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We provide a self-consistent electromagnetic theory of the link between spatial coherence and optical
resonances in three-dimensional open and dissipative photonic systems. The theory that relies on the concept of
quasinormal modes with complex frequencies provides an accurate modal expansion of the imaginary part of
the Green tensor that correctly treats the effects of radiative leakage, absorption, and dispersion. It represents a
powerful tool for calculating and understanding the degree of spatial coherence in complex photonic or plasmonic
systems that are governed by a small number of resonances. Comparisons with fully vectorial calculations
evidence the high accuracy of the predictions achieved by our semianalytical treatment in the case of coupled
photonic-crystal microcavities and plasmonic nanoantennas made of metallic nanorods.

DOI: 10.1103/PhysRevA.89.043825 PACS number(s): 42.25.Dd, 42.50.Pq, 42.70.Qs, 78.67.−n

I. INTRODUCTION

The development of micro- and nanotechnologies has
recently opened a wide range of possibilities for controlling
light at the wavelength scale or below. Fine control of the
light—emission, transport, and detection—in small volumes is
at the heart of various applications, such as high-performance
sensors [1,2], light focusing below the diffraction limit [3,4],
nanolasers [5,6], solid-state single-photon sources [7,8], or
photovoltaic devices [9]. Most of these applications rely on
the use of optical resonances, which can be either localized
in small volumes or delocalized over the system. In addition
to the resonant character of the electromagnetic field, a broad
range of processes also takes advantage of spatial coherence,
including coherent control at the nanoscale [10], superradiance
[11–13], and spatial focusing by time reversal or phase
conjugation [14]. Clearly, precise knowledge of how the spatial
extent of the resonances drives the coherence properties of the
system is of central importance for further developments.

In a number of situations where spatial coherence plays an
important role, the imaginary part of the Green tensor G at two
points invariably appears in the equations [15–18]. Consider,
for instance, the emission of two coherent point dipoles p1

and p2 located at r1 and r2. The total emitted power is
given by �1 + �2 + μ0ω

3Re[p∗
1 · ImG(r1,r2,ω)p2], where ω

is the frequency and �i = 0.5μ0ω
3Im[p∗

i · G(ri ,ri ,ω)pi] is the
power emitted by pi alone. This simple expression highlights
the key role played by the imaginary part of the Green tensor
in the phenomenon of superradiance [12,13]. Other coherent
processes are also driven by Im(G), such as the process of
focusing by time reversal in a closed cavity [19].

From this observation, Cazé et al. have recently proposed
the concept of cross density of states (CDOS) to characterize
the spatial coherence of a complex photonic or plasmonic
system [20]. The CDOS is the two-point quantity ρ(r,r′,ω)
defined as

ρ(r,r′,ω) = 2ω

πc2
Im [TrG(r,r′,ω)]. (1)

*christophe.sauvan@institutoptique.fr

In this expression, c is the speed of light in vacuum, G(r,r′,ω)
is the electric dyadic Green function, and Tr denotes the
trace of a tensor. The Green function is defined from the
electric field created at point r by an electric-dipole source p
at point r′ through the relation E(r) = μ0ω

2G(r,r′,ω)p. This
definition of the CDOS has been chosen so that it reduces to the
electromagnetic local density of states (LDOS) when r = r′.
Note also that reciprocity imposes ρ(r,r′,ω) = ρ(r′,r,ω).

In the case of a closed and nonabsorbing system, the
relation between the CDOS and the resonances can be easily
derived. In this ideal conservative case (Hermitian system),
a discrete orthonormal basis of eigenmodes Em(r) with real
eigenfrequencies ωm can be introduced (the so-called normal
modes [21]) and the CDOS defined by Eq. (1) can be rewritten
as [20]

ρ(r,r′,ω) =
∑
m

Tr [Em(r)⊗E∗
m(r′)]δ(ω − ωm), (2)

where δ is the Dirac distribution and ⊗ denotes the tensor
(or dyadic) product between two vectors. Such an expansion
onto the system resonances is extremely useful both from a
physical and from a practical point of view. First, a modal
expansion allows for deep physical insight into the problem
since it explicitly shows that the CDOS gives a measure of
the number of channels (modes) connecting two points in the
system, weighted by their strength at both point r and point r′.
In addition, since it can be handled analytically once the modes
have been calculated, a modal expansion also enables very
efficient calculations specifically tailored for design purposes
or fast optimizations.

