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A thorough electromagnetic study of pillar microcavities reveals a surprising behavior for theirQ
factors in the strong confinement limit.Q displays a fast oscillatory variation as a function of the
pillar diameter, and reaches values well in excess of the quality factor of the reference planar cavity.
This behavior is explained by the hybrid character of the cavity mode in the small diameter limit,
which results mainly from the electromagnetic coupling of the HE11 ~i.e., fundamental!and EH11

guided modes of the cavity spacer through the associated Bloch modes in the Bragg mirrors.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1759375#

Pillar microcavities have played a major role in the de-
velopment of several optoelectronic devices, including verti-
cal cavity surface-emitting lasers.1 Micropillars are also well
suited to the realization of cavity quantum electrodynamic
~CQED!experiments in the solid state, since they combine a
small cavity volumeV and relatively high-quality factorQ.
Clear demonstrations of the Purcell effect~spontaneous
emission rate enhancement!have been obtained by incorpo-
rating InAs self-assembled quantum dots in pillar
microcavities.2–4 The Purcell effect is the key for the effi-
cient operation of the first single-mode solid-state single
photon source, which implements a single quantum dot in a
micropillar.3,4 In the small-diameter limit, other CQED ef-
fects such as the strong coupling regime or lasing for a single
quantum dot might eventually be observed in the future, pro-
videdQ remains large enough~i.e., Q@1000 typically!.5 Ex-
perimentally, a strong decrease ofQ has been observed for
submicron micropillars, even in the well studied GaAs/AlAs
system; this behavior is commonly attributed to the detri-
mental effect of the scattering induced by the roughness of
the etched sidewalls of the micropillars.6 In order to estimate
the ultimate potential of micropillars for CQED and related
applications, it therefore appears essential to study theintrin-
sic dependence ofQ versus the pillar diameterd. A good
knowledge of the intrinsic cavityQ is also important when
one analyzes the performance of devices~such as lasers or
single photon sources!7 in the presence of additional extrin-
sic losses.

Apart from Ref. 5 where micropillars are analyzed using
finite-difference time-domain techniques for three pillar di-
ameters (d50.3, 0.4, and 0.5mm!, previous studies rely on
approximate methods, which assume that the field distribu-
tion can be written in a separable form as a function of the
transverse and longitudinal coordinates. Such an approxima-
tion is not legitimate for smallds, and do not permit to study
Q. In this letter, we present the results of an electromagnetic

modelization of theQ of pillar microcavities in the small-
diameter limit, which reveals amazing phenomena.Q dis-
plays indeed a fast oscillatory variation as a function of the
pillar diameter, and reaches values well in excess of the qual-
ity factor of the reference planar cavity. A simple approxi-
mate model is introduced to interpret the physical origin of
this unexpected behavior.

Our calculation have been performed for the GaAs/AlAs
system, which is both well mastered technologically and im-
portant for practical applications. In pillar microcavities, the
photon confinement results from the combination of a
waveguiding effect in the transverse direction and of a re-
flection by Bragg mirrors in the longitudinal direction. We
consider here cylindrical micropillars having a circular cross
section, with parameters typical of recently studied single
photon sources.3 The micropillars are composed of a
wavelength-thick GaAs cavity spacer, surrounded by a
9-period~top! and 25-period~bottom! distributed Bragg re-
flectors, see the bottom inset in Fig. 1. In the following, the
reflectors are assumed to be composed of GaAs and AlAs
layers, with refractive indices 3.495 and 2.94 atl050.95
mm. Every layer of the reflector is assumed to have a quarter-
wave optical thickness for any diameterd: For instance, all
GaAs layers arel0 /(4n1) thick, n1 being the effective index
of the fundamental guided mode HE11 of a GaAs cylinder of
diameterd. The thickness of the cavity layerh is l0 /n1 .
This particular design rule ensures that the fundamental reso-
nance wavelength of the micropillar remains very close tol0

~relative deviation lower than 1023) over the entire range of
diameters under study (d.l0 /n1).

