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Tolerance in angles of continuously self-imaging gratings (CSIGs) is explored. The degradation in angle of the
shape of the point-spread function is theoretically investigated and illustrated by simulations and experi-
ments. The formalism presented is inspired by the one used for classical lenses and can be easily generalized
to diffraction gratings. It turns out that well-designed CSIGs could be used for scanning optical systems re-
quiring a large field of view. © 2007 Optical Society of America

OCIS codes: 050.0050, 110.3000, 110.3080.

1. INTRODUCTION

During the past decade, a great number of authors have
proposed various optical components for generating
propagation-invariant spot arrays. These arrays can be
seen as particular nondiffracting beams, as described by
Durnin [1] in 1987. In practice, the most studied solution
is the zero-order (J) Bessel beam. For instance, the axi-
con introduced by McLoed [2] is a good approximation of
an optical component producing a </, Bessel beam with a
high transmittance and has been widely studied [2-7].
This optical component provides a long depth of focus
with a good resolution and is a good candidate for many
applications. For example, it has been integrated into
scanning optical systems [8,9]. However, despite these
two qualities, axicons seem to have limitations for wide-
angle imaging applications. Studies in [10-13] on the tol-
erance in angles of axicons have suggested that they are
very sensitive to off-axis aberrations, but this needs fur-
ther investigation. The purpose of this paper is indeed to
study the tolerance angle of a particular class of optical
components called continuously self-imaging gratings
(CSIGs) [14,15]. These components have similarities with
axicons in terms of depth of focus and resolution. When
illuminated by a plane wave, CSIGs produce a field whose
intensity profile is a propagation- and wavelength-
invariant biperiodic array of bright spots. At present,
these properties are being used in the field of optical me-
trology, where CSIGs are used to generate reference in-
tensity patterns made of bright spots for the control of
wavefront [16] or for the measurement of the detector’s
spatial response [17]. In this paper, we will demonstrate
that well-designed CSIGs can be relatively robust in the
field in compensation for a trade-off with resolution.
CSIGs can be thus adapted for the design of optical sys-
tems used for imaging purpose requiring a large field of
view (FOV) and a large depth of focus.

In Section 2, general principles of CSIGs for the non-
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paraxial study will be presented. In Section 3, the main
off-axis aberration terms will be determined. This theo-
retical study is inspired by the formalism used for classi-
cal lenses. In Section 4, tolerance angle criteria will be de-
veloped to assess the tolerance angle of CSIGs, and
relations between phase and intensity degradation will be
explored. The tolerance angle of a CSIG is the angle above
which the point-spread function (PSF) is degraded by off-
axis aberrations. Results from simulations will illustrate
the theoretical approach. And finally, in Section 5, the
degradation of the PSF will be studied experimentally.

2. FUNDAMENTAL PROPERTIES OF CSIGs
IN NORMAL INCIDENCE

Consider, in the Fourier space, a Cartesian grid of pitch
1/aq and a circle (Fig. 1). The intersection of the horizon-
tal and vertical grid lines with the circle form a set of
points that can be called “orders” (see [15]), as they con-
stitute the set of orders of any bidimensional grating of
pitch ag in both x and y directions. The different orders
selected have the following coordinates in the spatial-
frequency domain:

p 7

v=—=—cos(¢), (1)
Qo Qo
q /8

m=—=—sin(g), (2)
Qo Qo

where 7/a is the radius of the selecting circle, and 7 is
thus a dimensionless value given by

n=\p*+q*. (3)
We call CSIG any transmittance #(x,y) whose spatial-
frequency spectrum is the subset of those orders lying on
a given circle centered at the origin. The transmittance of

© 2007 Optical Society of America
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Fig. 1. Construction in the Fourier plane of a 24-order CSIG by
selecting orders from a Cartesian grid with a ring of radius 7.

the CSIG is given by the following relation:
2im(px + qy) )

Qo

tlx,y) = 2 Cyy exp( (4)
DP9

where C,, is the amplitude of order (p,q) of the CSIG. A
CSIG is thus a biperiodic array of pitch a . It can be con-
sidered as an N-wave interferometer, where N is the
number of orders selected. When illuminated at normal
incidence by a monochromatic plane wave of complex am-
plitude U, and wavelength A, a CSIG of transmittance
t(x,y) generates a field of complex amplitude Ul(x,y,z)
given by the general expression (see [18])