Unfortunately, in most cases of interest for photonics,
we are concerned with open systems that lose energy by
radiation and that are composed of absorbing and dispersive
materials such as metals or semiconductors. In the case of
such a dissipative (non-Hermitian) system, the eigenmodes
are no longer normal modes and the modal expansion given
by Eq. (2) is not valid. One usual resolution to bypass this
issue is to use a phenomenological approach in which energy
dissipation is introduced by broadening the eigenmodes with a
quality factor Qm and replacing the Dirac δ function in Eq. (2)
with a Lorentzian line shape. However, if this trick works for
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resonators with a small leakage (i.e., a high quality factor), it
becomes largely unsubstantiated for less confined resonances
characterized by low quality factors [22–24].

Actually, in the case of an open, absorbing, and dispersive
system, the rigorous introduction of a set of eigenmodes
is more involved than a simple extension of the lossless
case. Perhaps one of the greatest difficulty arises from the
absence of closed boundaries. This is a well-known issue
that has been documented in various area of wave physics,
from the scattering by a potential in quantum mechanics
[25–28] to optical microcavities [29–35], plasmonics [24,36],
and acoustics [37].

An adequate modal representation of a dissipative reso-
nant system should rely on the natural eigenmodes of the
structure. The latter are no longer normal modes with real
eigenfrequencies but, rather, poles of the scattering matrix
associated with complex eigenfrequencies. Consistent with
the literature on open optical cavities [29,30], we refer to
these modes as quasinormal modes (QNMs). The eigenmodes
of open resonant systems are also known in the literature
as decaying states [26], resonant states [27,34], and leaky
modes [38]. It is worth mentioning that, for some particular
or limiting cases, different modal representations that do
not involve QNMs have been developed; see, for instance,
in the quasistatic limit, the use of the eigenmodes of a
Poisson equation for the electrostatic potential [39,40] or
the introduction of “constant-flux states” for two-dimensional
(2D) media in transverse electric polarization [41].

The question of the spectral representation of waves as a
superposition of QNMs has a venerable history [25–35,42–46].
However, although light interaction with resonant modes is
a cornerstone of optics [47], QNM concepts are not widely
used for analyzing photonic structures. Perhaps this is due
to the fact that, in contrast to normal modes, QNMs are
no longer of finite energy since they grow exponentially in
space at infinity. Important results exist for open systems
composed of transparent and nondispersive materials, for
which the eigenvalue problem is linear. For simple geometries,
such as one-dimensional (1D) dielectric cavities or spherically
symmetric resonators that mathematically behave as 1D-like
systems because each angular momentum is independent of
others, it was shown that the QNM set forms a complete
and orthogonal basis [29–32]. Recently, the extension of the
orthogonality properties to more complex geometries was
conjectured (without proof) and checked numerically for
photonic crystal cavities [35]. In fact, for three-dimensional
(3D) complex geometries that cannot be handled analytically,
closing the system with perfectly matched layers [48] allows
one to prove the existence of a biorthogonality relation for
QNMs of dielectric resonators [43–45]. Furthermore, since
the eigenvalue problem is linear, in practice, QNMs can
be calculated with linear eigenmode solvers using classical
computer libraries [43,44].

In comparison, the use of QNM expansions for the analysis
of resonances with absorbing and dispersive materials is in its
infancy. For 1D geometries, the completeness of the QNM set
has been extended to the absorbing and dispersive case [42].
Recently, using a new approach based on Lorentz reciprocity
theorem [49], general theoretical results have been established
for arbitrary geometries and materials [45]. In particular, it was

shown that QNMs can be normalized, although they no longer
form a biorthogonal set as for nondispersive materials. The
main consequence is that the singular dominant terms of the
QNM expansion can be calculated analytically. These results
provided firm theoretical grounds to define a new expression
for the mode volume valid for dissipative and dispersive
resonators and to revisit the classical formula for the Purcell
factor, which has been shown to be an asymptotic expression
only valid for large quality factors [45,50]. Because of energy
dissipation, the mode volume is a complex quantity, whose
imaginary part gives rise to a non-Lorentzian spectral behavior
for the LDOS of plasmonic resonators [45]. Using these initial
theoretical results, Bai and coworkers derived a general and
simple procedure that can be used with any fully vectorial
electromagnetic software to calculate and normalize the QNMs
of virtually any geometry and material. The procedure has
been successfully applied to derive accurate semianalytical
expressions of the absorption and scattering cross sections of
plasmonic nanoparticles and nanoresonators [46].

