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We report here on the theoretical performance of blazed binary diffractive elements composed of pillars care-
fully arranged on a two-dimensional grid whose period is smaller than the structural cutoff. These diffractive
elements operate under unpolarized light. For a given grating geometry, the structural cutoff is a period
value above which the grating no longer behaves like a homogeneous thin film. Because the grid period is
smaller than this value, effective-medium theories can be fully exploited for the design, and straightforward
procedures are obtained. The theoretical performance of the blazed binary elements is investigated through
electromagnetic theories. It is found that these elements substantially outperform standard blazed échelette
diffractive elements in the resonance domain. The increase in efficiency is explained by a decrease of the
shadowing effect and by an unexpected sampling effect. The theoretical analysis is confirmed by experimen-
tal evidence obtained for a 3l-period prismlike grating operating at 633 nm and for a 20°-off-axis diffractive
lens operating at 860 nm. © 1999 Optical Society of America [S0740-3232(99)00105-2]

OCIS codes: 050.1380, 050.1970, 050.1950.
1. INTRODUCTION
Diffractive optical elements have a variety of applications
in (micro-) optical systems for beam shaping, deflecting,
collimating, or imaging. The interest in diffractive opti-
cal elements is triggered by the availability of litho-
graphic fabrication techniques. For the best perfor-
mance, it is necessary to find optimum ways to synthesize
and fabricate these elements. To this end, blazed diffrac-
tive elements that achieve a high diffraction efficiency in
a specified order are required. Blazed diffractive ele-
ments can be fabricated either by a series of photolithog-
raphy processes that approximate the surface relief with
a multilevel structure1–4 or by direct-write technologies,
such as single-point laser beam writing in photoresist,5

single-point diamond turning,6 or single-point electron-
beam (e-beam) writing in polymers.7–9 In this paper we
are concerned with the synthesis and the fabrication of
diffractive elements composed of binary subwavelength
pillars etched in a high-index material deposited on a
glass substrate for visible-light operation. Their prin-
ciple of operation relies on the analogy between periodic
subwavelength-structured surfaces and artificial dielec-
tric materials. In this analogy binary diffractive ele-
ments using just one photolithographic step simulate con-
tinuous phase delays through the effective-medium
theory; for these blazed binary diffractive elements, the
local fraction of matter removed is related to the local ef-
fective index. This approach is attractive because the
fabrication relies only on lithographic technologies and
0740-3232/99/051143-14$15.00 ©
etching techniques that are developed and continuously
enhanced for the mass production of integrated circuits.

Artificial dielectric and metallic elements for control of
surface reflection10 and for beam shaping11 were studied
more than 30 years ago for operation in the microwave re-
gion of the spectrum. With the recent progress in nano-
fabrication technologies it was recently predicted12,13 that
binary surface-relief diffractive elements, composed of
subwavelength microstructures carefully arranged and
etched in a transparent material, may be fabricated for
visible-light operation. This possibility has received
much attention from a modelization point of view.14–19

More importantly, it was successfully validated first in
the thermal infrared20,21 and in the near-infrared15,22 re-
gions and later on in the visible23–27 regions of the spec-
trum. With a few exceptions,23,24,27 the results of the
above-mentioned studies12–27 hold for blazed binary dif-
fractive elements with one-dimensional (1D) subwave-
length features operating with linearly polarized light.
This is probably because the effective-medium theory of
two-dimensional (2D) subwavelength gratings is less un-
derstood than that of 1D gratings. We are concerned
here with diffractive elements for operation with circular
polarization or with unpolarized light.

Because of severe fabrication constraints, the first at-
tempts in the visible region of the spectrum23–25 were not
as successful as had been expected: The performance
achieved is bad in comparison with that of diffractive el-
ements fabricated with a continuous profile or with a
1999 Optical Society of America



1144 J. Opt. Soc. Am. A/Vol. 16, No. 5 /May 1999 Lalanne et al.
multilevel-phase staircase profile. Only recently have
encouraging results been obtained that offer experimen-
tally better performance than that achieved theoretically
by standard échelette gratings.26,27 This was made pos-
sible because a high-index material (namely, TiO2) was
used to fabricate the blazed binary diffractive elements.
In this way a drastic reduction in fabrication constraints
is achieved.28 We also consider here blazed diffractive el-
ements etched in a TiO2 layer deposited on a glass sub-
strate.

In this paper the design, fabrication, and testing of
blazed binary diffractive elements composed of pillars ar-
ranged on a 2D grid are considered. The grid period,
called a sampling period hereafter, that is selected is
smaller than or equal to the structural cutoff. For a
given grating geometry, the structural cutoff is a period
value intrinsic to the geometry considered (in the sense
that it does not depend on the refractive indices of the
substrate and the superstrate, for instance) above which
the analogy between subwavelength dielectric gratings
and homogeneous media ceases to be valid.27 It is de-
noted by Ls . The main results of this study cover three
aspects:

1. In the resonance domain or, equivalently, for zone
widths or grating periods equal to a few wavelengths,
blazed binary diffractive elements are shown to substan-
tially outperform conventional blazed diffractive elements
with a continuous profile for operation with unpolarized
light. Attempts to explain this enhanced efficiency are
provided.

2. Straightforward procedures for designing highly ef-
ficient blazed binary diffractive elements in a simple, no-
niterative and nearly optimal way are proposed. These
procedures do not rely on an extensive search for optimal
performance by use of electromagnetic theory.

3. Experimental results show that, with current tech-
nology, blazed binary diffractive elements offering experi-
mentally better performance than that achieved theoreti-
cally by conventional blazed diffractive elements are
manufacturable for operation in the visible and near-
infrared regions of the spectrum.

In Section 2, gratings providing continuous phase de-
lays are considered. By taking into account the shadow-
ing effect due to the finite-element thickness, we argue
that, in the resonance domain, graded-index gratings of-
fer better performance than do standard échelette grat-
ings and that one achieves higher performance by in-
creasing the refractive index of the material patterned.
Section 3 contains several general comments on the de-
sign and the fabrication of blazed binary diffractive ele-
ments. We first discuss the choice of the sampling period
and emphasize, through illustrative examples, that better
performance and simple designs are achieved for sam-
pling periods smaller than or equal to the structural cut-
off. We then describe the fabrication process that we
used in the experimental part of this study and discuss its
effect on the design of blazed binary diffractive elements.
In Section 4, we focus on blazed binary gratings that de-
serve particular attention because of their major utility in
optics. A specific design procedure aiming at lowering
aspect-ratio requirements is proposed. The performance
of this procedure is first studied theoretically and is then
validated experimentally with a 3l-period blazed binary
grating operating at 633 nm. In Section 5, blazed binary
kinoforms are considered. Another design procedure is
given. Its theoretical performance is investigated
through electromagnetic theories for zone widths smaller
than nine wavelengths. The theoretical predictions are
supported by experimental evidence obtained for a 20°-
off-axis diffractive lens operating at 860 nm. Subsection
5.C reveals an unexpected sampling effect that is, in our
opinion, the main reason that blazed binary diffractive el-
ements substantially outperform conventional blazed dif-
fractive elements with a continuous profile.

