the screening in the bulk, the contribution
of the depleted region always dominates if it exists, and
captures the free-particle-like behavior of k.l5. At inter-
mediate energy the behavior of k.l crucially depends on
the relative magnitude of the two contributions. When
Voth(0) =V 2 p (case B), only the upper fraction of
the positive impurities is truncated and the bulk starts
to dominate at moderate energy. It results in a turn-
ing point k' where bulk and depleted regions equally
contribute to the IDP, yielding there a local maximum.
When VOJr increases, the depleted region dominates in
a wider energy range and k"®* moves to higher values.
When V;h(0) =V > pu (case C), the positive impuri-
ties are almost entirely truncated, and k'®* eventually
merges with the local minimum k™", which does not
significantly depend on VOJF. The curve then becomes
monotonic.

C. Localization diagram

We now turn to the localization properties of the collec-
tive excitations, focusing on the 3D case where mobility
edges appear at the localization threshold k.lz ~ 1. We
determine the latter from IDP curves as those of Fig. 3 for
the general model with different amplitudes of the posi-
tive (V") and negative (V) impurities. In all cases, they
are of type A, B, or C with an overall magnitude and posi-
tions of the local maximum and minimum that depend on
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Figure 4. Localization diagram of pair excitations in the 3D
impurity model, plotted as a function of the amplitudes of
positive (V") and negative (V) impurities, for or = ¢ and
pos = 2 x 107*. It exhibits four classes of mobility spec-
tra, characterized by zero (0), one (I), two (II), or three (III)
mobility edges. Note the different scales on the two axes.

the parameters of the disorder potential. The resulting
localization diagram, shown on Fig. 4, displays several
localization classes with between zero and three mobil-
ity edges in the excitation spectrum. The high energy
states are always extended. The regions of the diagram
are then determined by three conditions. Firstly, the ex-
istence of depleted regions requires V;"h(0) —V > p,
which defines the roughly vertical line on the diagram.
On the left, the IDP curves are of type A and the low-
energy excitations are extended (k.lsz > 1). Just on the
right, they are of type B. The low-energy excitations are
then localized (k.ly < 1), and there is at least one mo-
bility edge. Secondly, when the local minimum of the
IDP curve, (k.ls)™", is below the localization thresh-
old a band of localized states appear at intermediate en-
ergy, giving rise to two additional mobility edges. For
Vo < Vg, the condition reads 1 ~ (klg)™™ oc 1/(Vy )2,
which yields the nearly horizontal line on the diagram.
Thirdly, when VOJr increases, the local maximum of the
IDP curve decreases. In the region with three mobility
edges (III), the two low-energy ones disappear. In the
region with one mobility edge (I), the IDP curve turn
from type B to type C, without affecting the number of
mobility edges.

The localization diagram of Fig. 4 is expected to
be generic. In particular, the competition of disorder,
screening, and density depletion determine the diversity
of mobility spectra. Yet, a given model of disorder does
not necessary display all cases and the imbalanced impu-
rity model with a finite correlation length is the simplest
we found that does. For instance, for only positive im-
purities or in the balanced case, the only possibilities
are (0) or (I) because the minimum of the IDP can-
not be controlled independently of the density depletion.
Conversely, for only negative impurities, the depleted re-
gion is absent and the only possibilities are (0) or (II).
The case of white-noise disorder is also limited because
the smoothed impurity potential diverges in the center,
h(r) = e~ "/ /47w€?r, so that depleted regions strictly ap-
pear as soon as Vy' # 0, and the only possibilities left



are (I) and (III).

IV. CONCLUSIONS

The physics we have discussed here is particularly rel-
evant to ultracold-atom experiments. In these systems,
out-of-equilibrium dynamics can be generated by a local
quench, which produces collective excitations [36]. In the
presence of disorder, their transport properties and abil-
ity to mediate long-range energy transfer are determined
by the four classes of mobility spectra of the localization
diagram. In case (0), all excitations are protected against
localization and propagate diffusively, i.e. (r?) = 2Dgt.
In all other cases, energy can only be partially trans-
ferred since some excitation modes are localized. Energy-
resolved quenches may provide experimental evidence of
such mobility spectra in ultracold gases. Moreover, these
systems offer a wide range of models of disorder, e.g. im-
purities [30, 31] and speckle potentials [2]. The statistical
properties of the latter may be tailored, which may lead
to even richer localization diagrams [33, 37, 38].

The observation of the localization effects we have
discussed here requires that the lifetime 7 of the Bo-
goliubov quasiparticles exceeds the transport meanfree
time 75 = lg/we (with w. the excitation group veloc-
ity). On the one hand, for low temperature, the decay
of Bogoliubov excitations is dominated by Beliaev pro-
cesses [23, 39]. To estimate the corresponding decay rate
I = 1/7, we resort to local density approximation. The
depleted regions, where the excitations behave as free
particles with infinite lifetime, very weakly contribute
to I A good estimate of I' is thus given by the bulk
contribution. For a typical excitation € ~ pu, it yields

6

T~ m/thn3/2a2({2, where a,, = mg/4nh? is the scatter-
ing length [39]. On the other hand, w. ~ /gn/m in the
phonon regime and [z ~ 1/k. in the region of interest,
which yields 75 ~ m/4nhnas.. Therefore, the validity
condition of our approach reads 7u/7 ~ /na,. < 1,
which is the validity condition of the Bogoliubov ap-
proach, very verified in dilute-gas Bose-Einstein conden-
sates [23]. For instance, using the parameters of Ref. [40],
we find find 7 ~ 6s and 75 ~ 5ms, making experimental
observation of our predictions possible.