The objective of this article is to extend the modal theory
proposed in [45,46] for deriving a semianalytical expression
of the CDOS for a 3D resonant system with any complex
geometry that includes radiative leakage (open system),
absorption, and material dispersion. Deriving a generalized
form of Eq. (2) is of fundamental importance since such a
closed-form expression allows one to quantitatively describe
the physics of a complex photonic or plasmonic system with
only a few physically meaningful resonances. In particular,
it provides an analytical relation between the intrinsic spatial
coherence of a complex system and the spatial extent of its
eigenmodes.

In Sec. II, we first recall the definition of the eigenmodes
of a dissipative resonator (QNMs) and we briefly summarize
our recent results on the use of QNMs to represent the
optical resonances in 3D dissipative systems [45,46]. Then
we derive an approximate modal expansion of the CDOS,
which is based on the following ansatz: a small discrete set of
modes is sufficient to accurately describe the electromagnetic
field in the vicinity of the resonator. This assumption is
then validated by comparing the analytical predictions to
fully vectorial numerical calculations for various examples
of increasing complexity. We consider in Sec. III an open
but nonabsorbing system composed of two coupled photonic-
crystal microcavities. In Sec. IV we test the accuracy of
the modal expansion of the CDOS for different plasmonic
nanoantennas with radiative leakage, absorption, and material
dispersion. Section V summarizes the main conclusions.

II. MODAL EXPANSION OF THE CDOS
IN A DISSIPATIVE SYSTEM

Wave evolution in closed (or periodic) systems free from
absorption and dispersion is routinely analyzed in terms of the
eigenmodes associated to the structure. A conservative system
is described by a Hermitian (self-adjoint) operator, whose
eigenstates are the so-called normal modes [21]. The latter
form a complete and orthogonal set in the sense of the energy,
meaning that the energy of a superposition of normal modes is
equal to the sum of the energies contained in each mode. Thus
the system response to external stimuli or perturbations can
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be written with closed-form expressions relying on a modal
expansion [21,51]. This is the essence of Eq. (2).

Generalizing Eq. (2) to open, absorbing, and dispersive
systems that are obviously not Hermitian is not a trivial
task. In order to correctly take into account the presence of
radiative leakage, absorption, and material dispersion, one
has to explicitly consider the non-Hermitian character of the
system and to use its natural modes, which are QNMs with
complex eigenfrequencies. In Sec. II A, we first recall the
definition of QNMs. In Sec. II B, we then use the properties
of QNM expansions derived in [45] and [46] to expand the
Green tensor of a dissipative and dispersive system onto a
small discrete set of QNMs. Finally, we derive an analytical
modal expansion of the CDOS in Sec. II C.

A. Quasinormal modes of a dissipative system

We consider a resonant system composed of an assem-
bly of absorptive and dispersive nanostructures with open
boundaries. The system is characterized by the position- and
frequency-dependent permittivity and permeability tensors
ε(r,ω) and μ(r,ω). Note that the materials can be anisotropic
and magnetic; the sole assumption is that the materials are
reciprocal, ε = εT and μ = μT , where the superscript T

denotes matrix transposition. This system supports QNMs
which are the electromagnetic field distributions (Ẽm,H̃m) that
are solutions of Maxwell’s equations in the absence of a source,

∇ × Ẽm = iω̃mμ(r,ω̃m)H̃m, (3a)

∇ × H̃m = −iω̃mε(r,ω̃m)Ẽm, (3b)

and that satisfy outgoing wave boundary conditions (the Som-
merfeld radiation condition as |r| → ∞). Because the energy
leaks out or is absorbed, the QNMs possess a finite lifetime τm

and their eigenfrequency ω̃m is complex, with a negative imagi-
nary part Im(ω̃m) = −1/τm [we use the exp(−iωt) notation for
the time-harmonic fields]. The complex frequency defines the
quality factor of the resonance Qm = −Re(ω̃m)/[2Im(ω̃m)].
It can also be attached to the usual physical interpretation
based on energy balance arguments on the energy stored
and dissipated at resonance if the Ohmic losses are small
[52]. Note that a tilde is used hereafter to denote complex
quantities that are related to the QNMs, such as their fields and
frequencies.

Despite the widespread use of optical resonances for
various designs, a difficulty arises when handling the QNMs
in practice. Actually, because energy is continuously lost,
the QNM amplitudes decay in time and Im(ω̃m) < 0. As a
consequence, the wave vector is also complex, with a negative
imaginary part, and since the boundary conditions impose
outgoing spherical waves exp(ik̃mr)/r at infinity, the field
diverges exponentially as |r| → ∞ [29,30,45].