Throughout this paper and except otherwise men-
tioned, the numerical results provided for various grating
geometries are all obtained for the following diffraction
configuration: The incident medium is air (refractive in-
dex, 1); and the substrate is glass (refractive index, 1.52).
An unpolarized plane wave (wavelength l in vacuum) is
normally incident from air onto the diffractive element.

The analysis of (1D) gratings is performed by rigorous
coupled-wave analysis29 and by its enhanced version (see
Refs. 30 and 31). For the analysis of blazed gratings, the
sawtooth profile is approximated by a stack of 15 lamellar
gratings arranged in a staircase geometry. 2D gratings
are analyzed with the new modal theory reported in Ref.
32. The computation of the effective index of 2D sub-
wavelength gratings is performed with the plane-wave
method along the lines set forth in Ref. 33, which incor-
porated the recent results on the Fourier analysis of dis-
continuous functions.32,34 In all cases good convergence
is observed, and the numerical results provided hereafter
can be considered as exact.

2. BLAZED-INDEX GRATINGS AND
ÉCHELETTE GRATINGS
In the conventional design of thin phase elements the
thin-element approximation is often applied, and the
transmitted field behind the thin element is simply ob-
tained by multiplication of the incident field with the
transmission function of the thin element. For phase
gratings the transmission function is directly related to
the phase shifts that arise from propagation through the
thin element. The phase shifts are obtained either by
surface-relief elements or by gradient-index elements.
Figure 1 illustrates our purpose for prismlike gratings.
In Fig. 1(a), a standard blazed grating with a sawtooth
profile is shown. The surface relief is assumed to be
etched into a material of refractive index n. In Fig. 1(b),
the equivalent graded-index element is shown; along the
period the refractive index is linearly and continuously
varying from 1 to a maximal value also denoted by n. In
this case the grating is a periodic structure with a real
graded index, and no subwavelength features mimicking
artificial media are considered. Hereafter, the type of
grating shown in Fig. 1(b) is called a blazed-index grating
for differentiation with the type of grating shown in Fig.
1(a), which is simply called a blazed grating.

According to the thin-element approximation, blazed
and blazed-index gratings have the same diffraction effi-
ciency if Fresnel losses at the interfaces are neglected.
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The efficiency is 100% for a grating depth equal to l/(n
2 1). For small period-to-wavelength ratios, the valid-
ity of the scalar diffraction theory for diffractive phase el-
ements and the thin-element approximation cease to be
valid, and electromagnetic theories have to be used for an
accurate computation of the efficiency.35 This is illus-
trated in Fig. 2, where the first-order diffraction efficiency
of blazed and blazed-index gratings is plotted for n
5 1.52 as a function of the period-to-wavelength ratio.
Results hold for unpolarized light and for a grating depth
equal to l/(n 2 1). The solid and dotted curves corre-
spond to blazed-index and blazed gratings, respectively.
Even for a period as large as 8l, the diffraction efficiency
is significantly smaller than the scalar limit prediction of
96% (100% 2 4% because of Fresnel losses) obtained for
blazed gratings. The drop in efficiency observed at small
periods is well known and is considered to be a major ob-
stacle for the production of high-speed and high-
performance diffractive lenses. From Fig. 2 it is notewor-
thy that the blazed-index grating offers slightly better
performance than the blazed grating. This difference in
performance cannot be explained within the scope of the
thin-element approximation but can be understood quali-
tatively if one takes into account some effects of the finite
grating thickness through ray tracing.36 In the ray-
tracing method, also known as the extended scalar theory
by Swanson,37 the drop in efficiency observed at small pe-
riods is explained by a light-shadowing effect. As illus-

Fig. 1. (a) Blazed grating with a sawtooth échelette profile. (b)
Blazed-index grating with a real graded index; along the period,
the refractive index is linearly varying from 1 to n. The incident
medium is air, the substrate is glass (refractive index, 1.52), and
normal incidence from air is assumed. The concept of geometri-
cally tracing rays through the finite depth of the gratings is used
to sketch the light-shadowing effect.
trated in Fig. 1, the shadowing zone is determined by
simple geometrical considerations based on ray tracing
through the grating finite thickness. For the blazed grat-
ing case of Fig. 1(a), the width wa of the shadowing zone
is simply obtained by the beam refraction at the upper
grating boundary. For large period-to-wavelength ratios
and for grating depths equal to l/(n 2 1), the normalized
shadowing width wa /L is given by

wa /L 5
1

n~n 2 1 ! S l

L D 2

. (1)

For blazed-index gratings, the shadowing zone takes its
origin from the nearly parabolic bending due to the propa-
gation through a graded-index dielectric layer. The
width wb of the shadowing zone can be derived analyti-
cally, and, for asymptotically large period-to-wavelength
ratios, it is found that

wb /L 5
1

2n~n 2 1 ! S l

L D 2

, (2)

a value two times smaller than that found for wa /L.
This factor of 2 may be one intuitive explanation for the
difference in diffraction efficiency observed for blazed-
index and blazed gratings in Fig. 2. Of greater impor-
tance in Eqs. (1) and (2) is the dependence with n of the
shadowing zone; it is predicted that the use of high-index
materials has a beneficial effect on the performance of the
diffractive elements. Indeed, this qualitative prediction
is confirmed by electromagnetic theory. Figure 3 shows
the first-order diffraction efficiency of blazed-index grat-
ings as a function of the period-to-wavelength ratio for n
5 1.52, 2, 2.5 and for unpolarized light. Figure 3 does
not clearly exemplify the net benefit of increasing the
value of n, since, as n increases, the Fresnel loss also in-
creases. This is why the diffraction efficiency for n

Fig. 2. First-order diffraction efficiency of the gratings consid-
ered in Fig. 1 as a function of the period-to-wavelength ratio for
n 5 1.52 and for unpolarized light. Solid and dotted curves cor-
respond to blazed-index and blazed gratings, respectively.
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5 2.5 becomes smaller than those obtained for n
5 1.52, 2 for large period-to-wavelength ratios. Figure 4
shows the relative efficiency defined as the percentage of
the total transmitted light diffracted into the first order,
an important figure of merit related to the effect of the
spurious diffracted orders on image quality. Clearly, the
use of high-index material increases this percentage and
improves performance.