2L N2 +q?)
Ux,y,z) = UOE Cpqexp| —z[1-—F—
g A ay

2im(px + qy)) )

Xexp(
Qo

where z is the direction normal to the plane of the CSIG.
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Substituting Eqgs. (3) and (4) into Eq. (5), we finally obtain
the following expression for the field at normal incidence:

20 2P
U(xay>z) = UO exp| —= 1- 2 t(xyy) (6)
A Qg

We define the PSF of a CSIG as the intensity pattern |U|?
observed in the detection plane at distance z. Its expres-
sion at normal incidence is given by

PSF(x,y) = |U(x,y,2)|* = |Ug*[t(x,y)|?. (7)

An important point highlighted by Eq. (7) is that at nor-
mal incidence, the intensity pattern of the field produced
by this object is independent of z in any plane normal to
the z axis. This property can be explained by the fact that
the orders generated by the CSIG at normal incidence are
always in phase, because they originate from a circle cen-
tered at the origin of the Fourier plane. Moreover, this ob-
ject produces an achromatic self-image of its transmit-
tance at any distance z. The PSFs at normal incidence of
a 24-order CSIG and a 48-order CSIG are given in Fig. 2.
When CSIGs are illuminated by a plane wave, they pro-
duce a field whose intensity profile is a propagation- and
wavelength-invariant biperiodic array of bright spots, de-
scribed by a J, function. The radius ry of the spots is
given by the first zero of the J, function. In [14], it was
shown that

ro = 0.38a¢/7. (8)

For imaging applications, a CSIG can thus be described
by two parameters: the period @ of this pattern and #.
The other characteristics can be derived from these two
parameters.

3. NONPARAXIAL EFFECTS IN OBLIQUE
ILLUMINATION

In oblique illumination, the N orders diffracted by the
CSIG are no longer in phase and Eq. (5) has to be modi-
fied in order to take into account these phase delays. Fig-
ure 3 illustrates a grating illuminated by an oblique ray.
Parameters a; and B; define the incident angle, and ay

Fig. 2. PSFs of a 24-order CSIG (7?=650) and a 48-order CSIG (7?=9425).
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N"‘....
", diffracted order
z
Fig. 3. Diffraction by a 2D periodic object.
and By are the characteristics of one diffracted order. In 271 \2 p? q?
order to simplify the following equations, we assume that dﬁ) =- NGV ——+ z, (13)
B1=0 so that rays coming through the grating are in- N 2ap\ cos*(ay)  cos(ay)
cluded in the (x,z) plane. Using the approach of angular
spectrum of plane waves (see [18]), Eq. (5) can be rewrit- 27123 [ sin(ay)p®  sin(ay)pg?
ten as a 2D Fourier series: o= ——— ! + ! (14)
pa N 2ad\ cos’(ay) cos?(ay)
2T
Ulx,y,z) = Uy exp Tx sin(ay) 2 C, 4 exp(id, 4(2))
P @ 2w 1N [ 4sin?(ay) + 1 - 2 sin?(a;) + 1 -
2im(px + qy) bpg =~ 7 5 pq
Xexp( , ) N 2a0 4 cos (al) 2 cos®(a;)
Qo q*
+—z. (15)
where ¢, ,(z) are the phases of the orders generated by 4 cos®(ay)

the CSIG in the detection plane at distance z:

2 )2 A%?
qbp,q(z):Tz 1-|sin(ay) + — —7. (10)

Qg 0

When pNay and g\/ag are small, the phases ¢, , can be
expanded in a Taylor series of p and g as follows: ¢, ,

45(0) 4)(1) qS(Z) ¢<3) ¢(4) .. Expansions up to order 4
are presented below

21
)= — — cos(ay)z, (11)
O _ 27 N
bpg =~ P tan(ay)z, (12)
0

This truncated Taylor series has already been expanded
up to order 3 by Testorf et al. [19] for 1D periodic objects,
that is, when ¢=0. In the case of CSIGs, all the terms p
and q are linked to 72 by relation (3). If we assume that oy
is small [cos(aq)=1- a§/2 and sin(ay) = a4], the Taylor ex-
pansions can be simplified as follows by keeping the
terms until the order 4:

@ 27 N\ 1 5
bpg ¢ =T o \Patgpan )z, (16)
0

27 1\2
(2)___

PIT ) 2a2

(772 —7a} +p2a%)z, (17)
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@__ 2TV
g =~ N 2P T (18)
0
@ 271\t .
bpg =~ N8l (19)
0