This divergence poses serious problems when attempting
to derive a self-consistent formalism capable of modeling
how incident waves exchange their energy with the QNMs.
In particular, the divergence prevents normalization of the
QNM energy, which is infinite. Moreover, the QNMs are not
orthogonal in the sense of the energy as the normal modes
of Hermitian systems. A different inner product, which is not

positive definite, has to be used [45]. The main difference from
Hermitian systems is that the QNM norm is a complex number.

B. Modal representation of the field

In order to generalize Eq. (2) to open, absorbing, and
dispersive systems, we need to expand the Green tensor on
the discrete set of QNMs supported by the structure. This can
be done by using the properties of QNM expansions derived
in [45,46]. In this section we briefly recall these results before
deriving a modal expansion of the CDOS in Sec. II C.

Let us consider the general problem of the radiation by
an electric current source j(r) located in the vicinity of the
resonant system. The electromagnetic field (E,H) radiated
by the source at frequency ω is the solution of Maxwell’s
equations in the presence of the structure:

∇ × E = iωμ(r,ω)H, (4a)

∇ × H = −iωε(r,ω)E + j(r). (4b)

We assume that the total field (E,H) can be expanded as a
superposition of QNMs,

E(r,ω) ≈
∑
m

αm(ω)Ẽm(r), (5a)

H(r,ω) ≈
∑
m

αm(ω)H̃m(r), (5b)

where αm is a complex coefficient that quantifies the coupling
of the source to the mth QNM. By applying the general form
of the Lorentz reciprocity theorem [49] to Eqs. (3) and (4), it
was shown that the QNMs can be normalized and that αm can
be written as [45]

αm(ω) = −i

∫
j(r)·Ẽm(r)d3r
2ε0(ω − ω̃m)

+ fm(ω), (6)

where fm(ω) is a nonresonant background that becomes
negligible as ω → ω̃m. The background term comes from the
fact that QNMs of dispersive media are not orthogonal. Only
in the particular case of nondispersive media are the QNMs
orthogonal and fm(ω) = 0 [45]. Equation (6) is valid provided
that the QNMs obey the normalization condition∫ [

Ẽm · ∂(ωε)

∂ω
Ẽm − H̃m · ∂(ωμ)

∂ω
H̃m

]
d3r = 2ε0, (7)

where ε0 is the vacuum permittivity and the derivatives are
taken at ω = ω̃m. Concerning the QNM normalization, the
divergence at |r| → ∞ is safely handled either by transform-
ing the QNMs, which are formally scattering or continuum
states, into square-integrable states with classically available
perfectly matched layers [45], or by using a very efficient
and general method that relies on the fact that, for ω close to
ω̃m, any field grows up as 1/(ω − ω̃m) [46]. The value of the
integral in Eq. (7) is chosen to recover the usual normalization
condition of normal modes in the particular case of lossless
and nondispersive systems.

Before using these results to derive a modal expansion of
the CDOS, let us discuss the validity of our key assumption,
namely, the modal representation of the field given by Eq. (5).
Perhaps the most important issue is the completeness of the
QNM set. The completeness of the QNM set has only been
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demonstrated for a limited number of simple situations, for
1D [29,30,42] or spherical [31,32] open cavities, for which it
has been established that a QNM expansion is complete inside
the cavity. However, in the general 3D case, the completeness
remains an open question. In particular, a QNM expansion
cannot be used to represent the far field outside the resonator,
especially if the excitation source is located there (as in the
case of plane-wave illumination). This is the reason why in
[46], the scattered field (i.e., the system response), and not
the total field, has been represented as a QNM superposition,
E = Ei + ∑

m βmẼm, where Ei is the field radiated by the
source j(r) in the absence of the resonator. Such a field
representation allowed us to derive accurate semianalytical
expressions of the absorption and scattering cross sections of
plasmonic nanoparticles [46].

However, in order to maintain full analyticity in the CDOS
derivation and to obtain a simple expression that reduces to
Eq. (2) when energy dissipation vanishes, we assume hereafter
(as in [45]) that the total field can actually be represented as
a QNM superposition. Through numerical calculations, we
illustrate in Secs. III and IV that this assumption provides very
accurate predictions for the CDOS in many practical cases of
interest.