The approach used in this work provides a intuitive
understanding of the physics at stake as well as generic
qualitative predictions for the localization behavior of
collective excitations. However, since it relies on lowest-
order perturbation theory, it is not expected to be quan-
titatively accurate. In particular, it does not take into
account the disorder-induced shift of the dispersion re-
lation, which is known, in the non-interacting case, to
result in a possibly significant shift on the position of
the mobility edge [33, 41]. Moreover, numerical calcu-
lations in the non-interacting case show that the mo-
bility edge significantly depends on the model of disor-
der [42, 43]. Therefore, the determination of the precise
localization diagram for collective pair excitations in dis-
ordered Bose superfluids, as well as the identification of
the various classes of mobility spectra predicted in the
present work, require a full numerical resolution of the
localization problem in the two-impurity model as well
as in other models of disorder.
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Appendix A: Validity of the second-order
development in the presence of strong density
depletion

In this appendix, we show that the Bogoliubov ap-
proach used in this paper, i.e. a development of the
many-body Hamiltonian around the inhomogeneous den-
sity background up to second order in fluctuations terms,
is valid even in the presence of strong local density de-
pletion. We perform this check by comparing exact cal-
culations and linearized theory at the meanfield level.
We consider the time-dependent Gross-Pitaevskii equa-
tion (tGPE),

h2v2
2m

i) = — Y+ V(r) + glv*,

(A1)
which governs the time-evolution of a condensate wave-
function v (r,t). In the linearized approach, one writes
P(r,t) = y/ne(r) + o(r,t), where ne(r) is the density
background found from the solution of the stationary
GPE (1) and 9(r,t) is a small perturbation. At low-
est order, it yields the linearized equation

. 0 0
’Lhat (5 1/}*) = EGP (5$*> ) (A2)
where the matrix
h2v?
— +V+gn.—p gne
Lap = 2m 2072
h*V
—gne + -V —gnc+p
2m

is exactly the one appearing in the Bogoliubov-de-Gennes
equations [23]. This linearization procedure thus turns
out to be equivalent to the Bogoliubov development of
the many-body Hamiltonian to second order. Therefore,
to check the validity of the latter in the presence of den-
sity depletion, one can compare the results of the time-
evolution of an excitation d1(r,t) on top of a depleted
condensate n.(r), using either the exact tGPE (Al) or
its linearized version, Eq. (A2).

We have performed this test in one dimension, which
is the most unfavorable dimension due to large fluc-
tuations. For the sake of simplicity, the density de-
pletion is induced by a single strong potential barrier
V(z) = VoO(a — |z — x.]), of height Vy = 30y, width
2a = 0.05L, and centered on some position z,. The
quantity © denotes the Heaviside function. In such a
configuration, we first determine the density background
ne(x) solving the stationary GPE Eq. (1) by imaginary
time propagation. The latter is strongly depleted under
the barrier (see Fig. 5). We then add a small excitation
on top on this background, st (z) = eikze—(z=0)*/20°,
The latter describes a plane wave of momentum k inside
a Gaussian envelop of width o. In practice, we choose
ko > 1 so that it is sufficiently narrow around k in mo-
mentum space. We then compute the time evolution of
this initial excitation either solving Eq. (A1) for v (z,t)
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Figure 5. Time evolution of an excitation dyo(z) =
eikze—(2=20)?/20% o top of a depleted condensate in the pres-
ence of a strong potential barrier V(z) = VO (a — |z — z4|),
for Vo = 30u, 2a = 0.05L, and o = 0.05L. Three different
regimes of the excitation spectrum are considered: (i) k€ =1
with almost total reflection (top), (ii) k& = 5 with reflec-
tion and transmission of the excitation of the same order to
magnitude (central), (iii) k¢ = 10 with almost total trans-
mission (bottom). Note that for clarity purposes, £ is varied
from a panel to another. Shown are the initial wavefunction
Y(x,0) = y/nc(x) + 0vo(x) (solid red line) as well as the final
wavefunction as given by the full time-dependent tGPE (solid
orange line) and by the linearized tGPE (blue dotted line).
The agreement between the two calculations is excellent in all
cases.

with the initial condition ¥ (x,0) = y/nc(x) + g (z), or

solving Eq. (A2) for d¢(xz,t) with the initial condition
0(x,0) = dtpo(x). We have performed this compari-
son in a wide range of parameters, from non-depleted to
strongly depleted cases, and from the phonon (k€ < 1) to
the free-particle (k& > 1) regimes. As shown on Fig. 5 in
the case of strong depletion, we found an excellent agree-
ment in all cases, irrespective to the values of k£ and to
the relative strength of reflection and transmission by the
barrier. This validates the use of the linearized equation,
and thus of the Bogoliubov approach, to study the dy-
namics of the collective excitations even in the presence
of strong modulations of the potential.

