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We study light-assisted collisions in an ensemble containing a small number (∼3) of cold 87Rb atoms trapped

in a microscopic dipole trap. Using our ability to operate with one atom exactly in the trap, we measure the

one-body heating rate associated with a near-resonant laser excitation, and we use this measurement to extract

the two-body loss rate associated with light-assisted collisions when a few atoms are present in the trap. Our

measurements indicate that the two-body loss rate can reach surprisingly large values β > 10−8 cm3 s−1 and

varies rapidly with the trap depth and the parameters of the excitation light.

DOI: 10.1103/PhysRevA.85.062708 PACS number(s): 34.50.Cx, 34.50.Rk, 37.10.Gh

I. INTRODUCTION

Extensive experimental and theoretical studies have been

devoted in recent decades to light-assisted collisions, using

cold atoms held in a magneto-optical trap [1], including at

the few-atom level [2], or in large optical dipole traps [3,4].

In small dipole traps with size comparable to the wavelength

of the light, light-assisted collisions are used to prepare or

probe mesoscopic atomic ensembles, opening new avenues in

condensed-matter physics and quantum-information process-

ing. For instance, they are at the heart of the preparation of

individual atoms in microscopic optical dipole traps [5–7],

standing waves [8], or three-dimensional optical lattices [9].

They are also at the origin of sub-Poissonian atom number

distributions in a mesoscopic atomic ensemble [10]. Finally,

they constitute an important tool to understand quantum

phases, as demonstrated recently with atoms in optical lattices

[11,12]. While conceptually simple, the theoretical description

of light-induced collisions is known to be cumbersome due

to the complex interplay between atomic multilevel structure

and atom-light coupling. The situation is even worse when

considering tightly confined atomic ensembles where the trap-

ping potential acts on the same length scale as the interaction

between the atoms. As a consequence no theoretical prediction

for the loss rates and their dependency on parameters such as

the atomic density or the light parameters is available to date

for this system. The absence of reported measurements makes

the situation even more interesting.

In this paper, we report on an experimental study of

light-assisted collisions between cold atoms that are tightly

confined in a microscopic dipole trap. To allow for future

theoretical modeling of our data, we implemented as closely

as possible the gedanken experiment where merely two atoms

in the ground state (here, 87Rb in the state 5S1/2,F = 2) collide

in the presence of a nearly resonant laser field. In our case, the

loading of the dipole trap is nondeterministic [10] and we

operate with a typical average atom number of ∼3. We then

illuminate the trapped atoms with a pulse of near-resonant light

with known frequency and intensity, in order to trigger losses.

The near-resonant light has two effects: it heats the atoms

individually out of the trap and it induces two-body losses,

which we wish to study. To separate the two contributions, we

proceed in two steps. First, we use our ability to operate with

exactly one atom to measure the one-body heating. Second,

we operate with ∼3 trapped 87Rb atoms and use the result

of the single-atom measurement to extract the two-body loss

rate. To extract this rate we develop a Monte Carlo simulation

that we compare to the data. Our measurement indicates

light-assisted collision rates that can reach remarkably large

values (∼10−8 cm3 s−1), well above measured data found in

the literature (by 1–2 orders of magnitude) for atoms held in

magneto-optical traps (for a review, see Ref. [1]) or in larger

dipole traps [3,4]. Our maximal light-assisted collision rates

are surprisingly close to the semiclassical Langevin limit.

II. PRINCIPLE OF THE EXPERIMENT

In our apparatus we operate an optical dipole trap at 850 nm

with micrometer size (waist 1μm) [13], which we load with

cold atoms from a magneto-optical trap (MOT). Atoms enter

the microscopic trap randomly, are trapped thanks to the

cooling effect of the MOT beams, and are expelled from the

trap due to one- or two-body processes. Depending on the local

density of the MOT cloud around the dipole trap, we control

the number of trapped atoms in steady state from one atom

exactly (N0 = 1) to a few atoms on average (〈N0〉 ≃ 3) [14].

