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Abstract: We present a new method for calibrating an optical-tweezer 

setup that does not depend on input parameters and is less affected by 

systematic errors like drift of the setup. It is based on an inference approach 

that uses Bayesian probability to infer the diffusion coefficient and the 

potential felt by a bead trapped in an optical or magnetic trap. It exploits a 

much larger amount of the information stored in the recorded bead 

trajectory than standard calibration approaches. We demonstrate that this 

method outperforms the equipartition method and the power-spectrum 

method in input information required (bead radius and trajectory length) 

and in output accuracy. 

©2013 Optical Society of America 

OCIS codes: (350.4855) Optical tweezers or optical manipulation; (350.0350) Other areas of 

optics. 
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1. Introduction 

Optical tweezers, first constructed and used by Arthur Ashkin during the 1970s and 1980s [1], 

are widely used for single molecule manipulation [2]. The movement of a micron-sized 

dielectric bead in the potential well produced by a focused laser is used to detect forces on the 

pico-Newton level and displacements down to nanometer resolution. Applications range from 

studying protein folding [3–5], and elastic properties of DNA [6–8] to molecular motor 

function in vitro [9] or even in vivo [10–12]. As an experimental tool, it has become highly 

valuable to biophysicists and biologists working at the single-molecule level. More recently, 

magnetic tweezers allowing multiplexed measurements have been introduced and applied to a 

variety of biological questions [13,14], and further innovation in the field of optical tweezers 

is continuously taking place [15,16]. 

#196292 - $15.00 USD Received 22 Aug 2013; revised 19 Nov 2013; accepted 9 Dec 2013; published 13 Dec 2013

(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.031578 | OPTICS EXPRESS  31579



Before quantitative results can be extracted from an optical or magnetic tweezer 

experiment, however, the trap must be calibrated. Its effective spring constant needs to be 

determined to relate the bead displacement within the trap to the corresponding force 

experienced by the bead. To this end, a variety of methods have been developed using the 

same beam as the optical trapping beam to record the bead trajectory inside the trap and 

extract the trap stiffness from it. The most commonly employed techniques are the 

equipartition method [17] and the power-spectrum method [18,19]. Alternative methods have 

been proposed, such as the drag-force method [20], the escape-force method [21], and the 

step-response method [22]. Moreover, two-beam approaches have been introduced using one 

laser beam to trap the bead and a second low-power one to measure its displacement inside 

the trap [23]. This configuration is more complicated to implement and to align but is 

interesting for cases where the absolute bead location has to be known or for multiple-trap 

experiments. 

The Brownian motion of the bead inside the confining potential can be recorded either 

with a quadrant photodiode (QPD), with position sensitive detectors (PSD) or with a camera 

[17]. For stiff traps, large bead displacements take place very fast and the acquisition rate 

must be fast enough to correctly capture the bead motion. Although acquisitions with a 

camera allow simultaneous recording of multiple trapped beads, they are limited by the image 

readout rate to the calibration of relatively shallow traps. We here show that single-beam 

setups can be more rapidly and more accurately calibrated by better exploiting the 

information stored in the recorded bead trajectories with Bayesian inference. We will 

demonstrate this for bead displacements recorded with a QPD, the results however remain 

valid independently of how the bead displacement is recorded. 

The equipartition method calculates the mean squared displacement of the bead in one 

dimension, 2x , and uses the equipartition theorem to obtain the corresponding spring 

coefficient in this dimension: 

 21 1

2 2
B xk T = k x  (1) 

where 
xk  is the trap stiffness in the x-direction, T the temperature and 

Bk the Boltzmann 

constant. However, this method suffers strongly from drift during acquisition, which leads to 

an increase of the apparent mean squared displacement and thus to an underestimation of the 

effective spring constant of the trap. 