Fig. 3. First-order diffraction efficiency of blazed-index gratings
as a function of the period-to-wavelength ratio for several values
of n (n 5 1.52, 2, 2.5) and for unpolarized light.

Fig. 4. Same as in Fig. 3, except that the relative efficiency, de-
fined as the percentage of the total transmitted light diffracted
into the first order, is plotted versus L/l.
3. FABRICATION OF BLAZED BINARY
GRATINGS
The fabrication of blazed-index diffractive elements
through a diffusion process or ion exchange as used for
fabricating graded-index lenses or waveguides is difficult
because the 2p-phase jumps required at zone extremities
are smoothed by the fabrication process. Conversely, ar-
tificial dielectric diffractive components composed of sub-
wavelength features encoding continuous phase delay are
easier to fabricate.

In general, the design of blazed binary diffractive com-
ponents is easy. Once the phase transfer function that
defines the diffractive component is known at the nominal
wavelength, it is sampled at different point locations.
We assume that this sampling is made on a regular 2D
square grid. The sampling period, or, equivalently, the
distance between two adjacent microstructures of the dif-
fractive element, is denoted by L1 . Then a calibration
curve that relates the phase delay for a given etch depth,
or, equivalently, the effective index, to the fraction of ma-
terial removed is used to associate a specific microstruc-
ture geometry to a given point location. Such a calibra-
tion curve is shown in Fig. 5, where the effective index neff
is plotted as a function of the fill factor of square pillars
patterned in a 2.3-refractive-index material for L1
5 272 nm. The fill factor is defined as the ratio of the
pillar width to the sampling period.

A. Choice of Sampling Period and Structural Cutoff
The sampling period chosen has to be as large as possible
for ease of fabrication of the diffractive element. It is
usually selected so that only one transmitted order and
one reflected order are propagating in the substrate and
in the incident medium (see, e.g., Refs. 12–23, 25, and
26). This choice amounts to selecting a sampling period
that is smaller than the cutoff Lc , which is defined as the

Fig. 5. Calibration curve. Effective index of a 2D grating com-
posed of a 272-nm-period array of square pillars engraved in a
2.3-refractive-index material versus the fill factor.
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period above which nonzero diffracted orders are evanes-
cent. In a recent study27 we quantitatively discussed
how to select the sampling period and introduced a new
cutoff above which the analogy between subwavelength
dielectric gratings and homogeneous media ceases to be
practically valid. This new cutoff Ls was called the
structural cutoff to emphasize that it is intrinsic to the
grating structure. The structural cutoff of a given peri-
odic structure is defined as the period below which only
one propagating mode (this mode may be polarization de-
pendent) is supported by the structure for any fraction of
removed material. This definition relies on the assump-
tion that, in the static limit (l → `), 2D periodic struc-
tures support only one propagating mode. Although in-
tuitively clear from a physical point of view, no simple
demonstration of the existence and unicity of this mode is
available for 2D gratings. Mathematically sound proofs
based on homogenization theories are available,38 but un-
derstanding them requires a good background in func-
tional analysis. A much simpler demonstration can be
found in Ref. 39 for the specific case, already interesting
in practice, of centrosymmetric gratings illuminated un-
der normal incidence.

The structural cutoff value can be determined only nu-
merically. Denoting by x and y the periodicity axes of the
grating and by z the normal to the grating boundaries,
one determines the modes that are propagating inside the
grating region along the z direction by expanding the elec-
tromagnetic fields along the x and the y directions in a
Fourier basis. Denoting by exp ( j2p nz/l) the z depen-
dence of the modes, one computes the effective index n of
the fundamental mode by the plane-wave method.33 The
computation amounts to solving an eigenproblem. Start-
ing from small values, one slowly increases the grating
period until a second propagating mode appears. In gen-
eral, this second mode appears for large pillar widths40

first, and one can reduce computational efforts by solving
the eigenproblem only for large fill factor values.

When only one mode propagates in a grating (all the
others are evanescent), this mode travels backward and
forward between the two grating boundaries in the same
way as multiple beam interference occurs in a thin film.
Consequently, the zeroth-order reflected and transmitted
amplitudes are approximately those of a thin film with a
refractive effective index equal to the normalized wave-
vector modulus n of this mode.39,41 Sampling with peri-
ods L1 that are larger than the structural cutoff Ls is
problematical because the analogy between subwave-
length gratings and artificial dielectrics ceases to be valid.
An example of problems encountered when sampling with
L1 . Ls may be found in Ref. 27, where it is observed
that the phase of the transmitted zeroth order exhibits a
chaotic behavior and is not a monotonic function of fill fac-
tor. For another illustrative example, we consider the
same synthesis problem as that of Ref. 24: The wave-
length is 633 nm, and the grating is composed of a square
array of square pillars. The pillar height is 1.032 mm,
and the sampling period is 700 nm. This grating is
etched in a quartz substrate of refractive index 1.46 and
is illuminated at normal incidence from the substrate.
The dotted curve in Fig. 6 represents the n values of all
the propagating modes. As much as five modes are
propagating for large fill factors. Multiplication signs
represent the zeroth-order transmitted diffraction effi-
ciency as a function of the pillar width.42 For f ' 0.5,
this efficiency drops below 60%. Conversely, the circles
represent the transmitted zeroth-order efficiencies ob-
tained for a sampling period equal to the structural cutoff
(Ls 5 440 nm), a value slightly larger than the cutoff
(Lc 5 434 nm). Efficiency values larger than 95% are
obtained for any value of f. Following the argument of
Chen and Craighead,24 namely, that large sampling peri-
ods are acceptable as long as the transmitted zeroth-order
is sufficiently high, it is reasonably expected that a much
better performance would have been obtained for a sam-
pling period that was smaller than the structural cutoff.

