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We study two-beam interaction in photorefractive sillenite crystals in reflection geometry and derive analytic
expressions for the signal gain and its polarization direction in the presence of a strong pump beam. The
crystal is cut normal to one of the crystallographic axes, and no external electric field is applied. Crystal ab-
sorption and its natural optical activity are taken into account. The coupling effects are strongly dependent

on the polarization directions of the interacting beams.

We determine the optimal polarization directions and

optimal crystal thickness that give maximum signal gain. Experimental results are in excellent agreement
with theoretical calculations. © 1997 Optical Society of America [S0740-3224(97)01505-1]

1. INTRODUCTION

The phenomenon of two-beam coupling in photorefractive
materials has been extensively studied, and a large num-
ber of applications in image processing, optical intercon-
nection, and optical computing have been reported.® The
two light beams interfere and create a refractive-index
grating in the material; then, they are self-diffracted from
the grating they create. The processes of writing and
reading thus take place simultaneously. The refractive-
index grating and the interference-fringe pattern are in
general spatially shifted with respect to each other, and
this results in an unsymmetrical exchange of energy be-
tween the interacting beams. A majority of research pa-
pers treating two-beam interaction have considered the
codirectional geometry wherein the two beams propagate
practically parallel to each other, generating a transmis-
sion grating. The case of counterpropagating beams in
which a reflection grating mediates the exchange of en-
ergy has attracted less attention. Two-beam interaction
in this geometry has been analyzed by Yeh? for a
BaTiO; crystal, by Ewbank et al.? for a Rh-doped stron-
tium barium niobate crystal, and by Erbschloe et al.* for a
LINDbOg; crystal. An important application of the contra-
directional two-beam coupling is the generation of phase-
conjugate waves by stimulated photorefractive
backscattering.?””

A very interesting class of photorefractive media is
that of sillenite crystals such as bismuth silicon oxide
(Bi1sSi0yy or BSO), bismuth germanium oxide
(Bi;9GeOgy or BGO) and bismuth titanium oxide
(Bi;3TiOgy or BTO). These materials have a faster re-
sponse time as compared with BaTiO3, LiNbOg, or SBN,
but they show lower gain owing to the low value of their
electro-optic coefficient. The sillenite crystals are opti-
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cally active and become, in addition, linearly birefringent
in the presence of an electric field. Owing to the concomi-
tant presence of optical activity and linear birefringence,
light diffraction in these crystals exhibits complex polar-
ization effects. A large number of authors®!! have stud-
ied the polarization characteristics of light diffracted by a
static, prewritten transmission grating as a function of
the polarization direction of the readout beam. It was
demonstrated that under certain conditions the emerging
readout beam and the image-bearing diffracted beam
have orthogonal polarizations, and consequently the
signal-to-noise ratio in the output image can be greatly
enhanced when the strong readout beam is eliminated
with a linear polarizer. Polarization effects in two-beam
coupling in the presence of self-diffraction have also been
widely studied. However, as in high-gain materials,
most of the papers on sillenite crystals deal with the co-
directional geometry.!?13  Jal%1% was the first to analyze
the contradirectional two-beam coupling in BGO and to
measure signal gain as a function of the incident angle of
the beams and of the initial beam intensity ratio. dJa,
however, neglected the optical activity and used numeri-
cal methods to determine the transmission coefficients of
the beams; analytic results were obtained only when crys-
tal absorption was neglected. Kukhtarev et al.'® derived
coupled-wave equations for the two-beam interaction in
reflection geometry, taking into account both optical ac-
tivity and linear birefringence. They solved the coupled-
wave equations by an iterative method and predicted that
self-diffraction might induce a polarization rotation of a
few degrees per centimeter. In a recent paper!” two of us
studied the self-diffraction effects in sillenite crystals be-
tween a forward-propagating beam and its backreflected
beam. We found that the light beam exiting a 4-mm
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thick BTO crystal varied in intensity by as much as
+40% when the polarization direction of the incident
beam was changed.