C. Modal expansion of the CDOS

For deriving the CDOS, we are interested in the electric
Green tensor G(r,r′,ω). The latter connects the electric field
created at point r to an electric-dipole source p located at point
r′ through the relation E(r,ω) = μ0ω

2G(r,r′,ω)p. Therefore,
the source j(r) appearing in Eq. (6) has to be replaced
by the current distribution associated with a point dipole,
j(r) = −iωpδ(r − r′). We further assume that the nonresonant
contribution fm(ω) to the coupling coefficient αm in dispersive
systems can be neglected. If the system response is essentially
driven by a single mode, this assumption is clearly valid
provided that the frequency ω is close to the corresponding
eigenfrequency Re(ω̃m). If now several modes significantly
contribute to the system response, the assumption amounts
to considering that these QNMs are mutually orthogonal.
This is valid provided that the variation of ε and μ over
the spectral range that includes the few eigenfrequencies of
interest can be accurately described by a first-order Taylor
expansion.

In this case and for a point source, Eq. (6) becomes

αm(r′,ω) = − ωp·Ẽm(r′)
2ε0(ω − ω̃m)

. (8)

By using the modal expansion of the electric field given by
Eq. (5) and the expression of the coupling coefficients given
by Eq. (8), we obtain an approximate closed-form expression
for the Green tensor of a dissipative system,

G(r,r′,ω) ≈ − c2

2ω

∑
m

Ẽm(r)⊗Ẽm(r′)
ω − ω̃m

. (9)

Note that the divergence of the real part at r = r′ is not
correctly accounted for by Eq. (9), which is in practice the
finite sum of a few regular terms at r = r′. This limitation may
be circumvented by using the scattering formulation in [46], as

discussed in Sec. II B. However, since we are interested in the
CDOS defined by Eq. (1), hereafter we only need the imaginary
part of the Green tensor and we can safely use Eq. (9).

By using the modal expansion of the Green tensor given
by Eq. (9), the CDOS defined in Eq. (1) is straightforwardly
expanded onto the set of QNMs supported by the dissipative
resonant system:

ρ(r,r′,ω) = − 1

π

∑
m

Im

[
Tr Ẽm(r)⊗Ẽm(r′)

ω − ω̃m

]
. (10)

The CDOS is the sum of three terms that correspond to the
three directions of space, ρ = ρxx + ρyy + ρzz, and simple
derivations lead to

ρii(r,r′,ω) = 1

π

∑
m

ωm

2Qm

Re [Ẽmi(r)Ẽmi(r′)]

(ω − ωm)2 + (
ωm

2Qm

)2

×
[

1 − 2Qm

ω − ωm

ωm

Im [Ẽmi(r)Ẽmi(r′)]
Re [Ẽmi(r)Ẽmi(r′)]

]
,

(11)

with i = x,y,z, ωm = Re(ω̃m), and Qm =
−Re(ω̃m)/[2Im(ω̃m)]. Equation (11) provides a fully
analytical expression of the CDOS that only involves the
QNMs. It represents the generalization of Eq. (2) in the
presence of energy dissipation. Indeed, for a conservative
system (Qm → ∞), the QNM-field components are either
real or purely imaginary and we can use the mathematical
identity limγm→0 γm/[(ω − ωm)2 + γ 2

m] = πδ(ω − ωm) to
show that Eq. (11) reduces to Eq. (2), which then appears to
be valid in the limit of large quality factors. We emphasize
that the presence of dissipation does not come out only as a
widening of the Dirac δ function into a Lorentzian line shape
with a quality factor Qm. Indeed, because of the second term
in the brackets, which is proportional to ω − ωm, the spectral
variation of the CDOS can be more complex than a simple
Lorentzian line shape, a surprising property already observed
in [45] for the LDOS. Finally, we note that Eq. (11) for r = r′
is consistent with the expression of the LDOS derived in [45].

Equation (11) is of fundamental importance since it
quantifies the link between the CDOS, which gives a measure
of the intrinsic spatial coherence [20], and the optical modes
supported by the system. The CDOS sums up the contributions
of all eigenmodes that connect r to r′, with possibly a
complex spectral variation. We emphasize that the individual
contribution of a given mode can be negative, depending on
its field distribution. A high CDOS (in absolute value) means
that the system supports at least one mode that connects r to
r′. However, a weak CDOS can have two different physical
origins. Either the system does not support any mode that
connects both points or, on the contrary, both points are
connected by several modes that interfere destructively so that
their contributions to the total CDOS cancel each other. As a
consequence, only the calculation of the QNMs can provide
a sound interpretation of the lack of coherence between two
points in the system. In the following sections, we illustrate
these conclusions and we check the accuracy of Eq. (11) in
several examples that are representative of modern studies in
nanophotonics.
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Before applying the theoretical results to concrete exam-
ples, we present the numerical implementation of the theory.
The technique that we use to calculate a QNM relies on
an iterative solving of Maxwell’s equations in the complex
frequency plane [46]. The system is excited with a source (a
plane wave, a dipole source located nearby, etc.) at a complex
frequency ω close to the QNM frequency ω̃m, some quantity
representative of the system response is calculated, and the
excitation frequency ω is iteratively changed in the complex
plane until the response diverges. After a few iterations, the
frequency ω tends towards ω̃m and the scattered field tends
toward the QNM field. Material dispersion can be easily taken
into account with an analytical continuation of the permittivity
in the complex frequency plane. In this work, we have used a
dipole source to excite the resonance. The iterative approach
used for the pole calculation has been detailed in Appendix 2
of Ref. [46]. After the pole is found, the QNM fields Ẽm and
H̃m are calculated for a complex frequency close to ω̃m in
order to avoid the singularity at ω = ω̃m and the QNMs are
normalized with the technique proposed in [46].

