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Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap
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We demonstrate experimentally the evaporative cooling of a few hundred rubidium-87 atoms in a single-beam
microscopic dipole trap. Starting with 800 atoms at a temperature of 125 μK, we produce an unpolarized sample
of 40 atoms at 110 nK, within 3 s. The phase-space density at the end of the evaporation reaches unity, close to
quantum degeneracy. The gain in phase-space density after evaporation is 103. We find that the scaling laws used
for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative
cooling process. We also compare our results to a simple kinetic model describing the evaporation process and
find good agreement with the data.
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I. INTRODUCTION

Mesoscopic atomic ensembles containing a few hundred ul-
tracold atoms constitute an interesting system for fundamental
studies as well as applications in quantum optics and atomic
physics. For example, they have been proposed as a tool to
observe nonlinear effects at the single-photon level, e.g., using
Rydberg atomic states [1], and more generally for applications
in quantum information [2,3]. Recent proof-of-principle exper-
iments along this line have been performed using samples con-
taining ∼100 laser-cooled atoms held in a microscopic dipole
trap [4] or in one-dimensional optical lattices [5]. As another
example, a quasideterministic single-atom source has recently
been demonstrated using light-assisted collisions in a small
cold atomic ensemble [6]. These demonstrations have been
achieved with atomic samples laser-cooled around the Doppler
temperature, but it is often desirable to start from much colder
atoms to decrease the sources of decoherence during quantum
manipulations. Moreover, when further cooled down, these
systems could allow the study of quantum degenerate gases in
a regime where the number of atoms is small. An important
experiment in this direction has been performed recently with
fermions held in a tight dipole trap [7].

Several strategies can be used to prepare small ultracold
atomic ensembles with temperatures in the micro-Kelvin
range. One of them relies on the production of a macroscopic
quantum degenerate or nearly degenerate gas as a preliminary
step; the ultracold sample is then used as a source to load
a dipole trap in a dimple configuration, as demonstrated in
Refs. [8] and [9] for large atomic samples and in Ref. [7] for
a few tens of fermionic atoms. An alternate route bypasses
the first step mentioned above and starts directly with a
small sample of laser-cooled atoms confined in a tight trap
of typically several-micrometer size, such as magnetic traps
on an atom chip [10] or arrays of optical dipole traps [11].
Evaporative cooling then allows reduction of the temperature
(see, e.g., [12] and [13] and references therein) and has led so
far to condensed samples containing several thousand atoms.

In the present work, we follow the second route and
extend evaporative cooling to low atom numbers, ranging
from a few hundreds to a few tens. Here, we use unpolarized
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rubidium atoms held in a single-beam microscopic dipole
trap. Despite its simplicity, we show that this configuration
is compatible with high elastic collision rates and leads to
efficient evaporation. To do so, we lower the trap depth, as
originally demonstrated by Adams et al. [14] and now rou-
tinely implemented in many laboratories to achieve quantum
degenerate gases (see, e.g., [15–22]), by merely decreasing the
power of the trap laser. We observe that the phase-space density
increases by 3 orders of magnitude during the evaporation and
eventually reaches unity, with clouds containing as few as 40
atoms at 110 nK. We also find that despite the small number of
atoms involved, the scaling laws that govern the evolution of
the thermodynamical quantities, derived by O’Hara et al. [23],
are still valid. Finally, we show that a simple kinetic model
of the evaporative cooling process inspired by the works of
Refs. [12,23] and [24] reproduces our data well.

The paper is organized as follows. In Sec. II, we describe our
setup and the experimental procedures. In particular, we detail
our strategy to load the microscopic dipole trap efficiently
with up to 800 atoms at a temperature around 125 μK. Section
III presents our results on evaporative cooling and compares
the evolution of the temperature and the phase-space density
to the scaling laws. In Sec. IV, we compare our data to the
model in Refs. [12,23] and [24]. We conclude with possible
improvements of evaporative cooling in single-beam-based
experiments in Sec. V.