The power-spectrum method, on the other hand, exploits the stochastic motion, x(t), of the 

bead in one dimension versus time and, in particular, its Fourier transform, FT[x(t)]. The 

resulting data is fitted with the following Lorentzian: 

 
2 2 2

.
2

B

c

k T
P(f)  (2) 

Here, 6  is the drag coefficient,  the liquid viscosity, and a the bead radius. 
cf  

represents the cutoff frequency related to the spring constant as follows: 

 .
2

x

c

k
f  (3) 

Displacement in stiffer traps will contain more high-frequency components that will raise the 

cutoff frequency. One can readily see that, in this case, calibration depends on precise 

knowledge of several parameters, in particular particle size and viscosity of the surrounding 

liquid whose effective value depends on the presence of nearby surfaces [24]. 
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The escape force and drag force method suffer from similar constraints. A force is applied 

by displacing the liquid surrounding the trapped bead (with a piezo translation stage, for 

instance) producing a drag force according to Stokes’ law, 6dragF av  where v is the fluid 

displacement speed [20,21,23]. This force is equated to the restoring force, i.e. the product of 

the beam displacement from the trap center and the effective spring constant. As in the 

power-spectrum method, the viscosity  and the bead radius a are required in addition to the 

velocity v of the fluid relative to the bead. Furthermore, lateral displacement during drag also 

induces axial displacement of the bead [20] perturbing the effective spring constant and 

further complicating the calibration attempt. 

The principle of the step-response method is to abruptly displace the trap and observe the 

response as the bead moves back into equilibrium towards the center of the trap [22]. The 

restoring motion is described by a characteristic time constant  that can be related to the trap 

stiffness k by
6 a

k
. Again, precise knowledge of additional parameters i.e. the bead size 

and the viscosity of the surrounding liquid is required to apply this method. 

We here propose a new method to calibrate an optical trap based on a statistical Bayesian 

inference approach applied to the bead trajectory inside the trap that does not suffer from the 

above drawbacks. We have previously shown that this technique is ideally suited to extract 

the confining potential felt by membrane receptors diffusing inside cell membrane 

microdomains [25–28]. The stiffness of the potential in that case is very low (3
4
 pN/nm). 

Moreover, Bayesian inference was used to extract the viscoelastic properties of the medium 

between two traps in a double-trap setup [29]. We here show that this approach is applicable 

to the much stiffer potentials encountered in optical-tweezer experiments with stiffnesses of 

10
2
-10

1
 pN/nm. This inference approach circumvents the drawbacks of single-beam 

calibration techniques: it is less influenced by minor drift during acquisition, does not require 

any prior knowledge of the experimental parameters, can detect deviations from the assumed 

2nd order spring potential, and can obtain calibration results much faster (i.e. requires much 

less trajectory points). All that is required for the calibration is a recorded trajectory of the 

bead within the trap a few hundred points long with an appropriate time step between 

consecutive points. 

2. Bayesian inference 

We assume that the movement is dictated by the overdamped Langevin equation: 

 2 .
d (t) V( )

= - + D 
dt

r r
 (4) 

where r(t) is the position at time t, V(r) the potential at r,  the term representing 

stochastic Brownian motion, and D the diffusion coefficient, with the Einstein-Stokes 

fluctuation-dissipation theorem relating D and  by 
6

B Bk T k T
D

a
. In our previous work, 

we showed that it is possible to assume and infer a position-dependent friction and diffusion 

coefficient [25,28]. In the present case of a bead in water, however, there is no reason to 

introduce such a position dependence and we therefore use a constant and D. 

The Fokker-Planck equation associated with Eq. (4) reads: 

 0 0 0 0 0 0=-t

V( )
P( ,t | ,t ) P( ,t | ,t ) (D P( ,t | ,t ))

r
r r r r r r  (5) 
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0 0P( ,t | ,t )r r  is the probability of going from space-time point 
0 0( ),tr to space-time point 

( ),tr . Splitting the trajectory into subdomains Sij in which the potential gradient ( )ijV r is 

constant, allows solving Eq. (5) and obtaining the probability of going from one space-time 

point to another given the diffusion coefficient D and force ( )ijV r : 

 

2

0 ij 0

2

0

0

0 0 ij 2

0

0

( ( ) / )
exp

4( )( )

=

4 ( )( )

t t

D t t
t t

P( ,t | ,t ) | ,D)

D t t
t t

r r F

r r F  (6) 

Fij is the force vector in the subdomain with row value i and column value j, and is the 

positioning noise of the acquired data. The size of the subdomains 
subdomainL  depends on the 

domain size and the average bead displacement during the time interval between trajectory 

points (Lstep 0.006 µm) [25] and was chosen such that 1 25subdomain

step

L
.

L
. 