The iterative calculation of a QNM can be realized with vir-
tually any frequency-domain numerical method. For instance,
commercial software such as COMSOL Multiphysics can be
used [46]. Hereafter, we use a numerical method known as
the aperiodic Fourier modal method (a-FMM), implemented
either in Cartesian [53] or in cylindrical coordinates [54]. The
method is an extension to aperiodic structures of the usual
FMM, which is also called rigorous coupled-wave analysis
(RCWA) [55,56]. The a-FMM relies on a semianalytical
integration of Maxwell’s equations in one space direction and
on the use of perfectly matched layers and a discretization
of the electromagnetic field in the Fourier space in the other
directions. In Secs. III and IV, we compare the theoretical
predictions given by the modal expansion in Eq. (11) with a
rigorous calculation of the full Green tensor. The latter is also
performed with the a-FMM [57].

III. COUPLED PHOTONIC CRYSTAL MICROCAVITIES

In order to test the modal expansion, we first consider
a photonic-crystal coupled-cavity system. Neither absorption
nor material dispersion is present in the system, but it allows
us to illustrate the peculiar spectral variation of the CDOS and
its cancellation when two modes interfere destructively. The
system, whose LDOS was initially investigated in [22] and
[23], consists of two cavities that are formed by removing two
rods in a finite-size 2D photonic crystal made of a square array
(period d) of 9 × 10 semiconductor rods (radius r = 0.2d and
refractive index n = 3) in air (see Fig. 1). We consider the
transverse electric polarization with an electric field parallel to
the cylinders, E = Ez. For this case of polarization, the CDOS
reduces to a single term, ρzz.

The dominant QNMs have been calculated with the a-FMM
[53]. Their intensity distributions |Ẽz|2 are superimposed on
the geometry in Fig. 1. Because of the proximity to the
photonic-crystal boundary, the mode that is mainly localized
in the upper cavity (labeled 2) has a low Q factor limited by
leakage into the air clad (Q2 = 90), whereas the other mode
(localized in the bottom cavity and labeled 1) has a higher Q

factor (Q1 = 310). The normalized complex eigenfrequencies
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FIG. 1. (Color online) Coupled photonic-crystal microcavities.
Two cavities are formed by removing two cylinders in a finite-size
photonic crystal. (a, b) Intensity distributions |Ẽz|2 of the two
dominant QNMs. White circles represent the semiconductor cylinders
forming the photonic crystal. We calculate the CDOS for r′ fixed in the
center of the upper cavity; it is normalized by the LDOS in vacuum. (c)
Spectral variation of the CDOS for r fixed in the center of the bottom
cavity. The total CDOS results from two modal contributions, ρ1 and
ρ2, given by Eq. (11) and shown by the solid (blue) and dashed (green)
curves. The sum [bold solid (red) curve] is in excellent agreement
with fully vectorial calculations of the full Green tensor shown by
open black circles. (d) Cross section of the CDOS distribution for
ωd/(2πc) = 0.3940 [frequency where the CDOS in (c) cancels].
Point r is varied along the x = 0 axis. For this particular frequency,
both modal contributions interfere destructively everywhere.

are ω̃1d/(2πc) = 0.3938–0.0006i and ω̃2d/(2πc) = 0.3949–
0.0023i.

According to the QNM formalism developed in Sec. II, the
CDOS is the sum of two independent contributions, ρ1 and
ρ2, that solely depend on the two QNMs supported by the
system [see Eq. (11)]. We first calculated the spectral variation
of the CDOS that connects the cavity centers, r = (0,0)d and
r′ = (0,4)d. Both contributions, ρ1 and ρ2, are shown, by the
solid (blue) and dashed (green) curves in Fig. 1(c), and the
bold solid (red) curve is the sum. The predictions of the modal
expansion are in quantitative agreement with exact calculations
of the full Green function performed with the a-FMM and
shown by the open black circles. The difference is smaller
than 0.5 over the entire spectrum. In particular, the modal
expansion accurately predicts the peculiar spectral variation
of the CDOS, which takes both negative and positive values.
In the context of the coherence between two emitters, positive
and negative values of the CDOS are related to super- and
subradiance, respectively.