II. EXPERIMENTAL SETUP AND PROCEDURES

Our setup is illustrated in Fig. 1. We trap laser-cooled
rubidium-87 atoms in a microscopic dipole trap produced
by focusing a laser beam at 957 nm with a large-numerical-
aperture aspheric lens, as described in Ref. [25]. The 1/e2

radius of the Gaussian spot is w = 1.6 μm. The size of
the trap along the longitudinal direction is characterized by
the Rayleigh length, zR = 8.4 μm. We use 20 mW of laser
power to achieve a trap depth U/kB = 1 mK (kB is the
Boltzman constant). For this depth, the trapping frequencies
of the atoms in the transverse and longitudinal directions are
ω⊥/2π = 64 kHz and ω‖/2π = 9 kHz, respectively. For a
temperature of 125 μK, this corresponds to a thermal cloud
with root-mean-square sizes of 270 nm and 2 μm, respectively.

For all the measurements reported here, we measure the
number of atoms N after the cloud has been released in
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FIG. 1. (Color online) Trapping and detection scheme showing
the two super-imposed single-beam dipole traps (see text) with
comparable depths (∼1 mK) but different sizes (waists 4 μm and
1.6 μm). The large-numerical-aperture lens collects light-induced
fluorescence. Imaging with an intensified camera (I-CCD) enables
atom counting and temperature measurements, from which we extract
the phase-space density. �g indicates the direction of gravity.

free space. For that purpose, we send a 10-μs pulse of cir-
cularly polarized probe light resonant with the |5S1/2,F = 2,

M = 2〉–to–|5P3/2,F
′ = 3,M ′ = 3〉 transition, combined with

repumping light tuned to the (5S1/2,F = 1)–to–(5P3/2,F = 2)
transition. The intensity of the probe beam is I/Isat = 1 (Isat =
1.6 mW/cm2). The large-numerical-aperture aspheric lens
collects the light-induced fluorescence, which we detect with
an image intensifier followed by a low-noise charge-coupled-
device camera (I-CCD). The duration of the time of flight is
chosen long enough for the density to drop below 1011 at/cm3

to avoid light-assisted losses during probing [26]. In this way,
the detected fluorescence is proportional to the number of
atoms, which we extract by calibrating our detection system
with a single atom [27]. The small number of atoms N requires
that we integrate the signal over several realizations of the
experiment, typically 10 to 1000 for N ranging from 800 to 40,
allowing us to determine N with a typical statistical uncertainty
of 10%. We measure the temperature T of the cloud with the
time-of-flight technique with a statistical uncertainty of 10%.

Efficient evaporative cooling requires a high elastic colli-
sion rate and therefore that we initially confine a large number
of atoms in the microscopic dipole trap. To do so, we proceed
in four steps: first, we load a magneto-optical trap (MOT) in
1 s using a Zeeman slower. In the second step, we load from
this MOT a dipole trap with a 1/e2 radius of 4 μm and a depth
of 1.4 mK (see Fig. 1) produced by focusing a laser beam
at 850 nm with the above-mentioned aspheric lens (the full
aperture of the lens is not used here). For this purpose, we use a
compressed MOT sequence during which we reduce the inten-
sity of the MOT lasers while red-detuning them from the fluo-
rescence resonance. This results in a cloud of up to 3500 atoms
at a temperature of 200 μK and in a mixture of Zeeman
sublevels M = 0,±1 of the F = 1 hyperfine ground state. In
the third step, we switch off the MOT lasers and turn on the mi-
croscopic dipole trap (w = 1.6 μm, depth of 1 mK), which acts
as a dimple. Finally, after 200 ms, we switch off the 4-μm trap,
and following 60 ms of plain evaporation, ∼20% of the atoms
initially in the 4-μm trap are left in the microscopic dipole trap.