Appendix B: Derivation of the inverse disorder
parameter

The background density field n.(r) being given by
the solution of Egs. (2) to (5), the collective excita-
tions (ue,v:) can now be determined by solving the
Bogoliubov-de Gennes equations (6),

Lo <“> +U(r) <Z> = <§j) , (B1)
where
o —h2V2/2m + p + 2A +u+ A
0= —pu—A +h2V2)2m — - 2A
and

Ulr) (+V(r) —2(r)  —n(r) ) _

+n(r) —V(r) +2n(r)
The dynamics of a given excitation at energy e is thus
governed by the homogeneous propagator £y and scat-
tering from the disordered medium defined by U(r).

In order to solve the Bogoliubov-de Gennes equations
(BAGEs), we generalize the approach of Ref. [7] to the
strong disorder case where A = 0. We first rewrite the
BdGEs (B1) in the form

e () (412 28 () oo
(T ) (i)

A suitable basis to perform diagrammatic expansion in
leading disorder terms is found by applying the lin-
ear transform (uc,v:) — (9,92 ) that diagonalizes the
homogeneous term in Eq. (B2), i.e. the matrix M =

—e+p+2A  p+A .
( N et 4 2A . It yields
h2 2 hQ 2
i Je _Ate —2 A4
=)= A Ay o) (B3)
9z hk§+A_ _h kg_A_ ve )
2m c 2m c



where —h%k2/2m = —\/e2 + (p+ A)?2 + (u + 2A) and
R2y2/2m = \/e2 + (u+ A)?2 + (u + 2A) are the eigen-
values of the homogeneous matrix M. Without any ap-
proximation at this stage, the BAGEs in the (¢, g0)
basis then read

MK g ) = — vt ) 4 V() = 1 ()] o)
. (n(r)ar (0 B1)
I ) = 2w )+ Vi) - o) o )
FO_(n(r)gd (1), (85)
with fi(e) = 2V82\;§j:@’:§)(j+“ and ®u(c) =
VEH(t 8)2 % (it A)

WETTPEUNE . In the absence of disorder, Eqgs. (B4)
e2+(p

and (B5) are now decoupled and are straightforward to
solve. The g modes are plane waves of momentum ke,
while the g are evanescent waves of penetration length
v- 1. The latter vanish identically if the system is infinite
or has periodic boundary conditions.

In the presence of disorder, we can therefore make the
assumption |g- | < |gF| since gZ is at least one order of
magnitude smaller that ¢ in Vi/p and A/u. Keeping
only the leading-order terms in Eq. (B5), we then find

2m

= g0 / dr’ Gy, (r—1'n(r') gl (v'), (B6)

where Gy, is the Green function associated to the dif-
ferential operator —V? /42 + 1. In Fourier space, it reads
Gip.(q) = (2m)~%2/[1 + ¢*/B?] and in real space it is
a positive function of integral unity, decaying exponen-
tially on a length scale 1/v.. Then, since 2m/h%y2 <
and |®_(g)| < 1 for any energy ¢, we find
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which is consistent with the working assumption |g7 | <
lgF|. Therefore, the last term of Eq. (B4) can be ne-

) n()|lgd ()de' /i S (Ve /p)lg ],

glected, which yields a closed equation for g7,

f;i?g: (r) = V2 92 (x) + Ve(r)g (r),  (BT)
where
V(r) = V(r) = f(e)n(r) (B8)

and, for simplicity, we now denote by f(e) the quantity
Fole) =2 Sts(giﬁfg)(fm' The quantity V.(r) defines
a so-called screened potential of zero-average. It can be
viewed as the screening of the bare potential V (r) by the
density background encoded in 7(r). It notably depends
on the energy ¢ of the Bogoliubov excitation.

Therefore Eq. (B7), together with Eq. (BS8), con-
tains the leading disorder terms. It features an effec-
tive single-wave scattering problem, which can now be
solved by standard quantum transport theory [26]. Lo-
calization properties are then determined in a two-step
process [44, 45]. Firstly, the transport meanfree path is
calculated in the semi-classical approach where interfer-
ence of multiple-scattering paths is neglected. Within the
on-shell approximation, which amounts to assimilate the
spectral function to the disorder-free one, diagrammatic
theory yields Eq. (9),

1 N 2m?
kElB(E) n h4k§_d

b (1 cos 0)Ce[2ke sin(0/2)],

2

(B9)
for models of disorder with isotropic correlation func-
tions [27], as considered in this work. For extension to
anisotropic correlation functions, see Ref. [33]. Secondly,
localization is found using either the one-parameter scal-
ing theory [24] or the self-consistent approach [44, 45].
The one-parameter scaling theory is used and discussed
in the main text. The self-consistent theory incorporates
interference corrections on the top of diffusive dynamics,
which yields a self-consistent equation for the diffusive
constant or the localization length. Both approaches give
the approximate localization threshold k.l ~ 1 used in
the present paper.