Far from the system resonances, the CDOS is small because
both modal contributions, ρ1 and ρ2, are vanishing; there is no
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coherence between the centers of the two cavities because there
is no mode connecting them. On the contrary, near the system
resonances, it is an interference mechanism between both
modes that is responsible for the cancellation of the CDOS at
ωd/(2πc) = 0.3940. Indeed, for this particular frequency, the
two modal contributions ρ1 and ρ2 cancel each other, resulting
in an incoherent relation between the centers of the cavities.
We also calculated the spatial distribution of the CDOS for this
particular frequency and for r′ fixed in the center of the upper
cavity, r′ = (0,4)d, the second point r being varied along the
y axis (x = 0). The results presented in Fig. 1(d) show that the
CDOS remains extremely weak whatever the position along
the axis, and this behavior is quantitatively predicted by the
modal expansion, with two contributions that are opposite and
that almost cancel each other everywhere.

IV. PLASMONIC ANTENNAS COMPOSED
OF METALLIC NANORODS

We now demonstrate the accuracy of the QNM formalism
with a more complex system including absorption and disper-
sion in addition to radiative leakage. We consider resonant
plasmonic antennas made of metallic nanorods. We begin
with a single nanorod (see Fig. 2), a system that has recently
received considerable attention for control of the spontaneous
emission [58–60]. We further validate the predictions of
Eq. (11) for a more complex geometry that supports multiple
resonances (see Fig. 3).

A. Single metallic nanorod: The dipole nanoantenna

We consider a gold nanorod with a diameter D = 30 nm and
a length L = 100 nm, which constitutes a classical extension
of the half-wave dipolar radio antenna to optical frequencies
[61]. The nanorod is embedded in a host medium of refractive
index n = 1.5. In the spectral range of interest, a single QNM
is dominant, namely, the dipole-like mode of the nanorod.
This mode has been calculated with the a-FMM implemented
in cylindrical coordinates [54] and its electric-field distribution
is shown in Fig. 2(a). To calculate QNMs in dispersive media,
one needs an analytical continuation of the permittivity for
complex frequencies. For gold, we have used a Drude model
that fits the tabulated data in [62], ε = 1 − ω2

p/(ω2 + iωγ )
with ωp = 1.26 × 1016 s−1 and γ = 1.41 × 1014 s−1.

We have used this single mode in Eq. (11) to calculate
the z component of the CDOS ρzz at the resonance frequency
(λ = 920 nm) for a point r′ fixed on the axis at a 10-nm distance
above the nanorod, the second point r being varied, either
along the z axis with x = 0 [Fig. 2(b)] or along the x-axis with
z = 0 [Fig. 2(c)]. In both cases, the predictions of the modal
expansion [solid (red) curves] are in quantitative agreement
with the exact calculations of the full Green tensor (open
black circles obtained with the a-FMM). The same agreement
is obtained for different frequencies and different positions in
the vicinity of the nanorod. For distances larger than 150 nm,
the resonance is only weakly excited and the validity of
representing the Green tensor solely with the nanorod modes
becomes questionable; see the discussion in Sec. II B and in
[45,46].
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FIG. 2. (Color online) Single gold nanorod (diameter D =
30 nm, length L = 100 nm) embedded in a host medium of
refractive index n = 1.5. (a) Electric-field distribution |Ẽz| of the
dipole-like QNM (complex frequency 2πc/ω̃ = 920 + 47i nm). We
calculate the CDOS for r′ fixed on the axis at a 10-nm distance
above the nanorod; it is normalized by the LDOS in a bulk material
with n = 1.5. (b) Longitudinal cross section of the z component
of the CDOS at nanorod resonance λ = 920 nm. Point r is moved
along the rod axis. (c) Transversal cross section of the z component
of the CDOS at λ = 920 nm. Point r is now moved perpendicularly
to the rod axis at z = 0. Dashed vertical lines represent the nanorod
boundaries. (d) Spectral variation of the CDOS. In (b)–(d), solid and
dashed curves are obtained from Eq. (11) for the QNM shown in
(a) and the markers are fully vectorial calculations of the full Green
tensor.