At the end of the loading procedure, N ≈ 800 atoms are
trapped in the U/kB = 1 mK deep microscopic trap, at a
temperature T ≈ 125 μK. The atoms are prepared in the
F = 1 hyperfine ground-state level, in a mixture of Zeeman
substates. Assuming a deep harmonic trap, the thermal volume

is Vth = [2πkBT/(mω2)]3/2, corresponding to a spatial density
at the center of the trap n0 = N/Vth ≈ 3 × 1014 at cm−3 and an
initial phase-space density D = N (h̄ω/kBT )3 ≈ 1.5 × 10−3.
Here, ω = (ω2

⊥ω‖)1/3 is the mean oscillation frequency of the
trap. Note that the phase-space density calculated in this way
is based on the total number of atoms, irrespective of their
Zeeman sublevel. In the present status of the experiment we do
not measure the population in each Zeeman state. We calculate
the elastic collision rate γel = n0σ v̄

√
2 ≈ 3 × 104 s−1. Here,

v̄ = √
8kBT/(πm) is the thermal average velocity (m is the

atomic mass). The effective elastic cross section is σ = ε4πa2

with ε = 2 or 4/3 for, respectively, atoms all in the same
Zeeman sublevel of F = 1 or atoms in an equal mixture of
Zeeman substates. Here, a = 5 nm is the scattering length.

III. EXPERIMENTAL RESULTS AND COMPARISON
TO SCALING LAWS

Once the microscopic dipole trap has been loaded, we
apply forced evaporation by decreasing the power of the
dipole trap beam using an acousto-optical modulator. We
calculate the depth U (t), assuming a Gaussian laser beam and
taking into account the deformation of the dipole potential by
gravity. The evaporation ramp consists of 10 pieces, each piece
corresponding to a linear decrease in the trap depth. At the end
of each step, we maximize the phase-space density by adjusting
the duration of the linear piece [28]. The experimental ramp
obtained in this way is represented in Fig. 2.

For the sake of comparison we also plot the theoretical ramp
predicted by O’Hara et al. [23], which is valid when the ratio
η = U/(kBT ) remains constant throughout the evaporation.
Also, this prediction holds in the absence of inelastic losses.

In that case, the ramp is U (t) = Ui(1 + t/τ )
2(3−η′)

η′ , with Ui the
initial trap depth, η′ = η + κ , and κ = (η − 5)/(η − 4) when
η 
 1. The time constant τ is related to η and the initial elastic
collision rate γel,i through τ = ( 2

3η′(η − 4)e−ηγel,i/(2
√

2))−1,
of the order of 15 ms, using our initial measured value, η � 8.5.

Not surprisingly, the experimental ramp deviates from
the above-mentioned theoretical prediction, especially in the
early stage of evaporation. This is due to the underlying
assumptions of the prediction not being fulfilled in our case.
Figure 3(a) shows that η decreases rapidly at the beginning of
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FIG. 2. Evolution of the trap depth as a function of time during
evaporation. Solid line: experimental ramp with linear pieces after
optimization. The trap depth is measured with a 10% uncertainty.
Dotted line: theoretical prediction by O’Hara et al. [23].
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FIG. 3. (Color online) (a) Evolution of the ratio η = U/kBT

versus the number of atoms N during evaporation (filled circles).
Dashed line: average value of η for 70 � N � 400. (b) Evolution
of the measured temperature T (filled circles; right axis) and the
phase-space density D = N (h̄ω/kBT )3 (triangles; left axis) versus
the number of atoms. Solid lines are fits by power laws performed for
data corresponding to 70 � N � 400. Error bars correspond to 10%
uncertainties on the measured temperature, number of atoms, trap
depth U , and oscillation frequency ω. In (b), the horizontal dashed
line at value D = ζ (3) � 1.202 indicates the transition between a
thermal and a degenerate polarized sample.

the evaporation, before it stabilizes around 5. It is therefore not
constant throughout evaporation and not much larger than 1.
Moreover, in our case, the inelastic losses are not negligible at
the beginning of the evaporation ramp (see Sec. IV). We also
note that the initial elastic collision rate is of the order of the
oscillation frequency ω‖ along the longitudinal axis of the trap.
The cloud may therefore be partially in the hydrodynamics
regime (see, e.g., [29]), an effect not taken into account here.