In this paper we derive analytic expressions for the am-
plification of a weak signal beam and its polarization
state in a reflection geometry as a function of the polar-
ization directions of the signal and pump beams, optical
activity, refractive-index modulation, and crystal thick-
ness. Crystal absorption is taken into account, but the
pump depletion due to energy transfer is neglected. The
crystal wafer is cut normal to one of the crystallographic
axes [Fig. 1(a)]. The space-charge field that is due to the
reflection grating is parallel to this axis [(001) in Fig.
1(a)]. Due to the Pockels effect, the cubic sillenite crystal
becomes linearly birefringent; the birefringent axes,
called x, and y in the figure, lie in the plane of the wafer
and are at 45° with respect to the crystallographic axes
(100) and (010). The refractive index for a light beam
propagating along the z axis is ng + (1/2)n*rE, or n,
— (1/2)ny’rE according to whether the electric vector of
the light beam is along the x axis or along the y axis; here
n, is the refractive index of the cubic crystal and r the
electro-optic coefficient. If the crystal is cut normal to
the (111) crystallographic axis, the refractive index for
light propagating along this axis is independent of its po-
larization  direction'® and its value is n,
+ (1/2¢3)ny°rE,.. In this configuration, the polariza-
tion effects are less important and are easy to explain;
however, the signal gain is much lower due to the smaller
value of the refractive-index modulation.

No bias electric field is applied to the crystal. The dis-
placement of the free-charge carriers is by diffusion alone,
and thus the refractive-index grating is shifted through a
quarter of its period with respect to the interference
fringes. The direction of the shift is taken to be such that
the pump beam self-diffracted from the grating adds in
phase to the signal when the pump-beam polarization is
along the x axis and in antiphase when the pump-beam
polarization is along y axis.

In the next section we calculate the fringe contrast as a
function of z, and the x and y amplitude components of

<001>
z
n,+An
9 x
n,-An /
Y
y
(a)
dz
S, R,
z=0 z=L
(b) z

Fig. 1. Crystal orientation and geometry for contradirectional
two-wave mixing. The pump beam R, makes a small angle with
the z axis such that the light reflected at the external face z
= L does not mix with the outcoming signal. An = ny*rE /2.
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the amplified signal at the exit plane. In general, nu-
merical integration has to be carried out to yield the final
result. Analytic expressions for the signal gain and its
polarization direction are, however, obtained in Appendix
A for the case in which wAn .. /Ap < 1; here An ., is the
saturation value of the refractive-index modulation ob-
tained with fringes of unit contrast, and p is the angle of
rotation of the light vector per unit thickness of the crys-
tal. This condition is amply satisfied by BSO and BGO
crystals. In Section 3 we compare the analytic results
with the exact numerically calculated values and with the
experimentally measured data. Some concluding re-
marks about the optimal beam polarizations and crystal
thickness are given in the last section.

2. TWO-BEAM COUPLING IN REFLECTION
GEOMETRY IN THE PRESENCE OF
OPTICAL ACTIVITY

The geometry used to calculate the signal gain is shown
in Fig. 1(b). The weak signal S and the strong pump R
are propagating in opposite directions practically parallel
to the z axis, and the polarization vectors lie in the x—y
plane. The crystal is assumed to have antireflection
coatings. The eigenwaves for a crystal having both cir-
cular and linear birefringence are elliptic. However, in
our case, because no bias electric field is applied to the
crystal and because the space-charge field generated by
the low-contrast fringes is only a few hundred volts per
centimeter, the linear birefringence is very small com-
pared with the circular birefringence. Under this condi-
tion it is legitimate to suppose that the propagation of
light beams inside the crystal is dictated by optical activ-
ity only; the linear birefringence results in diffraction of
light. The validity of this assumption is amply justified
by the excellent agreement between theoretical and ex-
perimental results. All angles are measured with re-
spect to the x axis in the clockwise sense for an observer
situated to the left of the crystal [see Fig. 1(b)] and look-
ing in the positive z direction (the pump beam R is enter-
ing his eyes). The polarization vector of the signal beam
makes an angle 6 with the x axis at the entrance face of
the crystal (z = 0); at depth z it makes an angle 6
+ pz. The electric vector of the pump as it enters the
crystal at z = L is chosen to make an angle 6 + pL with
the x axis. The polarization vector of the pump beam as
it progresses in the negative z direction rotates in the an-
ticlockwise sense. With this disposition the electric vec-
tors of the signal beam (without amplification) and the
pump beam remain parallel to each other throughout the
crystal, and the initial fringe contrast at z = 0 is optimal.
Owing to the exchange of energy between the beams, the
fringe contrast m becomes a function of z. To start with
we determine this dependence, because the diffraction ef-
ficiency varies with m.