In general, we observed that, the higher the refractive
index of the material patterned, the smaller the struc-
tural cutoff.40 For example, while Ls is as small as 272
nm for a 2.3-refractive-index material (see Section 4), it is
much larger for glass (Ls 5 440 nm in the above ex-
ample). Clearly, the larger the sampling period, the
easier the fabrication. Thus one might ask whether it is
judicious to consider high-refractive-index material for
fabricating blazed binary diffractive components. Since
this paper is specifically devoted to the synthesis and fab-
rication of blazed binary components in TiO2, it is crucial
to realize that, while increasing the requirements on the
pillar width, the use of a high-refractive-index material
decreases the etching depth h required for a 2p-phase-
shift modulation. One relevant parameter for quantify-
ing the fabrication difficulty is the ratio h/Ls . Assuming
that a 2p-phase-shift modulation is achieved for a depth
h 5 l/(n 2 1), with n being the refractive index of the

Fig. 6. Solid curves: Transmitted (0, 0)th-order diffraction ef-
ficiency of a 2D grating composed of square pillars placed on a
square grid of period L as a function of the fill factor. The pillar
height is 1.032 mm, the wavelength used is 0.6328 mm, and the
pillars are assumed to be etched in a glass substrate of refractive
index 1.46. 3’s, L 5 700 nm; circles, L 5 440 nm. Dotted
curves: n values of all the propagating modes supported by the
biperiodic structure for L 5 700 nm. The upper dotted curve (n
varying between 1 and 1.46) corresponds to the grating effective
index.
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etched material, h/Ls is equal to 1.79 for n 5 2.3, a value
that compares favorably with that of 3.13, obtained for
n 5 1.46. From this simple numerical example we can
conclude that the use of a high-refractive-index material
not only improves the performance of the component, as
discussed in Section 2, but also relaxes fabrication con-
straints and decreases the aspect ratio to a point where
binary blazed gratings can be fabricated with current
technology.

B. Fabrication
In the experimental work of Sections 4 and 5, blazed bi-
nary diffractive components are fabricated by etching of a
TiO2 layer evaporated onto a glass substrate. An e-beam
evaporation technique with a plasma gun is used for the
TiO2 coating. The plasma is composed of a 42:58 Ar–O2
gas combination. The full evaporation process is opti-
mized to obtain stable and dense layers. The deposition
rate is '0.1 nm/s. After the evaporation the TiO2 layer is
patterned by e-beam lithography and reactive ion etching
(RIE). First, a poly(methyl methacrylate) (PMMA) film
is spin coated on top of the TiO2 layer. Second, it is writ-
ten with a JEOL JBX5D2U vector scan high-resolution
pattern generator equipped with an LaB6 filament. A 50-
keV e beam resulting in a 25-nm-diameter probe beam is
used during the exposure. The writing-field area of the
e-beam generator operating in its highest resolution is
40 mm 3 40 mm. After development of the PMMA, an in-
termediate nickel layer is e-beam evaporated onto the
surface and is lifted off by dissolution of the PMMA. The
lift-off technique improves the selectivity and the fidelity
of the pattern transfer during the RIE process, which is
performed in a Nextralne 110 system equipped with a sili-
con cathode. The etching process uses a SF6(1/2)/
CH4(1/2) gas mixture at a pressure of 8 mTorr (1.07 Pa)
with an equal flow rate for each gas and a rf power of 30
W, which produces a self-induced bias voltage of 2180 V.
This process, optimized for steeper sidewalls, results in
an etching rate of '40 nm/min.

C. Fabrication Constraints
In practice, because of limited resolution, all pillar widths
are not suitable for fabrication. We denote by D1 the
minimum value of the pillar width that is effectively
manufacturable for a given technology. Similarly, we de-
note by D2 the minimum spacing between two adjacent
pillars. While D1 is related to the feasibility of stable tall
pillars, D2 is instead constrained by the possibility of fully
etching ridges down to the substrate. We denote by f1
and f2 the two associated fill factors, f1 5 D1 /L1 and f2
5 1 2 D2 /L1 , respectively. The corresponding effective
indices given by the calibration curve are denoted by nmin
and nmax , respectively. The vertical dotted lines in Fig. 7
are the limits of the region of acceptable fill factors. In
this example we chose D1 5 D2 5 80 nm, which was
found to be compatible with our fabrication procedure.
The useful interval for fill factors is [0.29; 0.71], and the
effective indices nmin and nmax are equal to 1.08 and 1.66,
respectively.

Because the calibration curve varies rapidly for large
fill factors, the value of nmax is significantly smaller than
2.3. This is clearly a drawback for the fabrication, since,
as noted in Section 1, higher performance and easier fab-
rication are achieved for large n values. This situation
can be alleviated in two ways. The first approach con-
sists in selecting a sampling period that is slightly larger
than the structural cutoff (see Section 5). The second ap-
proach consists in choosing different microstructure ge-
ometries. Following Grann et al.,43 one could, for in-
stance, consider square holes instead of square pillars.
We did not investigate this issue in this study, consider-
ing that it would make the fabrication less reliable.44

Strictly speaking, only the interval [0.29; 0.71] in Fig. 7
has to be used for the design. However, to make the fab-
rication easier, we extend the useful interval by consider-
ing that the absence of a pillar (f 5 0) is a situation that
is easily manufacturable. The calibration curve is modi-
fied in the following manner:

For neff , (1 1 nmin)/2, we provide a full etch (no pil-
lars) and encode neff 5 1; and

For (1 1 nmin)/2 , neff , nmin , we fabricate pillars
with f 5 f1 and encode neff 5 nmin .

The thick curve in Fig. 7 shows the effect of extending the
useful interval [0.29; 0.71] by considering the fabrication
of pillars with null fill factors. All the design consider-
ations reported hereafter are based on a similar modifica-
tion of the calibration curve. Clearly, this modification
introduces a systematic bias at the design stage. How-

Fig. 7. Modified calibration curve. Thin curve: same as in
Fig. 5. Vertical dotted lines: limits imposed by fabrication con-
straints for D1 5 D2 5 80 nm. On the left-hand side ( f
, D1 /L1) the pillar width is too small for stable fabrication.
On the right-hand side ( f . 1 2 D2 /L1), the spacing between
two adjacent pillars is too narrow for a reliable RIE process.
The central part (D1 /L1 , f , 1 2 D2 /L1) corresponds to fill
factors effectively manufacturable. Thick curve: modified cali-
bration curve used effectively for the design of prismlike blazed
binary gratings. Fill factors larger than 1 2 D2 /L1 are not con-
sidered, and, for 0 , f , D1 /L1 , the continuous calibration
(thin) curve is replaced by a steplike function for which only two
values (1 and nmin) of the effective index are encoded.
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ever, we estimated that, while the resulting penalty in
terms of diffraction efficiency never exceeds 1% or 2%, the
etching depth is reduced from l/(nmax 2 nmin) to l/(nmax
2 1); we believe that the balance is favorable with cur-
rent state-of-the-art of fabrication facilities.