Figure 3(b) shows the evolution of the temperature versus
the atom number during the evaporation. Combining the
temperature and the number of atoms measured at the end
of each linear piece of the ramp with the knowledge of the
trap depth U , we calculate the average oscillation frequency ω

and the phase-space density D = N (h̄ω/kBT )3 at the center
of the trap, assuming an infinitely deep harmonic trap. The
evolution of D is also represented in Fig. 3(b): we observe
a gain in phase-space density of 103 during evaporation.
The data suggest that, assuming a polarized sample, we may
have reached quantum degeneracy at the end of the ramp, as D

then exceeds the threshold value ζ (3) � 1.202 [with the usual
definition of the Riemann function ζ (n) = ∑∞

j=1 1/jn] [30].
However, we could not see any evidence of a double-structure
on the column density after time of flight. This fact may be due
to the small number of atoms involved [30]: at the threshold,
kBTc ≈ h̄ω(N/ζ (3))1/3 ≈ 3h̄ω. This implies that the thermal
and the quantum degenerate components of the gas would have

very similar sizes in a time-of-flight measurement (the ratio of
the two sizes is ∼√

kBT/(h̄ω) in the absence of interaction
between atoms). Furthermore, we do not have any access
to the anisotropy of the cloud due to the geometry of the
experiment, as we look along the long axis of the traps (see
Fig. 1). More involved diagnostics will be necessary to study
the quantum degenerate regime, such as stimulated Raman
spectroscopy [31–33], which we leave for future work.

As a first step to understand evaporation processes in our
single-beam trapping configuration, we compare the data in
Fig. 3(b) to the scaling laws derived by O’Hara et al. [23],
which are valid for a constant ratio η and in the absence
of inelastic losses. Following [23], the phase-space density
should scale as D ∝ N−ξ , with ξ = η′ − 4 characterizing
the efficiency of evaporation [13]. In the same way, the
temperature is expected to scale with the number of atoms as
T ∝ N2(η′−3)/3. We have fitted the scaling laws to the data for
which η is almost constant, i.e., 70 � N � 400 [see Fig. 3(a)].
We find that d ln T/d ln N = 1.79(6) and that the efficiency
of evaporation is ξ = 1.75(5). These two values lead to two
independent and consistent evaluations of η = 5.4(1) [34].
In the above-mentioned range for N , the scaling laws are
also consistent with the average ratio η = 5.3(3), which we
directly deduce from U and T [see Fig. 3(a)]. Thus, inasmuch
as the ratio η remains constant and the inelastic losses can be
neglected (which is the case for N � 400; see Sec. IV), the
scaling laws predicted by O’Hara et al. are valid even for the
small value η ∼ 5 and atom numbers as small as a few tens.

IV. EVAPORATION DYNAMICS

In order to better understand the evaporation processes in-
volved in our geometry, in particular, the effect of the inelastic
losses at the beginning of the evaporation process (N > 400),
we have simulated the evaporative cooling process using the
kinetic model developed in Refs. [12,23] and [24]. This model
assumes that the atomic cloud is in thermal quasiequilibrium at
any time during evaporation, that it is described by a truncated
Boltzman distribution, and that the atomic trajectories are
ergodic. Based on these assumptions, one calculates thermo-
dynamical quantities for the gas and relates them through
rate equations. Here, we include in the model one-, two-,
and three-body inelastic losses, as well as heating due to
spontaneous emission induced by the trapping laser, and we
take into account the time dependence of the parameter η.

We start with the average energy of the atomic cloud
assumed to be trapped in a deep harmonic potential, E =
3NkBT , which yields Ė/E = Ṅ/N + Ṫ /T . Four mecha-
nisms lead to a variation in the energy during evaporation.
The first one is evaporation due to elastic collisions between
trapped atoms. Atoms leaving the trap have an average
energy (η + κ)kBT , with κ = (η − 5)/(η − 4) [35]. Assuming
three-dimensional evaporation, this mechanism leads to a
rate of variation in the energy Ėev = (η + κ)kBT Ṅev, where
the atom loss rate due to evaporation is Ṅev/N = −2(η −
4)e−ηγel/(2

√
2) [12,23,36]. The second mechanism results

from the decrease in the oscillation frequency due to the
adiabatic reduction of the trap depth, leading to a rate
Ėad = E U̇/(2U ) for a harmonic trap. The third mechanism
is heating due to spontaneous emission induced by the dipole
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trap laser. We model the associated variation of energy as
Ėheat = 2ErR N , where Er is the recoil energy gained in the
scattering of a photon by an atom, which occurs at a rate
R(t) ∝ U (t). Finally, the energy varies due to the loss of atoms
by one-, two-, or three-body inelastic collisions. Each q-body
loss (q = 1, 2, or 3) is governed by the equation for the local
density ṅq(r,t) = −Kqn(r,t)q . It gives the rate of variation in
the energy