To study the light-assisted collisions, we switch off the

MOT beams and then send the pulse of excitation light

onto the trapped atoms, initially prepared in the 5S1/2,F = 1

level. The excitation light consists of repumping light that

transfers the atoms to the (5S1/2,F = 2) level, labeled S

in Fig. 1,1 superimposed with light nearly resonant with

the (5S1/2,F = 2) → (5P3/2,F
′ = 3) light-shifted transition,

which excites the atoms into the (5P3/2,F
′ = 3) level, labeled

P [see Fig. 1(b)]. The excitation light consists of a pair

of counterpropagating laser beams with orthogonal circular

polarizations. For this experiment, we do not control the

orientation of the magnetic field, which has a magnitude

smaller than 0.2 G.

During the laser excitation, two atoms form a loosely bound

pair with one atom in the S state and the other in the P state

and interact through the long-range dipole-dipole attractive

potential V (r) = −C3/r3 (here, r is the interatomic distance,

C3 = 3h̄Ŵ/4k3, Ŵ/2π = 6 MHz is the linewidth of the P state,

and λ = 2π/k = 780 nm is the wavelength of the S → P

1The repumping light is kept on resonance with the (5S1/2,F =
1) → (5P3/2,F

′ = 2) transition in free space and has a saturation of

∼20.

062708-11050-2947/2012/85(6)/062708(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.062708


FUHRMANEK, BOURGAIN, SORTAIS, AND BROWAEYS PHYSICAL REVIEW A 85, 062708 (2012)

5P3/2F'=3

U

5S1/2F=2

(a) (b)

P

FIG. 1. (Color online) (a) Light-assisted atom loss by radiative

escape. Atoms in the S state interact through the van der Waals

potential V (r) = −C6/r6 while atoms in the S and P states inter-

act through the dipole-dipole attractive potential V (r) = −C3/r3.

(b) Levels involved in the experiment. The excitation laser detuning

δ is measured with respect to the free-space transition.

transition), as represented in Fig. 1(a). If the kinetic energy

acquired by an atom pair before it radiates back to the gound

state exceeds the optical dipole trap depth U , it escapes the trap,

thus leading to the loss of two atoms. This interaction-induced

loss mechanism, known as radiative escape [15],2 coexists

with the standard one-body loss mechanism associated with

the cycles of absorption and spontaneous emission of photons

by individual atoms in the trap, which heat them out of the trap.

Whether one or the other mechanism is dominant depends on

the parameters of the experiment, namely, the trap depth U ,

the saturation s = I/Isat (I is the laser intensity and Isat =
1.6 mW/cm2), and the frequency detuning δ of the excitation

light with respect to the single-atom transition in free space

[see Fig. 1(b)].

For a given set of parameters we measure the number of

trapped atoms that remain in the trap after the pulse of light has

been sent. The number of atoms is measured by accumulating

their fluorescence at 780 nm on an intensified CCD camera

and comparing it to the calibrated fluorescence of a single

atom [14,16]. By varying the duration t of the pulse we obtain

atom loss curves, from which we extract the one- and two-body

loss rates as explained below.

III. LIGHT-INDUCED LOSSES OF SINGLE ATOMS

To extract the one-body loss rate, we perform the loss

experiment described above with one atom exactly in the trap

(N0 = 1). To do this, we adjust the loading rate of the trap to

operate in the collisional blockade regime [13,17] and trigger

the loss experiment on the presence of a single atom in the

trap. All parameters (trap depth, excitation light parameters)

are otherwise unchanged with respect to the case 〈N0〉 = 3

explored later in this paper. We obtain the survival probability

of a single atom after the excitation process by repeating the

experiment 200 times and measuring each time the presence

or the absence of the atom in the trap after the experiment.