In order to link these developments to the formalism used
for classical lenses, we define the wave aberration
W(p,¢:R) (see [20]) linked to the phase by the relation
¢bpg=(2m/N)W(p, ¢:R) [11,21]. The usual expression of the
wave aberration is

W(p,@:R) = 301 + boRp cos(g) + je1p* + caR%p” cos’(¢)
+ %c;;RQp2 +c,R3p cos(@) + c5Rp® cos(p), (20)

where the third, fourth, fifth, sixth, and seventh terms
are third-order Seidel aberrations [21]. The first and sec-
ond terms represent defocus and image shift, respectively.
The third, fourth, fifth, sixth, and seventh terms indicate,
respectively, third-order spherical aberration, astigma-
tism, curvature of field, distortion, and coma. The param-
eters p, ¢, and R are illustrated in Fig. 4; R is the ampli-
tude of the displacement of the PSF with respect to his
position at normal incidence. Its relation is given by

R=ztan(ay), (21)

and p and ¢ are linked to the characteristics of the CSIG
by the relations

pcos(e) Ap
= (22)

4 (o2}

psin(e) Ag
=—. (23)

z [e2))

With these parameters, the various orders of the Taylor
series of ¢,, become

Druart et al.
(2) 27 1 2 27 1 2 2
=———p°-——R
Pra N LN
27 1 5 9 )
- ——=R*p” cos 25
o (¢), (25)
@ 27 1
¢pq=_ N 22 3Rp COS(Q"); (26)
@ 27 1 .
g =~ NrELE (27)

Thanks to Eqgs. (24)—(27), the expressions of the Seidel co-
efficients can be determined for a diffraction grating:

1
b1=b2=—_, (28)
z
1
1=C2=C3=C5=~ o7, (29)
1
C4=—Q. (30)

Thus, d)m contains the term of image shift and distortion;
¢(2) the terms of defocus, astigmatism, and field curva-
ture qS ) the terms of coma; and ¢(4) the term of spherical
aberratlon. In the case of a CSIG illuminated at \, p/z
=\7y/apg=constant. Thus, as already demonstrated by
Tanaka and Yamamoto [11], the intensity distribution of
patterns created by those optical components are not af-
fected by the coma aberration. Indeed, the aberration
(p/2)? cos(¢) behaves only as a tilt term of the wavefront
and has no effect on the pattern except a shift. CSIGs also
are not affected by spherical aberration, which plays the
same role as the defocus, since its phase is constant. Fi-
nally, the aberrant phase ¢,,,, that degrades the shape of

271 27 1 S o : : :
¢(1) =~ —"Rpcos(e) - ——3R3p cos(g), (24) thfe PSF is glveg)by the terms of astigmatism, that is, the
Nz \ 3z third term of ¢pq I Eq. (25):
AY &Y
R
g
— v
p 0'6 x
_7% >z
/f
incident ray
o
Fourier plane image plane

Fig. 4. Notation used to determine the expressions of the off-axis aberrations.
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27 1

N 223R2p2 cos(¢)?. (31)

¢aberr(p7 ()D) ==

The PSF is obtained by taking the modulus square of Eq.
(9) and can be written as follows:

PSF(x7y,a1) = |[]0|2

2im
E Cp,q exp| —(p(x — Ax) + qy)
pa Qo

2

Xexp[i d’aberr(paq)] ’ (32)

where Ax represents the shift of the pattern due to the ef-
fects of the tilt, the coma, aberration, and the distortion
and whose expression is given by

1, 1
Ax = 1+§a1+§@ aqz. (33)

4. CRITERIA FOR THE EVALUATION OF
THE DEGRADATION OF THE PSF IN
OBLIQUE ILLUMINATION

A. Peak-to-Valley Criterion

The Peak-to-valley criterion can be used to estimate the
tolerance angle a, beyond which the spots generated by
CSIGs are degraded by aberrations. The Peak-to-valley
amplitude APV is the amplitude between the biggest de-
fect and the smallest defect on the aberrant phase ¢,pe,
of a wave; APV is illustrated in Fig. 5 and is derived by
the relation

APV = max( ¢aberr) - min(d’aberr) . (34)

In the case of a small angle of incidence, the Peak-to-
valley amplitude can be written as