Ėq = 3

2
Ṅq kBT +

∫
U (r) ṅq(r,t) d3r, (1)

where the first and second terms are the contributions of the
kinetic energy and of the trapping potential U (r), respectively
[12]. Here, Ṅq = ∫

ṅq(r,t)d3r. Plugging in the equation for
the evolution of the local density yields

Ėq = (
3
2 + γq

)
Ṅq kBT , (2)

where

γq = 1

q

T

Vq

dVq

dT
and Vq =

∫
e
−q

U (r)
kBT d3r. (3)

For an infinitely deep harmonic trap, we find γq = 3/(2q),
showing that two- and three-body losses carry away less than
the average energy, leading to antievaporation. This is due to
the fact that these losses occur mainly at the center of the
trap, where the density is highest and the energy of the atoms
is lower than the average energy. The atom loss rate due to
q-body inelastic collisions is Ṅq/N = −Kqn

q−1
0 /(q

√
q).

Using Ṅ = Ṅev + ∑
q Ṅq and Ė = Ėev + Ėad + Ėheat +∑

q Ėq , we obtain the set of coupled equations governing the
evaporation in the presence of heating and q-body losses:

Ṅ

N
= −2(η − 4)e−η γel

2
√

2
+

∑
q=1,2,3

Ṅq

N
,

Ṫ

T
= −2

(
η + κ

3
− 1

)
(η − 4)e−η γel

2
√

2

+
∑

q=1,2,3

1

3

(
3

2
+ γq − 3

)
Ṅq

N
+ 2Er

3kBT
R + U̇

2U
, (4)

where η, R, and γel are functions of time. We solve these
equations numerically using the experimental ramp U (t) in
Fig. 2. We find that the heating rate R(t), which amounts
initially to R(0) = 22 s−1, drops very rapidly and has very
little influence on evaporation. For the one-body loss rate, we
plug into the simulation the value K1 = 0.1 s−1, corresponding
to the measured 10-s vacuum-limited lifetime of a single atom
in the microscopic trap [25]. Also, for the three-body loss rate
we take the value that we measured in a separate experiment,
K3 = 4 × 10−29 cm6 s−1 [37]. To reproduce our data more
accurately we have to assume a two-body loss rate K2 = 1.5 ×
10−14 cm3 s−1. The two-body losses may be due to a small
steady population of atoms in state F = 2 caused by the near-
resonant laser being switched off improperly. This population
results in hyperfine changing collisions with the atoms in the
F = 1 level. Reference [38] reports a value for the hyperfine
changing collision rate of 8 × 10−12 cm3 s−1. We infer from
this value a fraction of atoms in the F = 2 states of 0.2%, too
small to be measured directly with our setup.
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FIG. 4. Evolution of (a) the spatial density n0 and (b) the elastic
collision rate γel = n0σ v̄

√
2 at the center of the trap, versus the

number of atoms. Triangles: values extracted from the measurements
of T , N , and the trap depth U . Error bars correspond to 10%
uncertainties on T , N , and the oscillation frequency ω. Solid lines:
kinetic model using σ = ε4πa2 with ε = 4/3 (i.e., atoms are equally
distributed among the Zeeman sublevels of F = 1).

The contributions of the two- and three-body losses in
Eqs. (4) are significant essentially at the beginning of the ramp,
where the loss rates amount to K2n0/(2

√
2) � 1.7 s−1 and

K3n
2
0/(3

√
3) � 0.8 s−1, respectively. As shown in Fig. 4(a),

the density drops below 1014 at cm−3 when the number
of atoms becomes smaller than 400. Inelastic losses thus
become negligible. This justifies the experimental validity
of the scaling laws detailed in Sec. III. For N � 400, the
main contributions to the evaporation process are the adiabatic
reduction of the trap depth and the elastic collision rate, which
has decreased by ∼3 orders of magnitude by the end of the
ramp [see Fig. 4(b)].