We can then calculate the probability for the entire trajectory T,
1,2,...,( | )nP T Q , as a 

function of the motion parameters
1,2,...,nQ , i. e. D and ( )ijV r : 

 
max max

1 1

1 :

F = (( , | , ) | , )
ij

i , j

ij

i, j S

P(T | ,D) P t t D
r

r r F  (7) 

where rµ and rµ + 1 represent two consecutive points within subdomain Sij. Then, by using 

Bayes’ theorem we can find the most likely motion parameters given the observed trajectory, 

i. e. the parameter values that maximize the posteriori probability
1,2,...,( | )nP Q T : 

 
1,2,..., 0 1,2,...,

1,2,...,

0

( | ) ( )
( | )

( )

n n

n

P T Q P Q
P Q T

P T
 (8) 

0 1,2,...,( )nP Q  is the prior probability of the parameters and 
0 ( )P T  is a normalization constant 

taken equal to 1. The confinement potential in an optical trap is expected to be parabolic [17]. 

We therefore assume a second-order potential and infer its coefficients Cx, Cy, Cxx, Cxy and Cyy 

(C is not inferred and is assumed to be 0), as in [27], rather than inferring the individual force 

values in each subdomain, as in [26]: 

 2 2

2nd x y xx xy yyorder
V C C x C y C x C xy C y  (9) 

 2 and 2 .x xx y yyk C k C                     (10) 

Note that, in this case, the algorithm still optimizes the potential derivative (force) values in 

each subdomain, only these values are not independent but governed by Eq. (9). Typically, 

only Cxx and Cyy take on values of significant magnitude, confirming the spring-like potential 

of the trap and all the other terms can be neglected. However, assuming a full second-order 

potential allows the detection of any notable deviations from the ideal spring potential [30]. 

xk and 
yk represent the spring constants related to the restoring forces in the x and y 
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directions, respectively. Note that all other calibration methods typically neglect the linear 

and xy cross terms and extract directly 
xk  and 

yk  [18]. 

Figure 1 shows an experimental trajectory obtained for a laser power (measured at the 

microscope entrance) of 377 mW and the inferred confinement potential. We define the 

dimensionless confinement factor 
2

0.95( )

D t
u

R
where R0.95 represents the radius of a circular 

domain containing 95% of the total number of trajectory points and 
2 1t t t  is the delay 

time between two trajectory points. The confinement factor u represents the fraction of the 

domain size covered by the displacement during one trajectory step. Ideally, u should be as 

small as possible and, in all cases, much smaller than 1. Depending on the value of u, we have 

shown that the inference algorithm may somewhat overestimate the spring constant k and 

underestimate the diffusion coefficient D [25]. This bias is due to the fact that, in Eq. (4), the 

potential term and the diffusion term can compensate for slight deviations of each other. 

Moreover, when the displacement between two trajectory points starts becoming comparable 

to the size of the domain, some displacements will be underestimated because the delay 

between successive recordings of the position is not small enough and the particle will bounce 

off the potential barrier during this delay t . Thus, the full displacement may not be captured 

from one recording to the next. This leads to an underestimation of the diffusion coefficient 

and, consequently, to an overestimation of the confining potential. 

 

Fig. 1. A sample trajectory recorded for a bead in an optical trap created by a focused laser 
intensity of 377 mW (A) and the confinement potential inferred with the Bayesian inference 

algorithm (B). The trap stiffness in the x and y direction, kx and ky, is 0.05 and 0.08 pN/nm, 

respectively. 

This bias is deterministic and can be corrected for by performing a set of simulations for 

parameter values in the range of the experimental conditions to yield a bias curve that gives 

the relevant bias value for each confinement factor value. Figure 2 shows the bias of the 

motion parameters, D and kx, as a function of the confinement parameter u. The obtained bias 

curves can be fitted with Eq. (11) and (12) and have been used in the following to correct the 

inferred parameter values. 
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2/s. 

The trap stiffness kx = ky is varied from 10 6 to 0.2 pN/nm. The inferred values Qinferred are 

normalized to the input values. Solid lines are fits according to Eq. (11) and (12). The data 
points are averages of 30 numerical trajectories for each u value, each trajectory has 3000 

points. 

 inf 0.0240.32 1.29
u

D
e

D
 (11) 

 inf 0.00850.023 1.01
u

x

x

k
e

k
 (12) 

The subscript ‘inf’ denotes that this is the value inferred by the Bayesian inference algorithm. 