4. DESIGN OF BLAZED BINARY GRATING
In this section we consider the design of blazed binary
gratings. A component often referred to as a diffractive
beam deflector or a prismlike grating, the blazed grating
deserves particular attention because of its major utility
in various fields, including micro-optics and spectrometry.

A. Design
As above, a 2D square grid is assumed for sampling. We
denote by x and y the main axes of this grid. The grating
period along the x direction is denoted by L. For a given
application and a given deviation angle, the period is
straightforwardly obtained by use of the grating equation.
We first divide the period into N intervals. The interval
length corresponds to the sampling period L1 , L1
5 L/N. Because a locally periodic square grid with
square pillars yields the best approximation to an isotro-
pic effective index, at least under normal incidence, the
grating period along the y direction is also L1 . We then
choose the integer N such that L/N < Ls and L/(N
2 1) . Ls , i.e., just less than or equal to the structural
cutoff. At the center of each interval (sampling points
marked by x’s in Fig. 8), we associate an effective index
value n(i), i 5 1, 2,... N, so that n(1) 5 1, n(N)
5 nmax , and n is linearly varying from 1 to nmax :

n~i ! 5
nmax 2 1

N 2 1
~i 2 1 ! 1 1. (3)

For a selected microstructure geometry, the effective in-
dex is then computed as a function of the microstructure
width. Including fabrication constraints (parameters D1
and D2 for pillar microstructures, for instance), a modified
calibration curve is obtained as in Fig. 7. From this
curve the set of N microstructure widths is derived. The
grating geometry is now defined, and only the grating
depth has to be fixed to complete the design. We simply
set the grating depth, using scalar theory. Noting that
the index modulation (nmax 2 1) is achieved on (N 2 1)

Fig. 8. Design procedure 1 for prismlike blazed binary gratings.
One period of length L is shown. This period is divided into N
intervals. The sampling period is equal to L1 5 L/N. The x’s
at the interval centers indicate the location of the sampling
points. The effective indices associated with every sampling
point are denoted by n(i), i 5 1, 2,... N and are linearly varying
between 1 and nmax according to Eq. (3).
sampling periods (see Fig. 8) and hence that the total in-
dex modulation is N/(N 2 1)(nmax 2 1), we fix the grat-
ing depth h by45

h 5
N 2 1

N
l

nmax 2 1
. (4)

Hereafter this design procedure will be referred to as pro-
cedure 1. It is straightforward and does not rely on any
iterative technique.

Because efficient electromagnetic theories are now
available for computing the diffraction efficiencies of 2D
gratings, refinements on the transition-point locations
and grating depth are feasible but extremely demanding
in terms of computation time. Subsection 4.C illustrates
this opportunity. However, from several tests whose de-
tails are not reported in this paper, we found that the
gratings designed through procedure 1 provide high dif-
fraction efficiencies (even for period-to-wavelength ratios
as small as 1.5) and that refinements with electromag-
netic theory do not provide substantial improvements.

The choice of setting the effective indices 1 and nmax to
the first and the last sampling points, respectively, as
shown in Fig. 8, requires a few comments. A more natu-
ral choice, inspired from the standard blazed grating, con-
sists in setting the effective index values 1 and nmax to the
two period extremities. The corresponding grating depth
would be l/(nmax 2 1), which coincides with Eq. (4) for
large N values. In fact, as mentioned above, procedure 1
artificially increases the index modulation by extending
the interval [1; nmax] to effective indices smaller than 1 on
one side and effective indices larger than nmax on the
other side. The net benefit is a reduction of fabrication
complexity. To illustrate our purpose, let us consider a
3l-period blazed binary subwavelength grating etched in
TiO2 for He–Ne operation. Assuming the modified cali-
bration curve of Fig. 7 and D2 5 80 nm, the maximal ef-
fective index nmax is 1.664. Since the 3l period is exactly
divided into N 5 7 intervals for a sampling period of 272
nm, the grating depth is equal to 817 nm, according to Eq.
(4). If we now set the effective index values 1 and nmax to
the two period extremities, the corresponding grating
depth l/(nmax 2 1) is equal to 953 nm, a value 130 nm
larger than that obtained with procedure 1. This depth
reduction is significant from the fabrication point of view
and can be even more important for smaller N values.
We conclude that procedure 1 is especially relevant for
the design of blazed binary gratings with small periods.
At large periods, N is large, and the grating depth is sim-
ply given by l/(nmax 2 1).

B. Theoretical Performance
We now proceed with a quantitative analysis of the per-
formance achieved by gratings designed through proce-
dure 1 with the modified calibration curve of Fig. 7. This
situation corresponds to a blazed binary grating etched in
TiO2 for operation at 633 nm with a sampling period
equal to the structural cutoff, 272 nm. The procedure is
tested for several values of the integer N and thus for dif-
ferent period-to-wavelength ratios. Figure 9 shows the
first-order diffraction efficiency as a function of the



1150 J. Opt. Soc. Am. A/Vol. 16, No. 5 /May 1999 Lalanne et al.
period-to-wavelength ratio. The circles correspond to the
percentage of the total transmitted light diffracted into
the first order.

We conducted substantial tests for checking the valid-
ity of the numerical results by increasing the number of
retained orders. For instance, well-converged results
were obtained for N 5 10 (points at abscissa L/l 5 4.3 in
Fig. 9) with 9 and 51 retained orders in the y and the x
directions, respectively. For larger periods, we increased
the number of retained orders in the x direction, with this
number reaching 67 for N 5 21 (L/l 5 9.02).