Using the above-mentioned parameters for the heating
and inelastic loss rates, Eqs. (4) yield the evolution of the
temperature, number of atoms, and phase-space density as
a function of the evaporation time. Figure 5 compares the
experimental data with the results of the model for values of
the elastic cross section 4/3 � σ/(4πa2) � 2. The agreement
between the simulation and the data is better than 30% for
the temperature and the parameter η [see Fig. 5(a) and inset].
By setting K2 = 0 and K3 = 0 in the simulation, we have
checked that the inelastic losses at the beginning of the ramp
are largely responsible for the decrease in η in the early stage
of the evaporation. The agreement between the model and
the data is somewhat less satisfactory for the number of atoms
[see Fig. 5(b)]. In particular, N decreases experimentally more
slowly than predicted at the beginning of the ramp. This could
be due to the fact that the model does not account for the
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FIG. 5. (Color online) Comparison between the data and the
model of Eqs. (4). Evolution of (a) the temperature T , (b) the number
of atoms N , and (c) the phase-space density D = N (h̄ω/kBT )3, as
a function of the evaporation time. The dots and triangles are the
data. Error bars correspond to 10% uncertainties on T , N and the
oscillation frequency ω. The solid and dotted lines are respectively
the predictions of the model for σ = (4/3) × 4πa2 (i.e. the atoms
are equally distributed among the Zeeman sub-levels of F = 1)
and σ = 2 × 4πa2 (i.e. the atoms are all in the same Zeeman
sub-level). Here, we have taken {K1; K2; K3} = {0.1 s−1; 1.5 ×
10−14 cm3 s−1; 4 × 10−29 cm6 s−1}. In (c), the dashed line corresponds
to D = ζ (3) � 1.202. Inset in (a) : evolution of η = U/kBT .

possible hydrodynamic behavior at the beginning of the ramp,
as mentioned in Sec. III. It could also derive from the fact
that evaporated atoms remain in the vicinity of the trap when

we perform imaging of the cloud (and therefore contribute
to the measured number of atoms) but do not collide with
the remaining trapped atoms (and therefore do not contribute
to evaporation at a later time). Finally, Fig. 5(c) shows a
good agreement between the simulation and the data for the
phase-space density. The slowing-down of evaporation seen
in both the experiment and the theory is a consequence of
the decrease in the elastic collision rate when the trapping
potential is lowered, even in the absence of inelastic losses
(see, e.g., [23]). In our case, inelastic losses further slow down
the evaporation process at the beginning of the evaporation: in
the absence of these losses (but with the same microscopic
trapping potential and evaporation ramp), the phase-space
density would reach unity after 700 ms only.

V. CONCLUSION

In conclusion, we have implemented evaporative cooling of
a few hundred atoms held in a microscopic dipole trap. After
an evaporation period of 3 s we reach a phase-space density of
∼2 with 40 unpolarized atoms at ∼100 nK, close to quantum
degeneracy. The overall duty cycle of the experiment is around
4 s. The atomic sample thus obtained is a good starting point
for experiments involving mesoscopic-sized ultracold atomic
samples. In the future, it will be interesting to enhance the
efficiency of the evaporation by tilting the potential, e.g., by
applying a strong magnetic field gradient [7,39] or an extra
laser beam to achieve the runaway regime [40]. This may allow
us to reach Bose-Einstein condensation with a small number
of atoms and to decrease the duration of the evaporation.

From a theoretical perspective, we have compared our
data to a simple model of evaporative cooling, assuming the
trapping potential to be harmonic. We have found that the
scaling laws governing the evolution of the thermodynamics
quantities are still relevant in our regime of small atom
numbers, as long as the ratio η remains constant and the
inelastic losses are negligible. We have also found that a kinetic
model taking into account time variations of η as well as
heating and loss mechanisms reproduces the dynamics of the
evaporation in a fair way. This simple model is therefore a
useful guide to optimize evaporation parameters. In the future
it will be interesting to refine the model presented here by
taking into account the real shape of the Gaussian laser trap
potential [41,42].
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