We have analyzed the electromagnetic properties of
these micropillars by means of a frequency-domain Fourier-
modal method.8 The method is rigorous; as one increases the
number of Fourier harmonics retained for the computation,
the calculated results tend toward the exact solution of Max-
well’s equations. In brief, the method relies on a supercell
technique which incorporates perfectly matched layers9 on
the transversal side of the pillars. Since these layers absorba!Electronic mail: philippe.lalanne@iota.u-psud.fr
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the evanescent and propagative radiation, the electromag-
netic fields and their derivatives are null on every transversal
boundaries of the supercell. Thus, they are periodic functions
of the transverse coordinates and can be extended into Fou-
rier series~plane-wave basis!. This allows one to calculate
the radiation and guided modes in a Fourier basis for each
layer and to use a scattering matrix~S-matrix! approach to
relate recursively the mode amplitudes in the different layers.

The solid curve in Fig. 1 shows the cavityQ factors as a
function of d. The Qs are computed asQ5Re(l̃)/2 Im(l̃),
wherel̃ is the complex pole of the scattering matrix. Three
different regimes are successively observed for decreasing
ds: Ford.1.2 mm ~which corresponds to'4l/n1), the cal-
culatedQs remain very similar to the planar cavityQ (Q
5872). When 1.2,d,0.35 mm, the Q values surprisingly
exhibit a complex oscillatory behavior. Finally, ford,0.35
mm ~i.e., '1.3l/n1), Q displays a fast decrease. In addition,
it is noticeable that the oscillatory behavior presents a slow
envelopelike variation and a fine structure, see the nearly
sinusoidal pattern in the inset of Fig. 1. Since the effective
cavity mode volumeV scales smoothly withd, the nontrivial
oscillatory behavior is expected to reflect on the dynamical
properties of an emitter inserted in the cavity. Computational
results~not reported here due to limitations in space! for the
enhancement of the total spontaneous-emission rate have in-
deed confirmed this statement. The oscillatory behavior has
also been observed for microcavities with a 15 period top
mirror. TheQ variation with d shows again three different
regimes with the same critical values ofd, the same fine
sinusoidal structure; only the slow envelopelike variation is
shown to exhibit a faster oscillation behavior.

In order to analyze the physical origin of the cavity prop-
erties for smallds, we have developed an approximate modal
method. We incorporate two main simplifications to the pre-
vious exact method. First, since the confinement resulting
from the recursive mode energy exchange at all the inter-
faces of the Bragg reflectors is rather difficult to concep-

tualize, we introduce the Bloch modes of this periodic me-
dium. Within this approach, the pillar geometry is simplified
and is viewed as composed of three uniform sections, a
GaAs spacer of heighth and two surrounding artificial uni-
form sections of heights 9 and 25 periods, see Fig. 2~a!.
Provided that the full continuum of Bloch modes is consid-
ered in the analysis, this first simplification does not intro-
duce approximations since Maxwell’s equations are still
solved exactly. As we shall see, only two Bloch modes need
to be considered to accurately predict the cavityQs. Second,
we neglect radiation modes and only consider the guided
modes for the modal expansion of the electromagnetic field
inside the spacer. Finally, we calculate the coupling coeffi-
cient between modes at the spacer/mirror interfaces,10 and
use a S-matrix formalism to estimate the resonant energy and
Q of the fundamental cavity mode.

The Bloch modes are computed as the eigenstates of the
scattering matrix associated with one period of the Bragg
mirrors. The computations are performed by expending the
transverse fields in a plane-wave basis.8 For symmetry rea-
sons, the Bloch modes can be labeled in a way similar to the
guided modes of a dielectric waveguide.11 In the large diam-
eter limit, the transverse dependence of the field is the same
for the guided mode in the spacer and the corresponding
Bloch mode of the Bragg mirror; coupling at the spacer/
mirror interface occurs only between modes with identical
labelling. As a result, the fundamental cavity mode can be
built using the fundamental guided mode HE11 in the spacer
~hereafter labeled M1 for simplicity! and the HE11 Bloch
mode in the mirror (B1). However, when the diameter is
reduced, the overlap between these modes at the interface is
no more perfect, so that they couple also with higher-order
modes having the same symmetry. As shown now, the onset
of these higher-order components in the expression of the
fundamental cavity mode entails the complex dependence of
Q versusd.