S0 e e B ) i e e

| #incidence angle = 0° g
+ incidence angle = 5°
| ¢incidence angle = 10° :

Aincidence angle = 15°

APV(159

APV(109 d

b, ... (in rad)

S 1 FOPTS TUR U T TN O VAUV T T 0 S W OV T T T 0 T 0 O 0 O

o 100 200 300
@ (in degrees)

Fig. 5. Variation of the aberrant phase of a 48-order CSIG for
different oblique illuminations.
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A
APV(a) = m— 7oz, (35)
Qo

The Rayleigh criterion (see [22]) postulates that the maxi-
mum phase delay that can be tolerated in an optical sys-
tem is equal to 7w/2. We can apply this criterion to the
peak-to-valley amplitude in order to determine the toler-
ance angle a, of a CSIG. The angle «, is the maximal in-
cidence angle of a beam in order to have a PSF not limited
by astigmatism. A simple expression of ¢, can be derived:

ay 1 1/2 1 1/2
a=—|s—=| =2r)| —| , (36)
7\ 2\z Az

where r( is given by Eq. (8). The tolerance angle decreases
when ry decreases and when the wavelength A increases.
Parameters ry and A are thus limiting factors for the de-
sign of an illuminator with a high resolution (small rg)
and working at high wavelengths (e.g., in the infrared
spectral range). Besides, the tolerance angle increases
when the distance z between the CSIG and the detection
plane decreases. Miniaturization is thus advantageous for
designing a wide-angle illuminator. We also realize that,
when the parameters z and \ are fixed, there is a trade-off
between a good tolerance in angles and a good resolution.
In the case of two CSIGs at a distance z=30 mm and at
the wavelength A=4 um, with the characteristics [7?
=650, a(=1000 um; ro=15um] and [7?=9425, aq,
=7500 um; rq=30 pum], the tolerance angles «, are, re-
spectively, equal to 4.5° and 9°. These values are very
close to those obtained by simulation and experimenta-
tion as we will see later on.

B. RMS Criterion
A finer criterion may be the root mean square ARMS,
which is calculated in the following way:

\/Etﬁ (¢aberr(<P) - a)aberr)Z
ARMS = N ) (37)

where ¢,z is the mean value of the aberrant phase and
Duverr(@) 1s the aberrant phase of the order placed at the
angle ¢. Notice that at a given distance z, the parameter p
is constant. The parameter N is the number of orders gen-
erated by the CSIG. One advantage of the RMS criterion
compared to the Peak-to-valley criterion is that in the
former all the aberrant phase of the pupil plane is taken
into account. The RMS also gives direct information on
the image quality, which depends not only on the maxi-
mum deformation but also on the shape of the wavefront.
We define the Strehl ratio in the case of CSIGs as the
maximum intensity in a particular plane of observation
normalized by the maximum intensity of an ideal CSIG
not limited by off-axis aberrations:

max(PSF,,)

= max(PSFy.) (38)

When the aberrations are sufficiently small, the expres-
sion of the PSF given in Eq. (32) can be approximated as
follows:
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Fig. 6. Evolution of the Strehl ratio according to various incidence angles for two configurations of CSIGs.

PSF(x,y,a;) = |Uy|?

i
E Cp.exp| —(p(x - Ax) +qy)
Pa Qo

2

X ( 1+ i¢aberr(p7q) -

¢3berr(p7Q)
2

—5 |2

= [UPltx — ey 1+i0-

= PSF(x - Ax,y,0°)(1 - 0%), (39)
where t(x,y) is the transmittance of the CSIG and ¢ and
» are, respectively, the average and the variance of the
aberrant phase ¢,p..~ Equation (39) gives thus a simpli-
fied expression of the Strehl ratio. The Strehl ratio is
linked to the RMS defined in Eq. (37) as follows:
S=1-ARMS?. (40)
Here we use the Marechal criterion [22], instead of the
Rayleigh criterion used before. If the value of the RMS is
greater than /7, then the optical component is limited
by off-axis aberrations. The Marechal criterion corre-
sponds to a Strehl ratio equal to 80%. Figure 6 shows the
evolution of Strehl ratios according to incidence angles
and for different configurations of CSIGs. We use Eq. (40)
to plot the graphs on Fig. 6, and we keep only the points
greater than 70% in order to stay in the approximation of
small aberration. In the case of two CSIGs at a distance
2=30 mm with the characteristics [7?=650, ag=1000 um;
ro=15 um] and [77=9425, a,=7500 um; ry=30 um], the
tolerance angles are, respectively, equal to 4° and 7.8°.
These values are close to the tolerance angles «, estab-
lished with the Rayleigh criterion.