We have also calculated the spectral variation of the CDOS
for different fixed positions [see Fig. 2(d)]. The point r′ is
again fixed on the axis at a 10-nm distance above the nanorod.
The second point r is fixed either on the axis at a 10-nm
distance below the nanorod [solid (red) curve and open black
circles] or off the axis at x = D/2 + 10 nm and z = 0 [dashed
(blue) curve and open black squares]. The predictions of the
modal expansion, given by the solid and dashed curves, are in
good agreement with exact calculations given by the markers.
For both positions of the point r, the coherence is maximum
at resonance. Two points located on the nanorod axis are
linked by a positive CDOS; they are coherent and give rise
to constructive interferences. On the contrary, mixing on-axis
and off-axis points gives rise to destructive interferences since
these points are linked by a negative CDOS.

B. Complex nanoantenna made of three metallic nanorods

As the final example we consider an optical antenna
made of three aligned gold nanorods that are identical to
the one studied in the previous section. The nanorods are
separated by small gaps, g = 40 nm [see Fig. 3(a)]. The
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FIG. 3. (Color online) Three identical gold nanorods (diameter
D = 30 nm, length L = 100 nm) embedded in a host medium of
refractive index n = 1.5. The rods are aligned and separated by a
small gap, g = 40 nm. (a) Electric-field distributions |Ẽz| of the three
QNMs that result from the coupling of the three individual dipole-like
modes. (b) Spectral variation of the CDOS. Points r and r′ are fixed
at the positions marked by the white crosses in (a) (on the axis,
inside the gaps, at a 10-nm distance from the left and right nanorods)
and the CDOS is normalized by the LDOS in a bulk material with
n = 1.5. The three modal contributions to the CDOS are shown by
the dashed-dotted black, dashed (green), and solid (blue) curves. The
bold solid (red) curve is the sum and the open black circles show the
results of fully vectorial calculations.

proximity of the nanorods gives rise to a coupling between
the dipole-like modes supported by each individual cylinder,
and the complete structure supports three dominant QNMs,
whose electric-field distributions are shown in Fig. 3(a). The
corresponding complex eigenfrequencies (from top to bottom)
are 2πc/ω̃1 = 857 + 23i nm, 2πc/ω̃2 = 922 + 37i nm, and
2πc/ω̃3 = 1001 + 82i nm.

The three contributions to the z component of the CDOS
ρzz are calculated with Eq. (11) as a function of the frequency

for fixed positions r and r′. Points r and r′ [shown by
the white crosses in Fig. 3(a)] are located inside the gaps,
on the system axis, at a 10-nm distance from the left and
the right nanorods, respectively. The three contributions to
the total CDOS are represented in Fig. 3(b) by the dashed-
dotted (black), the dashed (green), and the solid (blue) curves.
The bold solid (red) curve is the sum. The predictions of the
modal expansion are in quantitative agreement with the exact
calculations of the full Green function shown by the open black
circles. In particular, we note that the assumption made on the
QNM orthogonality [see Eq. (8)] does not reduce the accuracy.

We emphasize that Eq. (11) accurately predicts the peculiar
spectral variation of the CDOS, which alternatively takes
positive and negative values. The modal expansion allows us
to get a precise physical insight into the spatial coherence of
the system. Mode 1 (dashed-dotted black curve) contributes
only weakly to the CDOS because the points r and r′ that have
been chosen are weakly connected through this mode. On the
contrary, mode 2 and mode 3 strongly connect these points.
The contribution of mode 2 gives rise to destructive interfer-
ences [negative CDOS; dashed (green) curve], whereas the
contribution of mode 3 gives rise to constructive interferences
[positive CDOS; solid (blue) curve]. As a result, the total
CDOS depends strongly on the frequency and can be either
positive or negative.

V. CONCLUSION

We have derived a modal expansion of the imaginary part of
the Green tensor that is valid for 3D dissipative resonant sys-
tems with any complex geometry. The theory, which relies on
the concept of QNMs with complex frequencies, provides an
accurate closed-form expression of the CDOS for systems with
radiative leakage, absorption, and dispersion. Such a modal
expansion is extremely useful, as it analytically highlights
the link between the optical modes supported by a resonant
system and the spatial coherence of the electromagnetic field.
Once a few dominant modes have been calculated, any spectral
or spatial variation is treated analytically, in contrast to full
numerical methods. We believe that the present theoretical
work may impact many fields of photonics and plasmonics,
where spatial coherence plays an important role. We also
expect that similar modal representations may be useful for
other waves, such as acoustic or quantum waves.
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