Figure 2(a) shows examples of loss curves that illustrate the

effect of the excitation light. For comparison, the lifetime of

2We neglect here fine-structure-changing collisions that occur at

much shorter interatomic distances [1].
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FIG. 2. (Color online) (a) Survival probability P1(t) of a single

atom in the dipole trap, measured for various detunings of the exci-

tation light δ/2π = {20; 40; 70} MHz (circles, squares, and triangles,

respectively). The trap depth is U = h × 36 MHz = kB × 1.8 mK

and the saturation parameter is s = 0.5. Solid lines show fits of the

data to a heating model (see text). The initial temperature of the single

atom is T0 = 200 μK. Error bars are statistical. (b) Heating rate α

(circles) deduced from the fits of the survival probability, versus δ/2π

(error bars are from the fit); the solid and dashed lines are solutions of

the rate equation model described in the text, with no free parameter,

for T0 = 200 μK and T0 = 300 μK, respectively. Data labeled 1, 2,

and 3 are extracted from the loss curves shown in (a).

the atom in the trap is 24 s in the absence of the excitation light

and is limited by the residual background gas collisions.

The effect of the excitation light is to heat the atom out

of the trap as the duration of the excitation increases. This

effect is quantitatively well explained by assuming that the

temperature of the atom varies in time as T (t) = T0 + αt

since the energy of the atom increases linearly with each

absorption and spontaneous emission cycle. Here, T0 is the

temperature at the beginning of the excitation pulse and α is

the heating rate. Assuming a harmonic trap and a Boltzmann

energy distribution [18], the probability P1(t) for a single atom

to remain in the trap with depth U at a temperature T (t) is given

by

P1(t) = 1 −
[

1 + η(t) + 1
2
η(t)2

]

exp[−η(t)], (1)

where η(t) = U/kBT (t) (kB is the Boltzmann constant). The

temperature T0 being measured independently by a release-

and-recapture technique [18], we fit the data to the function

P1(t) with α being the only free parameter. The result obtained

062708-2
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for α is shown in Fig. 2(b). As expected, it reaches a maximum

when the excitation light is nearly resonant with the light-

shifted S → P transition, i.e., δ = U/h̄ (h = 2πh̄ is the Planck

constant).

The position and the shape of this resonance are confirmed

by calculating the heating rate α = 2ErR/kB , where R is

the photon scattering rate and Er is the recoil energy. We

use a rate equation model to calculate the populations of

the various Zeeman sublevels from which we deduce the

scattering rate R. We take into account the finite initial

temperature of the atom, T0 = 200 μK, and its linear increase

in time, which lead to random positions of the atom in the

trap, and therefore to different light shifts for the various

Zeeman states. As seen in Fig. 2(b), this model reproduces

the broadening of the resonance with respect to the natural

linewidth Ŵ/2π = 6 MHz. In the following, we will use it

to extrapolate the heating rate α to other values of T0, as

T0 varies when operating with more than one atom initially.

For instance, the dashed curve in Fig. 2(b) shows how the

resonance in α is shifted towards the low values of δ when

T0 increases from T0 = 200 μK (as measured when N0 = 1)

to T0 = 300 μK (when 〈N0〉 = 3). Qualitatively, this shift

corresponds to the shift of the Boltzmann energy distribution

towards the shallower parts of the trap.

IV. LIGHT-INDUCED LOSSES IN THE MULTIATOM CASE

A. Experimental observations

We now turn to the case where a few atoms are loaded

in the trap. Starting with 〈N0〉 ≃ 3 atoms, we measure the

average number of atoms that remain in the trap after the

excitation pulse has been sent.3 Again the measurements are

performed by averaging over several hundreds of experiments.

In the absence of excitation light the number of atoms remains

constant on time scales large with respect to the pulse duration.

In the presence of excitation light we observe losses that

can be much faster than in the single-atom case, depending

on the trap depth and the excitation light parameters. For

example, Fig. 3(a) compares loss curves taken for (N0 =
1,T0 = 200 μK) and (〈N0〉 = 3.5,T0 = 300 μK) initially, all

other parameters being the same (s = 0.5, δ/2π = 20 MHz,

U/h = 36 MHz). For this set of parameters and 〈N0〉 = 3.5,

the number of atoms drops by a factor of 2 in only 0.25 ms,

at least one order of magnitude faster than in the single-atom

case. This rapid decrease is incompatible with the radiative

heating rate α measured in the single-atom case, taking into

account the increase in T0 when we operate with a few atoms

[see Sec. III and Fig. 2(b)]. More generally, we observe

this phenomenon for small values of the detuning, typically

δ � U/h̄ [see Fig. 3(b)]. While a model involving only the

radiative heating process does not reproduce the data, adding

two-body losses to the model does, as shown in Fig. 3(a).

