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Compact and fault-tolerant photonic crystal add–drop filter
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We propose an add–drop filter consisting of two adjacent waveguides carved into a two-dimensional photonic
crystal that is etched through a standard guiding structure. This filter is based on distributed energy
transfer via the frequency-selective intermediate conversion of the fundamental guided mode to a high-order
low-group-velocity mode. This geometry circumvents the fabrication sensitivity on the single-hole scale of
previous cavity-based designs. Combining distributed energy transfer and reduced group velocity preserves
compactness. The design is analytically optimized with a coupled-mode approach. © 2003 Optical Society
of America
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In a multimode waveguide formed by two close ref lec-
tive surfaces, if a corrugation of period a is created,
waveguiding and diffraction compete. Guiding is
frustrated when a Bragg condition Dkk � m�2p�a� is
met between the wave vectors kk of any two modes.
This is the situation in photonic crystal channel
waveguides (PCCWs) that are defined by a few
missing rows in a two-dimensional photonic crystal,
e.g., an array of holes perforating a dielectric slab
guide, sketched in Fig. 1(a), between the fundamental
mode and a higher-order mode. A mode gap arises
in the dispersion diagram as well as a transmission
mini-stop-band (MSB), a feature that is also well
documented for lossy modes.1 –3

For the miniature add–drop filters desired for op-
tical networks the use of tiny cavities coupled to a
PCCW shows promise4 –6 but presents severe difficul-
ties. For single-hole defects5,6 even a few nanometers
on the diameter of nearby holes shift the cavity mode
and inf luence its coupling. Posttrimming is required
to fabricate devices in deterministic channels. This
hindrance does not exist for distributed-feedback lasers
because the feedback is averaged over several hundred
periods of a � l�2n (l is the wavelength, and n is an
effective index). However, for multiple wave interfer-
ences, scattering from a few tens of scatterers results in
a huge coherent intensity compared with out-of-phase
directions.7 This suggests that the distribution of a
high-performance filtering action is compatible with a
core device size of the order of 10 20l�n � 10 mm.

Our add–drop proposal exploits the MSB of two ad-
jacent PCCWs [Fig. 1(c)] in the quasi-TE polarization
of the photonic bandgap. In its f irst form it steers
light from the top PCCW fundamental mode a into the
high-order, low-group-velocity mode b at the specific
MSB frequency. In this new state, light tunnels to
the adjacent high-order mode b, where the reciprocal
MSB effect retrieves mode a directionally. The large
transverse momentum of the two b modes and their
far deeper penetration in the barrier [see the magnetic
0146-9592/03/222246-03$15.00/0
field map of both modes in Fig. 1(b)] greatly simplify
the design, allowing the codirectional transfer of the
a modes in the �10 mm of our system to be fully ne-
glected; the coupling length reaches �1 mm for a sepa-
ration of a few rows. Figure 1(d) provides a heuristic
quantum-mechanical analogy. The implementation of
an extra transverse cavity to sharpen filtering is illus-
trated in Figs. 1(e) and 1(f ). The concept is fault tol-
erant since no wavelet or localized mode is singled out.
The PCCW assists the a–b and b–a conversions while
ensuring compactness through the low group velocity
of the b modes. These highly confined modes take ad-
vantage of the light-insulating property of the photonic
crystal. Similar modes would be very leaky in ridge
channel waveguides with some corrugation. For inte-
gration in a device the four access guides can be of
the ridge type or PCCWs. Their spacing prevents co-
directional coupling, while a PCCW access guide with a
slightly detuned period or width can be used to elimi-
nate the MSB phenomenon in the desired frequency
range.

Applying coupled-mode theory (CMT) to obtain an
analytical optimization of the waveguide parameters
(width, length, spacing) allows for eff icient design.
Use of CMT has recently been validated for the
MSB of a single PCCW on data from a GaAs-based
PCCW,3 yielding knowledge of even the modal losses
aa and ab. The other components are the group
velocities nga and ngb of the two modes and their
coupling constant kab. These quantities are obtained
numerically from the slopes of the mode dispersion
and the mode spectral gap, which can be expressed
as Duab � �2akab���p�nga 1 ngb��, where u � a�l is
the normalized frequency. Adjusting aa and ab could
yield a good fit to the experimental transmission data
from GaAs-based PCCWs of lengths from 30a to 240a.3

The filter in Fig. 1(c) can be simply modeled by
the following coupled-mode equations between the
amplitudes A1, A2, B1, and B2 of the fundamental
a and high-order b modes in the upper (subscript 1)
© 2003 Optical Society of America
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Fig. 1. (a) Mode coupling from the fundamental mode a
to a high-order mode b in a photonic crystal waveguide.
(b) Map of the magnetic field amplitude of fundamental
and higher-order TE modes in a particular waveguide with
four missing rows [see Fig. 2(a)]. (c) Add-drop filter based
on the a–b, tunneling of the b modes, and b–a mode con-
versions. (d) Picture with two wells showing the easier
tunneling of the higher-order b modes. (e) Insertion of a
Fabry–Perot-type cavity of modest width W 0 to sharpen
filtering. (f ) Picture of three wells showing the f iltering
operation.

and lower (subscript 2) waveguides, with obvious
notations8:
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where kbb describes the codirectional coupling between
the higher-order b modes, whereas kaa is simply ne-
glected. da and db are the detuning with respect to
the Bragg condition.