C. Experimental Results
We now apply the theoretical analysis of Subsections 4.A
and 4.B to the design, fabrication, and testing of a 3l-
period blazed binary subwavelength grating etched in
TiO2 for operation with unpolarized light at 633 nm. The
3l period corresponds to nearly 20° deflection into air.
For a 272-nm sampling period, the grating period along
the x axis is exactly divided into seven sampling periods.
Our design strictly follows procedure 1, and we determine
the seven pillar widths according to the modified calibra-
tion curve of Fig. 7. Then, assuming unpolarized light
and normal incidence from air, we vary the grating depth
and maximize the diffraction efficiency of the first order.
For a 817-nm depth, we obtained 87%. The value of 817
nm is very close to the scalar prediction (6/7)@l/(nmax
2 1)# ' 816 nm of procedure 1. In a second step, we op-
timize the pillar-center locations along the blazed profile
direction, preserving their square shapes and fill factors.
The optimization was performed with a gradient-descent
algorithm starting with small random perturbations for
the free parameters. Only a few modifications were ob-

Fig. 9. Theoretical performance for design procedure 1. The
diffraction efficiency of blazed binary gratings with a 272-nm
sampling period is considered for different period-to-wavelength
ratios. Both unpolarized light and normal incidence from air
are assumed for the computation. Solid curve: first-order dif-
fraction efficiencies; circles: percentage of the total transmitted
light diffracted into the first order.
tained: The narrowest pillar was appreciably shifted to-
ward the region of small effective index values. We end
up with a diffraction efficiency of 88%. The diffraction
values of the other transmitted diffraction orders are
given in parentheses in Table 1. The percentage of the
total transmitted light diffracted into the first order is
91%. For a wave normally incident from the glass sub-
strate, rather similar numerical predictions were ob-
tained: We found that the first-order diffraction effi-
ciency is also 88% and that the percentage of the total
transmitted light diffracted into the first order is 93%.

We indeed admit that our optimization procedure is
suboptimal. Searching for a global optimal in terms of
diffraction efficiency would, however, result in a rather
lengthy procedure that is quite impracticable with today’s
computers because the analysis of 2D gratings is compu-
tationally expensive. Nevertheless, we believe that pro-
cedure 1 provides nearly optimal solutions and that an ex-
tensive search for refinements with electromagnetic
theory will not drastically improve the performance.

The grating fabrication involves e-beam writing in a
150-nm-thick PMMA-layer and fluorine lift-off with a 30-
nm-thick nickel mask. The RIE step lasts 23 min. The
grating pattern is written over a 204 mm 3 228 mm area.
The e-beam process lasts 4 min. A scanning-electron
photograph of the grating is shown in Fig. 10. On the
vertical and horizontal axes, periods are L 5 1.9 mm and
L1 , respectively. The grating was tested with a He–Ne
laser at normal incidence from air. The laser beam waist
is focused with a lens of 45-mm focal length. We esti-
mate that more than 99% of the incoming light passes
through the grating aperture. We determine the diffrac-
tion efficiencies by measuring the powers of the diffracted
beams and dividing them by the power of the incident
beam. Measurements have been corrected for Fresnel
losses incurred at the back side of the glass substrate.
Table 1 shows the measured efficiencies of the different
transmitted orders for TE and TM polarizations. Their
corresponding values, computed with electromagnetic
theory, are given in parentheses. Deviations between
numerical prediction and measurement are noticeable,
especially for TE polarization. We also observed that the
first-order diffraction efficiency is weakly dependent on
polarization: We found 80% and 84% for TE and TM po-
larizations, respectively—values approximately 7% lower
than those predicted by electromagnetic theory. The
highest efficiency ('3.5%) of the five transmitted orders
(except the first one) is observed for TE polarization and
for the second order. Although deviations between ex-
periments and theory are significant, the experimental
results are good.

As a matter of comparison, it is noteworthy that the
maximum diffraction efficiency46 achieved by a blazed
échelette grating in glass with a 3l period is 66.5%, a
theoretical value 15% smaller than that obtained experi-
mentally in this study. Moreover, it is interesting to
compare the experimental and the theoretical results ob-
tained in this study with those reported in Ref. 27 by the
same authors. They can be directly compared, since they
are both relative to the same diffractive element, a prism-
like grating with a 3l period etched into TiO2. The only
difference between these two works is that a sampling pe-
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Table 1. Diffraction Efficiencies (in Percent) of the Different Transmitted Orders
for the Grating Shown in Fig. 10 a

Order 4 3 2 1 0 21 22 23 24

TE
– – 3.5 80 2.5 2 2.5 – –

(0.4) (0.2) (1.3) (87.8) (1.6) (1.7) (2.9) (0.8) (0.3)
TM

– – 2 84 1.5 1 2 – –
(1.3) (0.8) (0.7) (88.8) (1.2) (1.1) (1.6) (1.8) (0.1)

a TE and TM polarizations correspond to normally incident waves from air polarized perpendicular and parallel to the x and the y directions, respectively.
Theoretical results are given in parentheses. One obtains them by retaining 7 orders along the y axis and 25 orders along the x axis. The diffraction
efficiency values of orders 24, 4, 23, and 3 are not indicated because these orders are totally reflected in the substrate.
riod of 380 nm, significantly larger than the structural
cutoff, was considered in Ref. 28, where efficiencies of 82%
and 77.5% were theoretically and experimentally ob-
tained, two values that are 6% and 5% smaller, respec-
tively, than those obtained in the present study.47 We
can conclude that the use of a sampling period equal to
the structural cutoff is globally fruitful.

5. BLAZED BINARY KINOFORMS
Procedure 1, used to design prismlike gratings in Section
4, has to be slightly modified for synthesizing arbitrary
diffractive components. The reason is that the grating
depth, as defined by Eq. (4), depends on the number of
sampling intervals per period and therefore on the grat-
ing period itself. Considering, for example, the design of
diffractive lenses, Fresnel zones of different heights have
to be considered, which is clearly unrealistic from the fab-
rication point of view. In this section we consider a
slightly different procedure that is valid for synthesizing
arbitrary diffractive phase elements. Of course, it can
also be applied to the design of prismlike gratings.