We thus attribute the observed excess losses in this regime

to the leading two-body light-induced collisions, neglecting

higher-body collisional processes. By contrast, for δ � U/h̄,

3The uncertainty on the mean number of initially trapped atoms is

±0.4 due to day-to-day fluctuations in the loading rate.
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FIG. 3. (Color online) (a) Average number of atoms 〈N (t)〉
remaining in the dipole trap after excitation by a light pulse with

duration t . Squares: the initial number of atoms in the trap is

〈N0〉 = 3.5; the solid line is a fit to a Monte Carlo simulation (see

text), with a heating rate α = 0.21 mK/ms and a two-body loss rate

β ′ = 1.2 (atoms ms)−1. Circles: single-atom measurements rescaled

to N0 = 3.5; the solid line is a fit to the radiative heating model. Error

bars are statistical. Parameters of the experiments: U/h = 36 MHz,

δ/2π = 20 MHz, s = 0.5. (b) Inverse of the half lifetime in the cases

〈N0〉 = 3.5 (squares) and N0 = 1 (circles) versus the detuning of the

excitation light.

loss curves overlap well in the few- and single-atom cases,

indicating that the radiative heating process is identical in both

cases and is the dominant loss mechanism. In order to reveal

the range of detunings where two-body losses dominate over

one-body heating, we have represented in Fig. 3(b) the inverse

of the half-lifetime of the survival probability for both the

single and the few-atom cases:4 for δ/2π � 40 MHz ≈ U/h,

the two curves are nearly identical, indicating that the heating

is dominant, while the two-body light-assisted losses dominate

for smaller detunings.

B. Model including radiative heating and two-body losses

To extract the contribution of the two-body loss processes

from our loss curves, we developed a Monte Carlo simulation

4The data shown in Fig. 3(b) in the single-atom case have been

properly extrapolated from the data of Fig. 2(b) to T0 = 300 μK,

thus showing the real contribution of radiative heating in the few-atom

case.
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to find the time-dependent number of atoms N (t). This

approach is particularly appropriate in our situation as the

competing radiative heating process leads to a time-dependent

one-body loss rate and because we need to take into account

the discreteness of the small atom number. We describe here

the main lines of our simulation.

At each time step dt we evaluate the infinitesimal proba-

bility for a two-body loss event to have occurred within the

N-atom ensemble between times t and t + dt , and we compare

it to the probability of a one-body event to have occurred due

to radiative heating during the same time interval dt . The first

is denoted dqtwo-body and is related to the number of atom pairs

at time t and the two-body loss constant β ′ through [3]

dqtwo-body = β ′N (t)[N (t) − 1]dt/2.

The second is denoted dqone-body and is related to the number

of atoms N (t) and to the instantaneous one-body loss rate γ (t)

through

dqone-body = γ (t)N (t)dt.

Here, γ (t) = −Ṗ1(t)/P1(t), as obtained by a Taylor expansion

of P1(t + dt), where P1(t) is given by Eq. (1). In practice, we

calculate P1(t) by using the heating rate α measured in the

single-atom regime, corrected by the temperature T0 of the N-

atom ensemble, which we measure independently by a time-of-

flight method. At each time step of the simulation, three chan-

nels are possible: (i) no loss occurs during dt : the probability

associated with this channel is (1 − dqone-body)(1 − dqtwo-body);

(ii) a one-body loss takes place and the atom number decreases

by 1: the associated probability is dqone-body(1 − dqtwo-body);

(iii) a two-body loss occurs and the atom number decreases by

2: the associated probability is dqtwo-body(1 − dqone-body). We

pick up randomly one out of these three channels according to

their associated probabilities, calculate the number of atoms

at time t + dt , and then proceed to the next time step. By

averaging over the initial atom number distribution ∼200 times

we obtain a loss curve that simulates the actual measurements

described above [see, e.g., Fig. 3(a)].