A. Variation of Fringe Contrast m as a Function of z

Since the pump is much stronger than the signal, the in-
terference fringes are of low contrast, and under this con-
dition the modulation of the crystal refractive index can
be written An = mAn ,.; Anp,.. depends on the nature
of the crystal and the geometry of the experimental setup.
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The amplitude diffracted by a thin phase grating of thick-
ness dz is R(w/N)mAn,dz, R being the amplitude of
the readout beam; the factor exp(j#/2) that appears in the
expression for the amplitude diffracted by a phase grating
is eliminated because the phase grating is shifted through
a quarter of a period. The fringe contrast at a depth z is

m(z) = 2S,R/(R? + S?) ~ 2S,/R, (1)

where S is the component of the signal amplitude (initial
signal plus the contribution of the diffraction process)
that is polarized parallel to R. The amplitude S, varies
with z owing to the diffraction process and also owing to
crystal absorption. The pump-beam amplitude varia-
tions are due to crystal absorption alone. Thus

dm = ZdS”/R - 2SHdR/R2. (2)

We first calculate the contribution to S, from the pump
beam diffracted at the elementary grating situated at z.
The x, y components of the pump amplitude at z are

R, = R cos(6 + pz),
R, = R sin(0 + pz). (3)

The x, y components of the amplitude diffracted by the
grating of thickness dz situated at z are

dU, = R cos(0 + pz)(w/N)mAn,dz
= 28,8 cos(6 + pz)dz,
dU, = —28,8 sin(§ + pz)dz, (4)

where B = (7/N\)|Any,l; dU, is negative because the
refractive-index modulation along the y axis is taken to
be negative. The elementary diffracted amplitude polar-
ized parallel to the pump-beam polarization is written
with the help of Eq. (4):

dS(diffraction) = 2S,8dz cos(26 + 2pz). (5)

The change in S| due to absorption in a thickness dz of
the crystal is

dS (absorption) = S|[exp(—adz/2) — 1] = —S,adz/2,
6)

where a is the absorption coefficient of the crystal.
Hence the total change in S| in traversing the crystal
thickness dz is

dS, = S,dz[28 cos(26 + 2pz) — a/2]. (7
The change in R due to absorption is
dR/dz = d{R, exp[—a(L — 2)/2]}/dz = aR/2
or
dR = aRdz/2, (8)

where R is the amplitude of the pump beam when it en-
ters the crystal at z = L. Substituting Eqgs. (7) and (8)
into Eq. (2), we obtain

dm = mdz[28 cos(20 + 2pz) — «]. 9)
Integrating Eq. (9) with the initial condition, at z = 0,
m = mg, where my = (2S5,/R,)exp(al/2), we obtain

m = mg exp[—az + (2B/p)cos(26 + pz)sin pz].
(10)
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B. Calculating the Total Diffracted Amplitude

Emerging from the Crystal

Substituting Eq. (10) into Eq. (4), we obtain the elemen-
tary amplitude components diffracted by the grating of
thickness dz

dU,(z) = Ry exp[ —a(L — 2z)/2]cos(6 + pz)Bmdz

2808 cos(6 + pz)expl —az/2 + (2B/p)
Xcos(26 + pz)sin pzldz,

dU,(z) = —28B sin(6 + pz)exp[—az/2 + (2B/p)
Xcos(260 + pz)sin pz]dz. (11)

These diffracted components propagate in the remaining
thickness (L — z) of the crystal; they rotate owing to the
optical activity and are partially absorbed. At the exit
face these components are again decomposed along the
x,y axes. We thus write the diffracted amplitude at the
exit plane contributed by the elementary grating situated
at z:

dU(L) = exp[—a(L — 2)/2]{dU(z)cos p(L — z)
+dU,(z)cos[p(L — z) + (@/2)]}
= 28oB cos(0 — pL + 2pz)dz exp[—aL/2
+(28/p)cos(26 + pz)sin pz],
dU,(L)