C. Definition of the Quality and Degradation Factors

of a CSIG

In this section, we want to find a criterion that conveys
the degradation in intensity due to aberrations in the
same way as the criteria that take into account the delay
in phase of the different orders generated by a CSIG. This
criterion will be used to estimate experimentally the tol-
erance angle «a, of CSIGs. Agreement between intensity
degradation and phase delay about tolerance angle is ex-
pected. We define a quality factor / by the relation

a2 rde
L f J [I(x,y)[*dxdy

—ar2 J -
f= D (41)

AVG? ’

where I represents the intensity of a square image of size
d and AVG is the mean value of I over an image and is

given by the formula
di2 rd/2
J j I(x,y)dxdy
-d/2 J -dr2

We apply Eq. (41) to a biperiodic array of bright spots of
diameter A and spaced by a period of d. The image takes
the values equal to either 1 or 0 and is illustrated in Fig.
7. This configuration is close to the intensity pattern pro-
duced by a CSIG. The quality factor of this image can be
expressed by the formula

1
AVG = 7 . (42)

d2

/= 2(A/2)%

(43)

This quality factor corresponds to the compression factor
defined in [14] and is nearly equal to the factor 77 (f
=1.172). We also realize that the sharper the PSF, the big-

d

°
°
°
¥
Le

e o ®

Fig. 7. Biperiodic array of bright spots.

® & & o
e & & o o
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® & & & o
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Fig. 8. PSF spectrum produced by a 48-order CSIG (7?=9425)
illuminated at normal incidence.

ger the quality factor. As off-axis aberrations are respon-
sible for the widening of the PSF, they will also drop the
quality factor. The quality factor can be expressed in the
frequency domain [23], thanks to Parseval’s theorem, by
the relation

D

qu | pq‘2

f pZ, (44)
where D,, designates the amplitudes of the various or-
ders contained in the spectrum of the PSF pattern gener-
ated by the CSIG. Please note that D, is different from
Cpq described before; indeed, C,, are the amplitudes of
the various orders contained in the spectrum of the am-
plitude pattern generated by the CSIG. An example of the

PSF spectrum is illustrated in Fig. 8. The orders qu(p 040

give information about the repartition of light, whereas
the order D, gives information about the global intensity
of the wave. The amplitude of the order Dy, will also de-
pend on the variation of the source intensity and will per-
turb the influence of the off-axis aberration on the degra-
dation of the quality factor. To observe the degradation of
the PSF linked to the off-axis aberrations, a degradation

Vol. 24, No. 10/October 2007/J. Opt. Soc. Am. A 3385
factor called D is defined as follows:
2
(Ew,q#(o,m 1Dyl )Ql
D= (45)

o
<2(p,q)¢<0,0> ‘qu| )oe

The degradation factor D compares the orders D,, a0
between the best case, at normal incidence, and a case in
oblique illumination. This factor is dimensionless and
does not depend on the variation of the source intensity.
Figure 9 gives the degradation factor for various configu-
rations of CSIGs. In the case of two CSIGs at a distance
2=30 mm with the characteristics [72=650, a,=1000 um]
and [72=9425, a(=7500 um], a criterion of 70% for the
degradation factor gives the same tolerance angles deter-
mined with the classical Strehl ratio criterion (80%). The
two CSIGs have, respectively, a tolerance angle of 4° and
7.8°.

5. EXPERIMENTAL STUDY

A. Description of the Setup

Figure 10 displays the experimental setup for observing
the intensity distribution of the PSF created by a CSIG at
various incident angles. A mask is illuminated by a black-
body at 1000 K and is collimated by a collimator of focal
length equal to 760 mm. The scene generated is imaged
by a CSIG placed at a variable distance from an infrared
focal plane array (detection spectral range of [3—5.5 um]).
The complementary metal oxide semiconductor is com-
posed of 384 X 288 pixels of 20 um in size. The camera
and the grating are mounted on a rotation stage so that
the scene generated can be seen through various incident
angles. As we want to study the PSF of a CSIG, we gen-
erate a point source by using a pinhole of diameter 1 mm
or 2 mm. We studied experimentally a CSIG with the
characteristics [77=650, a(=1000 um] and placed at a
distance of 30 mm from the detector. The grating used for
this experiment is a two-level approximation of the ideal
transmittance as described in [15]. It is a binary-phase
grating on a GaAs substrate.