3. Experimental setup and methods 

The optical set-up has been described elsewhere [22]. Briefly, it is built using an inverted 

microscope (Olympus IX70) and an oil-immersion objective (Olympus PlanApo 60X, NA = 

1.45). A Nd:YAG laser (Quantum Laser, model Forte 1064, TEM00, 1W cw) was used both 

for trapping and bead detection. The laser beam is diffracted by an acousto-optic deflector 

(AOD) (Intra Action Corp. DTD-274HA6) conjugated with the back focal plane (BFP) of the 

objective. The first-order diffracted beam by the AOD was enlarged to fill the pupil of the 

objective. A feedback system was used to keep the trapping laser power constant at the 

entrance of the objective during the experiments. Transmitted light was collected with a high 

numerical aperture condenser (Olympus Aplanat Achromat, NA = 1.4) and directed to a 

quadrant photodiode (QPD) (SPOT-9DMI, OSI Optoelectronics) located in a plane 

conjugated with the BFP of the microscope objective. The cutoff frequency of the QPD is on 

the order of a few kHz (5-10 kHz depending on the incident laser power). The 4 signals of the 

QPD were digitized simultaneously (sampling rate of 65536 Hz) using a Delta Sigma DAC 

(National Instrument, PCI 4474) and further processed using LabView 8.2. Displacement 

signals were normalized by the sum of all quadrant values before trap calibration. Silica beads 

 

The QPD calibration was performed using the so-called step-response method [22]. As the 

QPD is located in a plane conjugated with the condenser BFP, it is only sensitive to motions 

of the bead relative to the trap center and not to absolute motions of the trapping laser. Thus, a 

rapid displacement of the trap using the AOD corresponds to a spike on the QPD signal due 
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to the fact that the trapped bead cannot follow that motion instantaneously. After AOD-

motion calibration, one can easily and accurately calibrate the QPD V to µm conversion. 

Two series of experimental trajectories were recorded with 45 000 points for each 

trajectory. In the first series, the laser power was varied and the trap was located sufficiently 

far from the coverslip so that the effective viscosity seen by the bead is that of bulk water. In 

the second series, the laser power was kept constant and the distance from the coverslip was 

varied by displacing the microscope objective. 

Numerical simulations and inference analysis were conducted in largely the same manner 

as in [25]. Each Brownian step in x and y directions was constructed using a Gaussian 

distribution of standard deviation 2D t  with D t chosen in accordance to 

t, each particle 

takes 10 000 substeps that are not averaged. The displacement due to the force corresponding 

to the confining potential, 2 21 1
( , )

2 2
x yV x y k x k y , is then added to the substeps. The 

positioning noise was neglected. 

The inference algorithm optimizes the posteriori probability [Eq. (7) and (8)] with respect 

to all the motion parameters using the Broyden-Fletcher-Goldfarb-Shanno algorithm [31]. 

The a posteriori distributions are sampled with a Monte Carlo algorithm [32]. The maximum 

and the width of the posteriori distributions yield the value and uncertainty of the inferred 

parameter. Only every sixth point of the experimental trajectories was used for the inference 

to remove the non-instantaneous QPD response. Inference analysis was conducted on a PC 

(dual-core 3.4 GHz, 4 GB RAM) using C language. Inferring the potential and diffusion 

coefficient from a trajectory with 10 00 points takes approximately a few tens of seconds. 

The power-spectrum analysis was done with the MATLAB algorithm described in 

[33,34]. For the short trajectories of Fig. 6, in order to obtain a cutoff frequency, the number 

of data points per block had to be chosen below the values recommended in [33,34]. 

4. Results 

4.1 Bayesian inference analysis of experimental trajectories 

Before applying our approach to experimental trajectories in optical traps, we will take into 

account the fact that, in most cases, four-quadrant photodiodes with a finite cut-off frequency 

are used to acquire the bead position. Thus, the recorded data suffer from a “memory effect” 

due to the non-instantaneous response time of the photodiode [18]. The response function of 

the photodiode, g(t), can be described by an instantaneous response fraction ( )diode and a non-

instantaneous term with a characteristic decay time . 