—2S¢B sin(0 — pL + 2pz)dz exp[ —aL/2
+(2B/p)cos(26 + pz)sin pz]. (12)

The total diffracted-amplitude components U, and U, are
calculated by numerically integrating these expressions.
The total output signal is the initial signal plus the dif-
fracted amplitude

S.(z=L) =S8, exp(—aL/2)cos(6 + pL) + U,,

S,(z = L) =8, exp(—aL/2)sin(6 + pL) + U, .
(13)
The signal gain yis calculated as follows: 7yis the output

signal intensity in presence of the pump beam/Output sig-
nal intensity without the pump beam,

y = (S,2 + 8,%)/8,? exp(—aL). (14)

With the assumptions that we made, the output signal is
linearly polarized and the direction of polarization is cal-
culated with the ratio S,/S,. We note from Eqs. (12)-
(14) that if 0 is changed to 6 + 7 the expressions for S,
and S, change sign, but y remains unchanged. We also
note that y(6, p) = y(—6, —p). The integral of the ex-
pressions in Eq. (12) can be carried out analytically if
B/p < 1; the exponential factor is then expanded in a
Taylor’s series and a few terms are retained. This in-
equality is amply satisfied for BSO crystals and to a
lesser extent for BTO. We carry out these calculations in
Appendix A and give analytic expressions for the signal
gain and for the polarization direction of the amplified
signal. The results obtained analytically and numeri-
cally for the BSO crystal agree to better than 1%.

The results [Eqgs. (12)—(14)] derived here for the contra-
directional beam coupling apply perfectly to the codirec-
tional coupling when optical activity and crystal absorp-
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tion are taken into account and pump depletion due to
transfer of energy is neglected. In the codirectional ge-
ometry, known as the transverse geometry because the
space-charge field is orthogonal to the general direction of
light propagation, the crystal wafer is cut normal to the
(110) axis, the axes (110) and (001) lie in the plane of the
wafer, and the grating vector is parallel to the (110) axis.
In both these configurations we have two linear birefrin-
gent axes with refractive indices no * (1/2)ny*rE,,, the
value of E,, is, of course, different in the two cases.

3. EXPERIMENTAL VERIFICATION OF THE
THEORETICAL MODEL

A. Signal Gain as a Function of §: BSO

The signal gain y and the polarization direction of the am-
plified signal are measured for a BSO:Mn and a BTO:Cd
crystal with a He-Ne laser (A = 633 nm). The ratio
So?/Ry? is 7 X 1073. The power density incident upon
the crystal is approximately 80 mW cm™2. The curve in
Fig. 2 represents the signal gain y as a function of the po-
larization direction 6 of the incident signal beam for the
BSO crystal (p = —0.39 mm !, thickness 2.07 mm). The
pump-beam polarization is at # + pL. The circles repre-
sent the experimentally measured values. The best fit
between theoretical and experimental results is obtained
for 8 = 0.11 mm™!; this gives the saturation value of the
space-charge field to be 7kVem™ (» is taken to be
4 X 1072 mV™1). It should be noted that 7 kV cm™! is
the maximum value of the space-charge field that is ob-
tained for m = 1; due to the low value of m, the actual

25 T v T T T T T
20} .
15} .
Y
10} .
0.5 4
1 L 1 L 1 " 1 "
-50 0 50 100 150
0, deg

Fig. 2. Variation of the signal gain y as a function of the polar-
ization direction 6 of the incident signal beam for BSO crystal
(p = —0.39 mm™!; thickness, 2.07 mm). The polarization direc-
tion of the pump as it enters the crystal at z = L is 6 + pL.
The solid curve is the theoretical result obtained by the numeri-
cal integration of Eq. (12) and by use of Egs. (13) and (14). The
circles represent experimental values. The best fit between the-
oretical and experimental results is obtained for S
= 0.11 mm™.
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value of E in the crystal is much lower. The theoretical
curve in Fig. 2 has been calculated by numerically inte-
grating Eq. 12. However, because B/p in our case is much
less than 1 (B/p = 0.11/0.39), the analytic expression de-
rived in Appendix A gives equally accurate results. In
addition, we can draw some interesting conclusions about
the signal gain from this expression. Because C(=p/p)
< 1, we can neglect the third and the higher-order terms
in C and write Eq. (A5) in the form

y =1+ 4(B/p)A sin pL cos(20 + pL)
X [1 + (B/p)cos pL sin(260 + pL)]
+ 4(B/p)*A? sin*(pL),
A = exp[—(fB/p)sin(26)]. (15)