A. Design
In general, a diffractive component is defined by a phase
transfer function f(x, y) for a nominal wavelength l,

Fig. 10. Scanning-electron micrograph of a blazed binary sub-
wavelength grating etched in TiO2. The period along the verti-
cal axis is 1.9 mm, and the period along the horizontal axis is
equal to the sampling period (272 nm). The grating depth is
'816 nm, and the maximum pillar aspect ratio is '8.8.
f(x, y) P @0; 2p#. Assuming that the sampling points
(i, j) are located on a regular 2D square grid, a set of
phase values f ij is defined, with i and j being integers.
For a given calibration curve, the value of nmax is given.
Denoting by fM the maximum value of the f ij values,
fM , 2p, we fix the thickness h of the diffractive element
by using

h 5
fM

2p

l

nmax 2 1
. (5)

When the phase modulation is 2p, as is generally the
case, the thickness h is simply equal to l/(nmax 2 1).
Then we associate with each phase value f ij an effective
index nij , given by48

nij 5 ~nmax 2 1 !
f ij

fM
1 1. (6)

From the modified calibration curve, the microstructures
are deduced at every sampling point. This design proce-
dure, referred to as procedure 2 hereafter, is simple and
does not rely on any iterative techniques.

B. Theoretical Performance
We now apply procedure 2 to the design of diffractive
components for operation with vertical-cavity surface-
emitting lasers at 860 nm. Again, we consider pillars
etched in TiO2 (refractive index of 2.23 at this wave-
length). The sampling period L1 is chosen as follows.
For a given value of D2 , L1 is selected such that, for f
, (L1 2 D2)/L1 , only one propagating mode is sup-
ported by the microstructures and, for f . (L1
2 D2)/L1 , at least two modes propagate. In this way,
we can consider sampling periods slightly larger than the
structural cutoff as relaxing fabrication constraints while
still preserving the full analogy with homogeneous artifi-
cial dielectrics. An example is given in Fig. 11 for D2
5 75 nm. The thin curves represent the effective indices
n of the propagating modes. The sampling period (L1
5 405 nm) is 10% larger than the structural cutoff (Ls
5 370 nm) but remains much smaller than the cutoff
(Lc 5 566 nm).

To assess the performance of diffractive elements based
on design procedure 2, we first consider prismlike grat-
ings. Figure 12 shows the first-order diffraction effi-
ciency as a function of the normalized depth for different
periods. The gratings are designed according to proce-
dure 2. The normalized depth is defined by the ratio be-
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tween the actual depth and the value given by Eq. (5).
Thus a grating with a normalized depth equal to unity is
strictly designed along the lines of procedure 2. Two in-
teresting features appear in Fig. 12. First, it is notice-
able that the maximum efficiency is achieved for a thick-
ness equal to or very close to l/(nmax 2 1) and that this
efficiency is rather large. This result is expected for
large period-to-wavelength ratios where the scalar theory
holds, but it is more surprising for shorter periods in the
resonance domain. Applying the numerical prediction of
Fig. 12 to the local periodicity of a diffractive lens, we find
that the outer zone of an f/0.5 lens has a diffraction effi-
ciency of 82%. Another interesting feature is the fact
that the predicted diffraction efficiencies in Fig. 12 are
significantly higher than those obtained for the blazed-
index gratings shown in Fig. 3. For example, for a 4.2l
period, the efficiency is 88.5% for nmax ' 1.86, whereas it
is only 79% and 82% in Fig. 3 for n 5 1.52 and n 5 2, re-
spectively. Similar results are also observed for blazed
binary gratings designed along the lines of procedure 1
(see Fig. 9).

C. Sampling Effect
The fact that blazed binary gratings designed according
to procedures 1 and 2 offer diffraction efficiencies signifi-
cantly larger than those achieved by the corresponding
blazed-index gratings is questionable. This effect, herein
called the sampling effect, was not expected by us before
we conducted this study, and during the course of the
study it made us doubt for a while the accuracy of our nu-
merical predictions.

Fig. 11. Calibration curve used for the design of blazed binary
diffractive components as a function of the fill factors. Thin
curves: n values of all the propagating modes supported by a
biperiodic structure composed of a 405-nm-period array of square
pillars engraved in a 2.23-refractive-index material. The upper
curve (n varying from 1 to 2.23) corresponds to the fundamental
mode or effective index. Vertical dotted lines: limits imposed
by fabrication constraints for D1 5 100 nm and D2 5 75 nm.
Thick curve: modified calibration curve.
To verify this unexpected effect, we apply procedure 2
to the design of two prismlike gratings whose periods are
4.23l and 1.41l. For each grating, we consider several
sampling periods, and, for each sampling period, a new
calibration curve relating the effective index to the fill fac-
tor is computed. In this theoretical study we allow for in-
finitely small pillars to be fabricated (D1 5 0), and D2 is
chosen such that the higher-effective-index value nmax is
equal to 1.86. The numerical results are shown as circles
in Fig. 13. For example, the values obtained for L
5 4.23l were computed for N 5 9, 10, 11, 12, 13, 17, 19,
21. The horizontal dotted lines represent the diffraction
efficiencies of the two associated blazed-index gratings
@n 5 1.86 and h 5 l/(n 2 1)]. As predicted above, we
find that the use of large sampling periods has a benefi-
cial effect on the diffraction efficiency. This is especially
true for the 1.41l-period case, in which the diffraction ef-
ficiency for L1 5 400 nm is 20% larger than the efficiency
for L1 5 50 nm. Moreover, it is interesting that, for in-
stance, in Fig. 13, the optimal sampling period is not
equal to the structural cutoff of 405 nm. For L 5 1.41l
it could be larger, and for L 5 4.23l it could be smaller
(an optimal value is found for L1 ' 370 nm).

D. Experimental Results
We consider as experimental evidence the fabrication of
an off-axis diffractive lens for operation at 860 nm. The
focal length is 400 mm, the off-axis angle is 20°, and the
lens aperture is square, with a side equal to 200 mm. For
these values, the minimum and the maximum zone
widths are 1.91l and 8.83l, respectively. Half the lens
area consists of zones with a width smaller than 2.8l.
The lens design is performed by use of procedure 2 with

Fig. 12. Theoretical performance for design procedure 2. First-
order diffraction efficiency of blazed binary subwavelength grat-
ings as a function of the normalized depth for different grating
periods L ' 1.4l, 2.3l, 3.3l, 4.2l, 8.0l. The numerical values
are obtained for l 5 860 nm, for gratings etched in a TiO2 layer
(refractive index, 2.23), for normal incidence from air, and for a
405-nm sampling period.
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the modified calibration curve of Fig. 11. The corre-
sponding aspect ratio for the thinner pillars is approxi-
mately 10. The fabrication process is the same as that
described in Subsection 3.B. After evaporation of a 990-
nm-thick TiO2 layer onto a glass substrate, the fabrica-
tion involves e-beam writing in a 150-nm-thick PMMA-
layer lift-off with a 40-nm-thick nickel mask and RIE.
The e-beam writing process over the 200 mm 3 200 mm
area lasts 5 min. Feature-size data and e-beam dose are
adjusted simultaneously to yield pillar sizes as close as
possible to those desired. Three different doses are ac-
cordingly used for narrow, intermediate, and large pillars.
The fluorine etching step lasts 25 min. A scanning-
electron micrograph is shown in Fig. 14. According to
the numerical results of Fig. 12, an 85.5% diffraction effi-
ciency is expected for this lens.