 ( ) ( ) 1
( ) ( ) (1 ) .

t

diode diodeg t t e  (13) 

The detected signal is thus given by: 

 (det) ( ) ' ( ') ( '),
t

S t dt g t t S t  (14) 

where S(t) is the actual signal and S
(det)

 the recorded signal. 

The experimental data were recorded every 15.3 µs. Given that the cut-off frequency of 

the photodiode is a few kHz, we consider that by taking every sixth point of the trajectory we 

are effectively eliminating the memory effect as the non-instantaneous contribution due to the 

previously recorded trajectory point will have decayed sufficiently. We verified this with 

simulated trajectories where the non-instantaneous response was added. Taking every 6th 

point of these trajectories, effectively eliminated the non-instantaneous response and lead to 

correctly inferred stiffness values (data not shown). Obviously, the delay time between 
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successive trajectory points will then be six times larger. This is the reason why the bias 

calculation [Fig. 2  

Experimental trajectories were recorded for six different laser powers and six different 

heights from the glass coverslip surface. The inferred confinement potentials are shown in 

Fig. 3. As expected, the parabolic potential becomes stiffer as the laser power increases. On 

the other hand, as the distance of the bead to the coverslip surface becomes comparable to its 

radius, the effective viscosity felt by the bead increases [18,24,35]. This leads to a decrease of 

the diffusion coefficient and, therefore, the trap stiffness determined is overestimated, as can 

be seen from the two terms of Eq. (4). This is indeed what is observed in Fig. 3(b). Note that, 

for large distances from the coverslip surface, the trap stiffness may also be affected by 

spherical aberrations which set in because of the refractive index change at the coverslip-

water interface [36]. 

 

Fig. 3. Potentials inferred from experimental trajectories using the Bayesian approach for 
increasing laser power (60, 138, 251, 377, 466, 500 mW; green to red curves) (A) and for 

decreasing distance from the coverslip surface (21.5, 16, 11, 6, 4, 2 µm; red to green curves) 

(B). 

4.2 Comparison with the equipartition and the power-spectrum methods 

The stiffness values obtained in the x-direction (kx) with Bayesian inference, the equipartition 

method and the power- spectrum method are shown in Fig. 4 for varying laser power values 

(A) and for varying distances from the coverslip (B). Both the inference and the equipartition 

method yield similar stiffness values. The power-spectrum method, on the other hand, finds 

consistently higher stiffness values than the inference approach and the equipartition method. 

This difference is probably caused by the fact that the power-spectrum method requires input 

parameters, in particular the radius of the bead which was taken equal to the nominal value of 

the supplier, 500 nm. To confirm this, we measured the hydrodynamic radius of the beads 

using dynamic light scattering. The light scattering curve yields a maximum for a bead radius 

of 436 nm, which is indeed lower that the nominal value, and has a full width at half-

maximum of 184 nm. Based on Eq. (3), an overestimated bead radius yields an overestimated 

stiffness value and explains the higher stiffness values found by the power-spectrum 

approach. 
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Fig. 4. Spring constants extracted from experimental bead trajectories with the Bayesian 

inference (black data points), the power-spectrum (red) and the equipartition method (blue) as 
a function of laser power (A) and distance from the coverslip (B). The solid lines are a guide to 

the eye. The dashed black line in (A) is a linear fit to the spring constants extracted with 

Bayesian inference (BI). Error bars for the power spectrum data are derived from the error in 
the Lorentzian fit; for the Bayesian inference data, the error bars indicate the width of the 

posteriori distribution and, for the equipartition data, the error bars are the error on the mean of 

<x2>. (C) Diffusion coefficient as a function of the distance from the coverslip inferred from 
the data set in (B) (orange), effective viscosity  normalized to the bulk water viscosity 0 

(purple) and diffusion coefficient after correcting for the effective viscosity effect (green). The 

green dashed line represents the resulting diffusion coefficient: 0.63 ± 0.02 µm2/s (the error is 
that of the fit with a constant value). 

In contrast, the Bayesian inference approach does not require any input values. Moreover, 

the Bayesian inference method also yields the bead diffusion coefficient which can then be 

used to obtain the bead radius. The average diffusion coefficient found by the inference 

approach for the experimental data in Fig. 4(a) is 0.62 ± 0.01 µm
2
/s. Using the Einstein-

Stokes relation and the water viscosity at 20°C, 310 Pa s , we find a radius of 358 ± 4 

nm. Given the polydispersity of the bead solution and the fact that dynamic light scattering 

tends to overestimate the contribution of larger particles [37], the bead radius found with the 

inference approach is perfectly compatible with the dynamic light scattering measurement. 