This simplified equation permits us to determine the op-
timal orientation #that maximizes y. To study the varia-
tion of vy as a function of 6, we can ignore the second term
within the square brackets in Eq. (15) because it is much
smaller than the first term, which is 1. The parameter
A does not vary much with 6 and remains close to unity.
The only term that varies significantly with 6 and even
changes its sign is

4(B/p)A sin pL cos(260 + pL).

For 0 < |pL| < m, (sin pL)/p is positive irrespective of the
sign of p, and this term reaches its maximum value for
6 = —pL/2. For w < |pL| < 2w, which is true for very
thick crystals, the optimal value of 8is —pL/2 £ #/2. It
should be remarked that these optimal values of # do not
maximize A but, at least, make it greater than 1 and thus
result in further enhancement of the signal gain. These
observations about the optimal orientation 6 are verified
by the experimental and the numerically calculated re-
sults presented in Fig. 2. The maximum occurs at 6
= 21° and the —pL/2 value of our BSO crystal is 23° (our
BSO and BTO crystals have a negative rotatory power).

Substituting 6§ = —pL/2 in Eq. (15), we obtain the
maximum value of the signal gain

Ymax = {1 + (2B/p)sin pL exp[(B/p)sin pL]}*. (16)

Using the values of B, p, and L of our BSO crystal in this
equation, we find that vy, .. = 2.25. This value agrees to
within 1% with the value obtained by numerically inte-
grating expression (12). This validates our approxima-
tion used for writing the simplified expressions (15) for
the signal gain, at least so far as y,,,, is concerned.

In Fig. 3 we draw a few y—#6 curves for different values
of pL obtained by numerical integration of Eq. (12) and by
use of Egs. (13) and (14). These curves again verify our
conclusions about the optimal value of 6. (The curves for
which pL is an integral multiple of 7 will be discussed
separately.) This optimization of the signal- and pump-
beam polarizations was pointed out for the two-beam in-
teraction in transmission geometry by Petrov et al.'® and
other authors.!® In fact the explanation is quite simple:
With this choice of the pump and signal polarizations, the
polarization vector of the pump and that of the original
signal at the middle of the crystal (z = L/2) are along the
x axis (the axis with positive refractive-index modula-
tion), and hence the diffracted amplitude contributed by
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-100 -50 0 50
9, deg
Fig. 3. Numerically calculated y—6 curves for a BSO crystal

(p =039mm™}, 8 =0.11mm™') for different values of pL
(45°, 90°, 135°, 180°, 225°, 270°, and 360°).

the pump in this region adds in phase to the signal. In
other words, the y component of the diffracted amplitude
is zero. Besides, if pL < /2, the light vectors stay close
to the x axis throughout their transit in the crystal, and
thus the amplification is maximum.

1. Signal Gain for pL = k, k Being an Integer
Substituting pL = k7 in the analytic expression (A5), we
obtain

y =1+ (B/p)* exp[—(2B/p)sin 20]k2w2.  (17)

In practical situations % is rarely greater than 1, and thus
v is close to 1 (no amplification). The maximum occurs
for 6 = 45° (for p negative) and § = —45° (for p positive).
These conclusions drawn from analytic expressions are
verified by the numerically calculated curves for pL = 7
and pL = 27 in Fig. 3. An intuitive explanation of this
result is as follows: for pL = & (or k), during their
transit in the crystal, the pump and the signal beam vec-
tors stay close to the x axis as long as they stay to the y
axis. Consequently the amplification (during the pas-
sage close to the x axis) and the deamplification (passage
close to the y axis) practically cancel each other. This
discussion remains valid when pL is not exactly 2 7 but is
close to this value.