C. Light-assisted two-body loss rates

The Monte Carlo simulation described in the previ-

ous section yields values of β ′ that range from 0.02 to

10 (atoms ms)−1, depending on the trapping and excitation

parameters explored. In order to compare our results to

theoretical models and to measurements reported elsewhere

in other trapping configurations, we calculate the normalized

two-body loss rate β = β ′2
√

2V [1], where V = ( 2πkBT0

mω2 )3/2

is the volume occupied by the atoms assumed to be at thermal

equilibrium at T0. Here, ω = (ω2
⊥ω‖)1/3 is the geometric

average of the dipole trap oscillation frequencies ω⊥ and ω‖,

and m is the mass of an atom. For example, the data shown

in Fig. 3(a) are best fitted when β ′ = 1.2 ± 0.5 (atoms ms)−1.

Using T0 = 300 μK and the parameters of our setup (ω⊥ =
130 kHz and ω‖ = 25 kHz), we obtain V = 0.7 μm3 and

β = 2.4 ± 1.1 × 10−9 cm3 s−1.
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FIG. 4. (Color online) Two-body loss rate versus (a) the light-

shifted detuning δ/2π − U/h, and (b) the saturation parameter s

of the excitation light. Triangles, squares, and lozenges correspond

respectively to trap depths U/h = (18; 36; 54) MHz, initial peak

atomic densities n0 = (2.7; 4.3; 5.1) × 1012 cm−3, and initial tem-

peratures T0 = (200; 300; 400) μK. The average initial atom number

is 〈N0〉 ≃ 3 for all the data. Error bars are from the fits. The dashed

lines are the Langevin limits βL associated with each set of parameters

(U,T0) (see text). In (a), the saturation parameter is s = 0.5. In (b),

the detuning of the excitation is δ/2π = 10 MHz. The solid lines

are fits of the data to a β∞s/(1 + s) model (with β∞ the only free

parameter). The dotted lines indicate the asymptotical value β∞ in

each case.

We extracted in the same way the loss rate β for various

values of the trap depth U and of the excitation detuning

δ and saturation s. Figure 4(a) summarizes our results for

a saturation parameter s = 0.5 when we scan the frequency

of the excitation light across the trap depth. We observe a

resonance in β that is shifted to the red with respect to

the frequency corresponding to the bottom of the trap, i.e.,

when the light-shifted detuning � = δ − U/h̄ � 0. On the

blue side of the resonance (δ � U/h̄), the two-body loss rate

is suppressed, due to the excitation to a repulsive potential

curve [1,19].

We also observe that the peak value of β increases

by more than an order of magnitude when the trap depth

decreases only by a factor of 3. Figure 4(b) shows that β also

increases as s/(1 + s), in qualitative agreement with a simple

model assuming a two-level system. For the largest saturation

parameter investigated (s = 1.5), we find our largest value of

the two-body rate constant β = 3.0 ± 1.5 × 10−8 cm3 s−1.

062708-4



LIGHT-ASSISTED COLLISIONS BETWEEN A FEW COLD . . . PHYSICAL REVIEW A 85, 062708 (2012)

D. Discussion

Our measurements indicate that the light-assisted two-

body loss rate can reach values remarkably larger than any

reported measurements we could find, using three-dimensional

excitation light and either 85Rb or 87Rb. For example, Kuppens

et al. [3] measure β ∼ 10−9 cm3 s−1 using a dipole trap

with a waist of 26 μm and trap depths, temperatures, and

spatial densities comparable to ours. Kulatunga et al. [4] use a

dipole trap with a waist of 5.6 μm size and measure two-body

loss rates as large as β ′ ≈ 10−2 (atoms s)−1. Estimating their

volume at thermal equilibrium, we have found that this

corresponds to a normalized loss rate β ∼ 10−11 cm3 s−1.