The bead radius may also be extracted from the y-intercept of the power spectrum curve 

for zero frequencies, from which the diffusion coefficient is calculated and, hence, the radius. 

However, the data at small frequency values are usually noisy and do not allow a precise 

diffusion coefficient and radius determination. Indeed, the radius obtained from the power 

spectrum in this manner was 154 ± 5 nm, which is much lower than both the dynamic light 

scattering and the inference values. The use of the bead radius determined from the dynamic 

light scattering data is not very helpful for a precise stiffness determination either. Indeed, the 

presence of polydispersity does not allow determination of the radius of the bead used in the 

actual experiment. Gosse and Croquette have proposed an alternative way to determine the 
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bead radius based on the fact that the power spectrum of velocity fluctuations asymptotically 

reaches a value proportional to the diffusion coefficient at high frequencies [13]. However, 

this asymptotic value can only be measured if the cutoff frequency of the acquisition system 

is much higher than the one of the trap. In practice, for a trap stiffness on the order of 10
4
 

pN/nm (fc 2 kHz for a 1-µm bead), typical for optical tweezers, the cutoff frequency of the 

most commonly used QPDs is too low to allow determination of the diffusion coefficient and 

the bead radius in this manner. 

When fitting the inferred values, we indeed obtain a linear relation between the laser 

power and the spring constant kx, as expected [Fig. 4(a)] [1,21,38]. As discussed above, when 

the distance from the coverslip decreases, the bead sees an increased effective viscosity due to 

the proximity of the coverslip surface and, therefore, a decreased diffusion coefficient. This 

change is described by Faxen’s law [24]: 

 0

3 3 4 4 5 5
( / )

1 (9 /19 ) ( / 8 ) (45 / 256 ) ( /16 )
Faxen R h

R h R h R h R h
 (15) 

where R is the bead radius and h the distance of its center from the solid surface. We indeed 

observe a decrease in the diffusion coefficient inferred with the Bayesian approach [Fig. 4(c), 

orange]. If we correct the inferred diffusion coefficient by dividing with the ratio between 

effective and bulk viscosity (purple), we suppress the diffusion coefficient variation and 

obtain a fairly constant D value of 0.63 ± 0.02 µm
2
/s [green curve in Fig. 4(c)], as expected. 

To examine the effect of drift on the equipartition method results, we generated numerical 

simulations with an increasing linear drift during the acquisition time [Fig. 5]. We observe 

that experimental drift causes a much larger drop in the determined spring constant when 

using the equipartition method than when applying the inference method. Indeed, the 

inference analysis finds the correct spring constant with negligible bias (less than 5%) for 

drifts up to 10 nm at least, whereas the equipartition approach becomes increasingly biased 

already for drifts above 5 nm. 

 

Fig. 5. Biases found for the stiffness values kx determined with the inference method (black 

curve) and with the equipartition method (blue curve) from trajectories with drift. Each data 

point is the average value for 20 simulated trajectories where the stated drift occurs linearly 
over the entire trajectory. The time interval between trajectory points, the diffusion coefficient 

and spring constant used were 15.3 µs (x6 for the Bayesian Inference), 0.3 µm2/s, and 0.06 

pN/nm, respectively. The simulated trajectory length was 45 000 points for the equipartition 
method and 7500 points for the Bayesian inference approach. The error bars are the errors on 

the mean of the values determined. 
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An important additional advantage of the Bayesian inference approach is the fact that it 

needs a lot less points to obtain a meaningful result than the other methods. This may be 

useful because typically the trap calibration is performed after the end of the experiment. If 

the bead inadvertently escapes the trap, the ability to calibrate with only very few points may 

be crucial to exploit the experiment. Figure 6 shows the kx values determined with Bayesian 

inference and with the power-spectrum approach normalized to the input values for simulated 

trajectories with different numbers of points, N. As the trajectory lengths become smaller, the 

power-spectrum approach yields values with increasing uncertainty which become highly 

biased for very short trajectories, whereas the inference method can still accurately determine 