2. Variation of vy as a Function of Crystal Thickness

We observe, from the approximate relations (15)—(16) ob-
tained by neglecting higher than second-order terms in
(B/p), that y will reach its maximum value when |pL|
= 7/2. Of course there are some higher-order terms in
Eq. (A5), such as A%(B/p)*(pL)?, that increase with L,
but their contribution to yis negligible. Thus there is no
point in using a thick crystal with |pL| > #/2. An intui-
tive explanation is as follows: With pL = #/2 and the
choice § = —45°, the pump and the signal wave vectors
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stay close to the x axis throughout their transit in the
crystal. If pL > 7/2, the light vectors will be relatively
closer to the deamplifying y axis at least during a fraction
of their transit. The exact numerical results represented
by the curves in Fig. 3 show this effect. The gain in-
creases when pL is increased from 45° to 90°. However,
any further gain remains insignificant even when the
crystal thickness is increased threefold (pL = 270°).
The same effect is shown by the curves for pL = 45° and
pL = 225°,

B. y as a Function of # and of L: BTO

The curve in Fig. 4 represents y as a function of 6 for a
BTO:Cd crystal (p = —0.11mm !, L =4.2mm) ob-
tained by numerical integration of Eq. (12) and by use of
Egs. (13) and (14). The circles are the experimental re-
sults. The best fit between experimental and theoretical
results is obtained for 8 = 0.133 mm™!. The maximum
of the signal gain occurs for § = 12°, which is in excellent
agreement with the § = —pL/2 value for our crystal (pL
= —26°). Though the approximation used for writing
the simplified expression (15) is not valid for the BTO
crystal, the fact remains that the choice of § = —pL/2
maximizes the signal gain because the interacting beam
vectors stay close to the amplifying axis.

For our BTO crystal the value of pL, the total angle
through which the wave vectors rotate during their tran-
sit in the crystal, is only 26°. Besides, if we polarize the
signal and pump beams as they enter the crystal on op-
posite faces, at —pL/2 and —pL/2 + pL, respectively, the
two vectors stay practically parallel to the x axis. Under
these conditions (low value of pL and appropriately cho-
sen polarizations) the signal gain can be calculated with a

10 T T T ¥ T v 1
8 I N
6L i
Y a4t :
2 F 4
0 ]

1 L 1 n [ n 1 L
-50 0 50 100 150
0, deg
Fig. 4. -6 curve for the BTO crystal (p = —0.11 mm™ ! L

= 4.2 mm). The solid curve represents the numerically cal-
culated theoretical result; the circles indicate experimentally
measured values. The best fit between theoretical and experi-

mental results is obtained for 8 = 0.133 mm 1.
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good accuracy by taking p = 0 in our analysis. Equation
(12) for the elementary diffracted amplitude then be-
comes

dU,(L) = 28,8 cos 6 exp[—aL/2 + 28z cos 26],

dU,(L) = —28yB sin 0 exp[—aL/2 + 2Bz cos 26].
(18)

Integrating these expressions and using Eqs. (13) and
(14), we obtain the signal gain

v =1+ (1/cos? 26)[exp(2BL cos 26) — 1]?
+ 2[exp(2BL cos 26) — 1]. (19)

For optimal gain we take 6 = 0, that is, we take the beam
polarizations parallel to the x axis. This gives

Ymax = €xp(4BL). (20)

If #is taken to be #/2, yis equal to exp(—4BL). Expres-
sion (20) is identical to the one obtained in the transmis-
sion geometry. Substituting 8= 0.133 mm ™! and L
= 4.2 mm into Eq. (20), we obtain vy, =9.3. The
value obtained from the rigorous treatment (Fig. 4) is 8.7.
The agreement is highly satisfactory. As expected, the
presence of optical activity tends to decrease the gain.
For our BSO crystal (pL = 46°), Eq. (20) gives y = 2.5, a
satisfactory approximation of the exact value 2.25. For
applications needing amplification of signal, the BTO
crystal has the advantage over BSO in that it has low ro-
tatory power and a relatively higher electro-optic coeffi-
cient. A 1-cm thick crystal (pL = 63°) will give a signal
gain of about 100. Taking into account crystal absorp-
tion (@ = 1 em™1), the ratio of the output to the input sig-
nal intensity (S2/S,2 = yexp(—alL)) is ~35. Optimizing
the grating period should yield still higher amplifications.
It should be remembered that these high gains are ob-
tained without applying any external electric field to the
crystal.