The lens was tested with a vertical-cavity surface-
emitting laser emitting a Gaussian beam circularly polar-
ized at 860 nm. The beam waist is 1.25 mm. For the fol-
lowing tests, the laser is centered relative to the lens
aperture (this corresponds to a 20° angle deviation for the
diffracted beam), and it is positioned in the front focal
plane. We estimate that more than 99% of the incoming
light passes through the lens aperture. The efficiency
performance of the lens is characterized by a measure-
ment of the first-order diffraction efficiency. We obtain
an efficiency of 80% (a value 5% lower than the theoreti-
cal prediction) by measuring the power of the diffracted
beam, dividing it by the power of the incident beam, and
correcting for Fresnel losses incurred at the back side of
the glass substrate. In addition to efficiency, spot quality

Fig. 13. First-order diffraction efficiency of blazed binary sub-
wavelength gratings as a function of L1 /l for L 5 1.41l, 4.23l.
The numerical values are obtained for l 5 860 nm and for grat-
ings etched in a TiO2 material (refractive index, 2.23). The grat-
ings are designed according to procedure 2 with D1 5 0. For
each sampling period, D2 is chosen so that nmax is equal to 1.87.
The two horizontal dotted lines correspond to the first-order dif-
fraction efficiencies of two blazed-index gratings for n 5 1.87 and
for L 5 1.41l, 4.23l.
is an important measure of lens performance. Figure 15
represents the point-spread function measured at a rear
distance of 400 mm with a 400-mm-diameter photodiode.
The data denoted by circles are obtained in the sagittal
plane, and those denoted by plus signs are obtained in the
transverse plane, perpendicularly to the off-axis direc-
tion. The long tail obtained for small displacements and
for the transverse case is due mainly to coma and astig-
matism because the lens was designed for on-axis opera-
tion. The two solid curves correspond to fits by Gaussian
functions whose 1/e2 contours are equal to 6 and 7.2 mm
in diameter, respectively. These values agree rather well
with the theoretical value of 7 mm. Further analysis will
be pursued to accurately quantify the lens behavior.

6. CONCLUSIONS
The design and the fabrication of polarization-insensitive
blazed binary diffractive components for visible-light op-

Fig. 14. Scanning-electron micrograph (located not far from a
corner) of the off-axis diffractive lens.

Fig. 15. Spot profiles measured at a rear distance of 400 mm
with a 400-mm-diameter photodiode. Solid curves are fits by
Gaussian functions.
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eration have been examined. Two straightforward and
complementary procedures for designing such compo-
nents have been proposed and quantitatively tested with
electromagnetic theory. These procedures exploit the
strong analogy between two-dimensional gratings with
periods smaller than the structural cutoff and homoge-
neous thin films, take into account fabrication con-
straints, and provide highly efficient designs. Numerical
results show that blazed binary diffractive elements
etched in a high-index film consistently outperform stan-
dard blazed components in glass. The procedures ex-
posed in this study are attractive because they provide
simple, noniterative, nearly optimal, and
polarization-independent49 designs even for gratings with
small period-to-wavelength ratios or for high-speed
lenses. Perhaps additional methods based on electro-
magnetic theory can be used to further enhance the per-
formance of the blazed binary components by a local
refinement50,51 of the subwavelength microstructure loca-
tions.

In addition, the feasibility of highly efficient diffractive
components with sampling periods equal to the structural
cutoff has been demonstrated. These components in-
clude a 3l-period prismlike grating with an 82% experi-
mental efficiency for operation at 633 nm and a 20° off-
axis diffractive lens with an 80% experimental efficiency
for operation at 860 nm. The fabrication relies on lithog-
raphy and etching processes developed for the semicon-
ductor industry and involves electron-beam writing in a
PMMA layer, lift-off with a nickel mask, and reactive ion
etching in a TiO2 film evaporated onto a glass substrate.

Why do blazed binary diffractive components with sam-
pling periods approximately equal to the structural cutoff
significantly outperform conventional blazed échelette
gratings? We have not yet fully answered this question,
but a first insight has been provided. First (with refer-
ence to Fig. 1), we pointed out that, for a given material
or, equivalently, for a given refractive index, the shadow-
ing zone of blazed échelette elements is twice as big as
that of the corresponding blazed-index elements. These
predictions, based on simple and approximate consider-
ations, were confirmed by numerical results obtained
with electromagnetic theory. This simple consideration
does not fully explain the difference, in terms of efficiency,
observed by numerical computation. Second, we pro-
vided numerical evidence that the performance of blazed
binary gratings strongly depends on the sampling period.
We observed that large efficiencies are obtained for large
sampling periods approximately equal to the structural
cutoff. In other words, efficiencies obtained with blazed
binary diffractive elements designed in the static limit,
L1 → 0 (this would be a natural choice for one ideally
equipped with a technology offering a resolution much
smaller than the wavelength), are lower than those
achieved with finite sampling periods, at least in the reso-
nance domain. We are currently investigating some
physical reasons for this result.

We can conclude from this study that blazed binary dif-
fractive elements with sampling periods approximately
equal to the structural cutoff substantially outperform
standard blazed échelette elements in the resonance do-
main. It is noteworthy that, with respect to theoretical
diffraction efficiency, the comparison between blazed bi-
nary gratings and blazed gratings assumes different ma-
terials, i.e., glass for blazed échelette, and TiO2 for blazed
binary gratings. A fairer comparison would assume that
both gratings are fabricated of the same material.52

However, it is also worth mentioning that, because of our
present fabrication constraints, blazed binary gratings
etched in TiO2 do not take full advantage of the high re-
fractive index of TiO2. For instance, while the refractive
index of TiO2 is 2.3, the maximum achievable effective in-
dex is only 1.66. The experimental and the theoretical
results obtained in this study are encouraging. With the
advent of deep-UV or x-ray lithography and progress in
replication techniques, the mass production of low-cost
highly blazed binary subwavelength diffractive elements
may become possible in the near future.
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