Only Schlosser et al. [5,17] have to assume large values

of β ′ ∼ 1000 (atoms s)−1 to explain the loading of at most

one atom in their submicrometer-size dipole trap. Again

estimating their one-atom thermal volume [3,18], this yields

β ∼ 3 × 10−9 cm3 s−1.

The analysis presented in Sec. IV C assumed the volume

V occupied by the atoms to be constant during the excitation

pulse, and equal to the thermal volume for atoms at a constant

temperature T0. This assumption is actually not valid when

the influence of the heating is larger than or comparable to

the two-body loss mechanism, i.e., when δ � U/h̄. However,

neglecting the temperature increase during the light excitation

actually leads to an underestimate of V and thus of β. For

instance, we checked that for the highest values of β that we

measured the temperature increased by less than 15% during

the excitation, leading to an underestimation of β by less than

25%, a difference within our error bars.

E. Comparison to a semiclassical model

Finally, we compare our largest measured light-assisted loss

rate [i.e., β∞ = 3.1 ± 0.2 × 10−8 cm3 s−1 in Fig. 4(b)] to the

Langevin semiclassical limit βL = σLv [20] for the collision

rate. Here, v =
√

16kBT0

πm
is the average velocity of the atoms

in the frame of the two-body center of mass. The Langevin

cross section σL is obtained by summing the maximum cross

sections (2l + 1)4πh̄2/(mE) up to the maximum partial wave

lmax contributing to the collision, for a given collision energy

E. In this approach,

σL =
4πh̄2

mE
(lmax + 1)2. (2)

We calculate lmax by imposing two conditions. First, assuming

the pair of atoms has been excited in the S + P potential (see

Fig. 1), the kinetic energy E = 3
2
kBT0 of the two colliding

atoms in the frame of their center of mass must be larger than

the height of the centrifugal barrier to allow the collision to

take place at short interatomic distance. This condition yields

lmax,1(lmax,1 + 1) =
3m

2h̄2

(

2C2
3E

)1/3
, (3)

σL ≈ 6π

(

2C2
3

E2

)1/3

, (4)

as lmax,1 ≫ 1 (lmax,1 ≃ 50 typically). Second, the height of

the centrifugal barrier in the S + S potential should be small

enough to allow a pair of atoms with energy E to be excited

at an interatomic distance shorter than their minimal approach

distance. This yields

lmax,2(lmax,2 + 1)h̄2
/(

mr2
exc

)

= E, (5)

where the distance rexc actually depends on the light-shifted

detuning � through rexc = (−C3/h̄�)1/3. This second condi-

tion yields

σL ≈ 4πr2
exc. (6)

The maximal partial wave contributing to the cross sec-

tion is actually lmax = Min(lmax,1,lmax,2). Figure 4 shows the

Langevin limit set by these two conditions. For atoms at

a temperature T0 = 200 μK in a trap with U/h = 18 MHz

and an excitation with δ/2π = 10 MHz, βL = 4.1 × 10−8

cm3 s−1, close to our largest measured value β∞ = 3.1 ±
0.2 × 10−8 cm3 s−1 [see Fig. 4(b)]. Given the simplicity of

the model, it is quite surprising that the light-assisted process

studied here approaches this theoretical limit: for alkali metals

the two-body collision rate is predicted to be smaller than the

Langevin limit by at least one order of magnitude [20].

V. CONCLUSION

In conclusion, using our ability to isolate one-body radiative

heating from two-body losses, we have measured remarkably

large two-body collision rates in a micrometer-size optical

dipole trap in the presence of near-resonant light. We have

found that these large rates are close to the semiclassical

Langevin limit. Given the complexity of the situation con-

sidered here, due to the near-resonant character of the light

combined to the small size of the trapping potential that may

affect the interaction between the atoms, it is quite remarkable

that a simple semiclassical argument reproduces our largest

measured value. It would be interesting to cross-check our

findings using atoms in optical lattices, a situation where the

sites also have a submicrometer size and where the number of

atoms per site can be controlled precisely [11,12].
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