100

3 T
‘% ; n2=650, a,=1000um

@ e’}
Q =
— T

degradation factor (in percent)
&
<
———

o A !

™)
<
T
|

degradation factor (in percent)

B I
| N?=9425, a,=7500um,

4D .

o
Q
— T

20 .

o I : 1

° 5 10 15

incidence angle (in degrees)

° 5 10 15
incidence angle (in degrees)

Fig. 9. Theoretical evolution of the degradation factor D versus incidence angle a; for two different configurations of CSIGs.
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infrared focal
blackbody mask collimator CSIG  plane array

T

infrared scene generation optical axis of the system
Fig. 10. Presentation of the experimental setup.

_ (b)

Fig. 11. PSF of a 24-order CSIG (7?=650) obtained by either simulation (a) or experimentation (b) for various incidence angles.

100 I

100 g
| 12=650, a,=1000pm [

T T T T
n2=650, a,=1000um

80—

@ o0
Q =]
T

s
(=)
T

woF

degradation factor (in percent)
degradation factor (in percent)

¥ ox ® ¥
20 — 20+ —
L |—theoretical results 4 t [—thecretical results
0 I v I o y L L .y L
[} 5 10 15 ¢} 5 10 15

incidence angle {in degrees) incidence angle (in degrees)

(a) (b)

Fig. 12. Comparison of the degradation factor obtained by simulation and experimentation in the case of pinhole masks with a diameter
of (a) 1 mm or (b) 2 mm.

B. Confrontation of Measures Obtained by Simulation shows some experimental and simulated results created
and Experimentation by oblique plane-wave illumination. The incident angles
The PSFs of these CSIGs for various incident angles are onto the CSIG are 6=0°, 5°, 10°, and 15°. We notice that
compared with those computed, using Eq. (9). Figure 11 the PSF's observed experimentally agree fairly well with
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those obtained numerically. We determine the degrada-
tion factor of the 24-order CSIG with the PSFs measured
experimentally. This degradation factor is compared in
Fig. 12 with the one obtained by simulation for different
sizes of pinhole mask. In the simulation, we take into ac-
count the influence of the pixel size and the influence of
the diameter of the pinhole masks used for this experi-
ment. Both attenuate the small degradations of the shape
of the PSF and increase the value of the cutoff angle.
Fairly good agreements between the experiment and the
simulation are observed.

6. CONCLUSION

In this paper, we have determined the expressions of the
third-order aberrations that affect the quality of the PSF
of a 2D diffraction grating, and, to our knowledge, the ex-
pressions of the Seidel coefficients for a field generated by
a diffraction grating have never been established before.
This formalism has been applied to CSIGs. It turns out
that the shape of the PSF of a CSIG is degraded in angle
by the aberration of astigmatism, whereas the coma aber-
ration shifts only the PSF. Different criteria on the phase
delay of the orders generated by CSIGs have been estab-
lished to assess the tolerance angle of the CSIGs. We have
used the Rayleigh criterion on the peak-to-valley relation
and the Marechal criterion on the RMS relation (or,
equivalently, the Strehl ratio) to determine the tolerance
angles of various configurations of CSIGs. These two
methods give similar results. The Rayleigh approach es-
tablishes an engineer rule that links the tolerance angle
to the resolution and the compactness of the optical sys-
tem. It shows that a well-designed CSIG can have a sat-
isfactory tolerance in angle. A compromise between toler-
ance in angle and resolution has, however, to be found,
depending on application. Nevertheless, this compromise
is not severely restricting for designing unconventional
imaging systems based on CSIGs with a sufficient field of
view and a long depth of focus. The theoretical study and
the simulations have been illustrated by experiments. A
degradation factor has been established for this occasion
in order to extract a tolerance angle from the experimen-
tal PSFs, and fairly good agreement between what we
predicted and what we observed has been reported. The
formalism and the results presented in this paper can be
easily generalized to other Cartesian or circular gratings
(e.g., diffractive axicons) and can be useful to study their
imaging properties in the case of a more complex scene
with a given field of view.
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