We find the optimal design analytically in the loss-
less regime, while ordinary mathematics reveals the
evolution of the performance with these optimal pa-
rameters for the lossy case. The output waves are
calculated for A1�0� � 1, B1�L� � 0, A2�0� � 0, and
B2�L� � 0; i.e., only mode a is launched into chan-
nel 1. To obtain optimal conditions, we impose unity
amplitude of the fundamental mode in the cross port
[A2�Lopt� � 1] and zero in the bar port [A1�Lopt� � 0].
We find this critical coupling when
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Because mode b goes backward, we find that A�z� and
B�z� exhibit nonmonotonic behavior along the wave-
guides at criticality, notably with B1�Lopt�3� � 0.

We now present a specific example based on PCCWs
with four missing rows with symmetric boundaries
(which we label W4) and made of a triangular array
of air holes etched through an InP-based heterostruc-
ture (with an air-filling factor of f � 0.35 and a back-
ground dielectric constant of e � 10.4). Figure 2(a)
shows an enlargement of the dispersion relations of
an isolated W4 waveguide with symmetric boundaries
computed by the plane-wave method.9 Figure 1(b) il-
lustrates the modes at k � 0.07p�a. A minigap of
width Duab � 1.14 3 1023 between the fundamental
mode (nga � 3.28) and high-order mode 7 (ngb � 71)
occurs at the normalized frequency u0 � a�l � 0.282,
leading to a dimensionless coupling constant akab �
0.133. Then Eq. (2) dictates akbb � 0.357 for optimal
operation. A close value, akbb � 0.361, is obtained
for a separation of four rows, which is related to a
splitting of mode b of Dubb � 1.62 3 1023 determined
far from the MSB region. The optimal length for full
transfer (cross operation) is then Lopt � 26a, yield-
ing 11 mm when l � 1.5 mm (a � 0.44 mm). Figure 3
shows the calculated bar and cross transmission spec-
tra for the lossless case with the above parameters.
The bar spectrum displays a sharp peak with a maxi-
mum at 98.7% and a quality factor of Q � 1500. To
filter out the unwanted sidelobes, a 26a 3 W 0 cav-
ity can be inserted between the two waveguides, as
proposed in Fig. 1(e). From our knowledge of these

Fig. 2. (a) Dispersion relation of an isolated W4 PCCW
with symmetric boundaries (shown in the inset) around
the MSB between modes a (1) and b (7) at u0 � 0.282 (the
photonic crystal parameters are f � 0.35 and e � 10.4).
The modes in Fig. 1(b) are on branches 1 and 7 at k �
0.07p�a. (b) Dispersion relation for guides separated by
four rows (see inset) at the critical coupling condition.
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Fig. 3. (a) Bar channel transmission spectrum in the loss-
less case (black curve) and with propagation losses aa �
20 cm21 and ab � 400 cm21 (gray curve). (b) Cross chan-
nel transmission spectrum in the same cases. (c) Semilog
plot of the bar spectrum as in Fig. 1(b) (thin curve) and
with the Fabry–Perot cavity filtering action (thick curve).

Fabry–Perot cavities,10 which we extrapolate to the lat-
est trends toward low-loss planar photonic crystals,11,12

we infer a mirror ref lectivity of R � 0.95. With a
physical cavity width W 0 of the order of 7a to 8a we
have a dimensionless free spectral range of Dl�l �
0.05 (the effective cavity length Weff is 9a to 10a, and
we assume ng � 7, 2ngu � 2 and use the basic relation
Dl�l � l�2ngWeff) and thus a quality factor Q 0 � 1220
(with a cavity order of 20 and a finesse of 61). A
simple but still realistic way to take its effect into ac-
count is to multiply kbb in the coupled-mode calculation
by the complex cavity transmission T��1 2 R exp�iw��,
with w � 2kW 0 being the classical cavity round-trip
phase. As a rule, the product kbbT��1 2 R� should be
kept constant. The resulting cross spectrum [dB] is
shown in Fig. 3(c) as a thick curve. The overall Q is
slightly increased, whereas the former plateaus are re-
jected by 10 to 13 dB. This is not the limit: The cav-
ity configuration should be optimized independently.

Returning to the primary design [Figs. 1(c), 3(a),
and 3(b)], we checked that the bar signal remains
below 5% (213 dB) for f luctuation of the air-filling
factor df � 60.01 [in fact, d�akbb� � 60.01], for
losses ab as high as �1200 cm21 (note that ngb � 71,
however) and losses aa as high as 100 cm21 (far more
than published in the case of a PCCW with three
missing rows13,14). As an example, the gray curves
in Figs. 3(a) and 3(b) are calculated for aa � 20 cm21

and ab � 400 cm21. In the first design proposal the
insertion loss in the drop channel is as small as 21.5
to 24 dB with the same large modal loss values [see
the gray curve in Fig. 3(b)]. Finally, power that is
dropped in the wrong direction takes the form of only
a small amount of high-order-mode B2 that does not
sizably propagate back; i.e., the cross talk is negligible
as in the case of A2�0� � 0. A detailed investigation
of fault tolerance among holes is the next step and
could be achieved by finite-difference time domain
modeling,15 and a coupled-mode theory with a variable
coupling constant could also provide direct insight.

In conclusion, our add–drop filter uses novel mode-
coupling phenomena specific to photonic crystal
waveguides. Because of the use of distributed action
and confined low-group-velocity modes, our filter
shows acceptable performance for coarse wavelength
division networks with the loss level established
for state-of-the-art photonic crystal systems in two
dimensions.11,12 In addition, it remains compact and
makes genuine use of full in-plane confinement of
photonic crystals.
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