C. Polarization Direction of the Amplified Signal

The polarization direction ¢ of the amplified signal beam
is given as a function of #in Fig. 5. The angle ¢ plotted
here is in fact ¢ = ¢ — (0 + pL). In other words, ¢ is
the (polarization direction of the output signal in presence
of the pump) minus the (polarization direction of the out-
put signal without the pump). For simplifying the ex-
perimental operations the pump polarization was set at 6
and not at # + pL. The theoretical result for this con-
figuration is obtained by multiplying the right-hand side
of Eq. (12) times cos pL and replacing d with 6 — pL. We
again find that the agreement between theoretical and ex-
perimental results is excellent.

In Fig. 6 we present ¢ — 6 curves for the optimal situ-
ation in which the pump-beam polarization is set at 4
+ pL. We note that for § = —pL/2, ¢ is nearly zero;
that is, the polarization of the amplified signal is roughly
the same as that of the unamplified signal. Intuitively
this can be explained as follows: For our crystals
pL < 1 and by choosing the signal and pump polariza-
tions at —1/2pL and +1/2pL, respectively, we ensure that
the two vectors stay close to the amplifying x axis
throughout their transit. The diffracted light generated
by an elementary grating is polarized parallel to the x
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Fig. 5. Polarization direction of the amplified signal as a func-
tion of §. Here ¢ is (the polarization direction of the signal at
z = L in presence of the pump beam) minus (the polarization di-
rection of the signal at z = L without the pump). The experi-
mental results (circles) are in excellent agreement with the nu-
merically calculated results (solid curves). The theoretical and
experimental results in this figure are for the situation in which
the pump-beam polarization at z = L is set at # and not at 6
+ pL.
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Fig. 6. ¢ — 60 curves for the optimal situation in which the
pump-beam polarization is set at § + pL.

axis irrespective of the z coordinate of the grating; of
course the light vector rotates as it propagates in the re-
maining thickness L — z of the crystal. Thus the el-
ementary amplitude component generated by an elemen-
tary grating located at the middle of the crystal (z
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= L/2) emerges with its vector at /2pL with respect to
the x axis. The amplitude components generated in the
first half of the crystal emerge at angles >1/2pL, and
those generated in the second half emerge at angles
<1/2pL. Though these elementary components do not
have the same moduli, their resultant vector is approxi-
mately at an angle Y/2pL with the x axis. The signal, in
the absence of the pump, also emerges at this angle.
Hence the angle ¢ is close to zero. We also note that the
variations of ¢ are much larger for BTO than for BSO.
This is so because the contribution of the diffracted light,
which determines ¢ to a large extent, to the outcoming
signal is much higher in the case of BTO.

Our experimental observations show that the amplified
signal wave is slightly elliptic; the angle ¢ represents the
orientation of the major axis of the ellipse. For BSO the
ratio of the intensity along the minor axis to that along
the major axis is only 1/40, and for BTO it is 1/8. This
ellipticity is probably due to the fact that the reflection
grating is not shifted by exactly 7/2 with respect to the
interference pattern.

4. CONCLUSION

In summary, we have calculated the signal amplification
v and its polarization direction in contradirectional two-
beam coupling in sillenite crystals. Crystal absorption
and its optical activity are taken into account, but the
pump depletion due to energy transfer is neglected. The
crystal slice is cut normal to one of its crystallographic
axes, and the space-charge field is parallel to this axis
(say, the z axis). No bias electric field is applied to the
crystal. The birefringent axes, x and y, induced by the
space-charge field have the refractive indices n
+ no’rE, /2, respectively. The signal is amplified when
the polarization vectors of the signal and the pump beams
stay close to, say, the x axis during their transit in the
crystal, and is deamplified when the vectors are close to
the y axis. Numerical integration is, in general, neces-
sary to calculate the signal gain. However, an analytic
expression for vy is obtained for the case B/p < 1(B
= 7Anp.«/N\). This condition is satisfied by BSO and
BGO crystals. This expression shows that the gain is
maximum when the polarization vectors of the forward-
and the backward-propagating beams are set at —pL/2
and +pL/2, respectively, and when |pL| = #/2. With
this initial disposition the polarization vectors of the two
beams stay close to the amplifying x axis throughout their
transit in the crystal, and consequently the signal gain is
maximum.