the spring constant even for trajectories with as few as 100 points. Furthermore, the algorithm 

for the power-spectrum approach we used, described in [34], increasingly fails to determine a 

trap stiffness value as the length of input trajectories decreases. By N = 500, the algorithm 

fails for about one quarter of the input trajectories. For the Bayesian inference approach, the 

posteriori distributions for kx [Fig. 6(b)] remain narrow and unbiased for trajectories of 

lengths down to 1000 points and only become broader and somewhat more biased for 

trajectories of 600 points. In the case of the shortest trajectories of 600 points or less, to avoid 

wasting information and using only 100 points, as is the case for the posteriori distribution 

shown in black, we still used every 6th point to remove the non-instantaneous QPD response, 

but also used all sets of intermediate points sampled every 6th point and combined them 

consecutively to form a trajectory of the full length [blue curve in Fig. 6(b)]. This trajectory 

then has the original number of points but individual values remain decoupled from the 

previous values. 

 

Fig. 6. Simulated trajectories for a varying number of points. (A) Spring constants determined 

with the Bayesian inference (black curve), equipartition (blue curve) and the power spectrum 
(red curve) approach normalized with the input spring constant. For each trajectory length, the 

average value determined for 20 trajectories generated with  = 15.3 µs, D = 0.3 µm2/s, and kx 

= 0.06 pN/nm is shown. The error bars are the errors on the mean of the values determined. (B) 
Posteriori probability distributions of kx for two numerical trajectories generated with D = 0.3 

µm2/s and kx = 0.06 pN/nm with N = 600 and 3000 points. For N = 600, if only every 6th point 

is taken into account, the posterior distribution is given by the black curve which is broad and 
more biased. If all 600 points are taken into account (see text), the blue posteriori distribution 

is obtained which is narrow and peaks at the same value as that corresponding to the longer N 

= 3000 trajectory (red). The small bias observed with respect to the input value of kx = 0.06 
pN/nm (vertical dotted line) is corrected by using the bias curves of Fig. 2. 

Finally, the Bayesian inference approach may also be used to determine deviations from 

the expected parabolic profile. In addition to detecting the presence of linear or cross terms, 

the inference method can determine if a fourth- or sixth-order potential is more appropriate to 

describe the confinement, that is detect the presence of higher order terms, which may prove 

useful to correct aberrations in holographic optical traps [39] or when the bead explores areas 

away from the central part of the trap where the potential was found to be anharmonic [30]. In 

the case of our experimental trajectories, this was not the case: no matter the order of the 

#196292 - $15.00 USD Received 22 Aug 2013; revised 19 Nov 2013; accepted 9 Dec 2013; published 13 Dec 2013

(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.031578 | OPTICS EXPRESS  31589



potential assumed for the Bayesian inference, the second order coefficients do not change and 

additional higher order coefficients are found to be negligible [Fig. 7]. However, this property 

of the Bayesian inference approach may also be helpful during the alignment of an optical- or 

magnetic-tweezer setup. 

 

Fig. 7. 2nd (red), 4th (dark blue) and 6th (light blue) order potentials inferred from an 

experimental trajectory obtained for a laser power of 251 mW (same trajectory as in Fig. 4(a)). 

5. Summary 

To summarize, the inference method is more accurate and reliable than both the other two 

most commonly used single-beam methods, the equipartition and the power-spectrum 

approach. Bayesian inference analysis of the recorded bead trajectories does not depend on 

external drift and does not require any input parameters. In contrast, the precision of the 

equipartition method is quite susceptible to drift during acquisition, while the power-spectrum 

approach requires the bead radius as input information, a parameter that is difficult to 

determine precisely with this approach. Furthermore, Bayesian inference needs the least 

amount of points to obtain a precise calibration. In addition, Bayesian inference yields the 

diffusion coefficient and therefore the bead radius. We here used an independent calibration 

of the QPD using the step-response method [22]. Alternatively, if the bead radius value is 

known, for example in the case of monodisperse bead solutions, we can use the inferred 

diffusion coefficient to calibrate the QPD which further facilitates the experimental 

procedure. In this work, we used experimental data from an optical-tweezer setup, however, 

the approach is directly applicable to magnetic tweezers and more generally to single-particle 

Brownian trajectories exploring all kinds of confining potentials [26–28]. 
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