Coupled-mode theory and propagation losses in photonic crystal waveguides
Résumé
Mode coupling phenomena, manifested by transmission "mini-stopbands", occur in two-dimensional photonic crystal channel waveguides. The huge difference in the group velocities of the coupled modes is a new feature with respect to the classical Bragg reflection occurring, e.g., in distributed feedback lasers. We show that an adequate ansatz of the classical coupled-mode theory remarkably well accounts for this new phenomenon. The fit of experimental transmission data from GaAs-based photonic crystal waveguides then leads to an accurate determination of the propagation losses of both fundamental and higher, low-group-velocity modes.