For our BTO crystal, g/p = 1.2, and the analytic ex-
pression calculated for crystals with relatively high opti-
cal activity gives only a rough value that is lower than the
exact numerically calculated value. For a BTO crystal of
moderate thickness, say, 5—6 mm, the value of pL is much
less than 1 and an approximate value of the signal gain
can be obtained from the well-known expression
exp(48L) that applies to crystals with no optical activity.
Obviously exp(48L) gives a value that is higher than the
exact value because the presence of optical activity tends
to decrease the gain.
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The signal gain is maximum when the initial polariza-
tion directions of the beams are set at =pL/2; moreover,
the amplified signal has approximately the same polar-
ization direction as it has in the absence of the pump. A
very interesting result is that the expressions for the sig-
nal gain in contradirectional and codirectional geometries
are identical. Identical results are also obtained for
these geometries (Ja'* and Yeh?) when pump depletion is
taken into acount but crystal absorption and optical activ-
ity are neglected. The BTO crystal provides high gains
and may be useful for phase-conjugation experiments.

APPENDIX A: CALCULATING THE SIGNAL
GAIN WHEN g/p < 1

The elementary, diffracted amplitude in Eq. (12) can be
written in the form
dU,(L) = 285yB cos(§ — pL + 2pz)exp[ —aL/2
— (B/p)sin 20]exp[(B/p)sin(260 + 2pz)]dz.
(A1)

A similar equation is written for dU,(L).
If (B/p) < 1, we can write

exp[(B/p)sin(26 + 2pz)]
~ 1+ (B/p)sin(26 + 2pz) + (B2/2p?)

X {0.5[1 — cos(46 + 4pz)]}. (A2)

Substituting relation (A2) into Eq. (A1) and integrating
over the crystal thickness, we obtain
U, = 2So(B/p)exp[ —aL/2 — (B/p)sin 20}{[1 + (B*/4p>)]
X sin ¢ cos 0 + (B/4p)[2¢ sin(O + @)
+ sin 2¢ sin(360 + )] — (B%/8p?)[sin ¢ cos(36
+ 2¢) + (1/3)sin 3¢ cos(56 + 2¢)]}, (A3)
where we have written pL = ¢.
By following a similar procedure we find the y compo-
nent of the total diffracted amplitude:
U, = —2S,(B/p)exp[ —aL/2 — (B/p)sin 20]
X {[1 + (B*/4p*)]
X sin ¢ sin 6 + (B/4p)[2¢ cos(0 + @)
— sin 2¢ cos(360 + ¢)] — (B%/8p*)[ —sin ¢
X sin(360 + 2¢) + (1/3)sin 3¢ sin(56 + 2¢)]}.
(Ad)

Substituting Eqs. (A3) and (A4) into Eq. (13) and using
Eq. (14), we find the signal gain v:
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vy =1+ 4A2C%(1 + C?%/4)? sin® ¢ + A2C*(p>
+ (sin? 2¢)/4) + (A%2C%/16)[sin® ¢ + (1/9)sin? 3¢]
+ 4AC(1 + C%4)sin ¢ cos(26 + ¢)
+ AC? sin 2¢ sin(460 + 2¢) — (AC?/2)
X [sin ¢ cos(26 + ¢) + (1/3)sin 3¢ cos(66 + 3¢)]
+ 2A%C3(1 + C?/4)sin ¢ sin(260 + ¢)[2¢
+ sin 2¢] — A2C*(1 + C%/4)sin ¢ cos(46 + 2¢)
X [sin @ + (1/3)sin 3¢] — A2C*p sin 2¢ cos(4 6
+ 2¢) + (A2CP/2)¢[sin ¢ sin(260 + @)
— (1/3)sin 3¢ sin(66 + 3¢)]
+ (A2C%/4)sin 2¢[(1/3)sin 3¢ sin(26 + o)
— sin ¢ sin(660 + 3¢)]
+ (A2C%/24)sin ¢ sin 3¢ cos(860 + 4¢)], (A5)

with C = B/p; A = exp[—(B/p)sin 26 ].

For BSO and BGO crystals B is much less than p, and
therefore C <1 (C = 0.28 in our case) and A remains
roughly equal to 1. Under this condition the expression
for y can be simplified by retaining of the terms up to the
second order in C.
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