The dashed curve in Fig. 1~a!represents theQ factor
calculated with the approximate modal method, when only
HE11 modes are considered. B1 is a nonpropagating and non-
leaky mode at the resonant wavelengthl0 for all pillar di-
ameters. Therefore, this situation corresponds to a standard

FIG. 1. Q factor for pillar microcavities as a function ofd. Solid curves are
exact numerical data obtained with the Fourier modal method. The dotted
~resp. dashed!curves represent the predictions obtained using the approxi-
mate model, and the expansion of the cavity mode on one~resp. two!guided
modes in the spacer, and Bloch modes in the mirror. The top inset is an
enlarged view ford'0.43 mm. Its vertical axis ranges from 730 to 1550.
The bottom inset is a sketch of the pillar geometry.

FIG. 2. ~a! Schematic view of a pillar microcavity, and basis of spacer and
mirror modes used to expand the cavity mode in the approximate method.
~b! Role of B2 in the oscillatory behavior ofQ: The solid curve displays
exact numerical data as in Fig. 1, whereas the dotted and dashed curves are
obtained by removing the Bloch mode B2 from the decomposition basis for
the top and bottom mirrors, respectively.
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Fabry–Perot model, relying on a cavity mode formed by the
recirculation of the guided mode M1 of the spacer by the
Bloch mode B1 of the top and bottom mirrors. The compari-
son to the exact numerical simulation shows that this model
is accurate in the large diameter limit, as well as ford,0.35
mm. In the latter case, all higher-order modes having the
same symmetry as HE11 are leaky modes. The fast drop ofQ
for decreasingds in this diameter range is due to the increas-
ing impedance mismatch between M1 and B1

12 and the as-
sociated radiation in free space. Note also that the approxi-
mate model predicts a slight increase ofQ for ds going from
1.2 to 0.6mm; this effect is due to the fact that the effective
index contrast in the GaAs/AlAs Bragg reflector increases as
a result for the lateral confinement.

In order to predict the oscillatory behavior forQ, it is
however necessary to go beyond the Fabry–Perot model. For
that purpose, we include now in the model the first higher-
order modes having the same symmetry as HE11, i.e., the
EH11 guided mode of the spacer (M2) and the EH11 Bloch
mode of the mirror (B2). The correspondingQ values are
represented by the dots in Fig. 1. It is clear that this simple
two-mode model reproduces fairly well the results of the
exact numerical calculation. The physical origin of the oscil-
latory behavior ofQ can thus be understood by considering
the properties of the Bloch mode B2. For d.1.2 mm, B2

is—as B1—a guided and nonpropagating Bloch mode of the
mirror at the wavelengthl0 . As a result of the lateral con-
finement, the effective indices of the guided modes in the
GaAs and AlAs layers, as well as the stop band of the mir-
rors, depend ond. Whereas the stopband for HE11

remains—by construction—centered onl0 , it is shifted to-
ward shorter wavelengths for EH11. For 0.35mm,d,1.2
mm, l0 is no more within the stop band for EH11, and B2

becomes a guided andpropagatingBloch mode.
This peculiar property of B2 leads to an oscillatory be-

havior for several important microcavity parameters. Let us
focus first on the crossed modal reflectivity R12, which de-
scribes the backward scattering into M2 for the incident
mode M1, when propagating upward in the spacer and im-
pinging onto the top mirror. This backscattering results from
the combination of three different mechanisms:~1! Excita-
tion of the evanescent B1 mode, which is reflected back by
the distributed Bragg reflector and scatters into the down-
ward propagating mode M2 at the mirror–spacer interface,
~2! excitation of mode B1, which is scattered into B2 at the
top interface between the mirror and air, B2 propagates freely
through the top mirror and couples efficiently into M2, and
~3! direct excitation of mode B2, which is reflected by the
top interface and couples to M2 after propagation through the
mirror. The propagation of B2 through the mirror induces
delays~which depend ond) between these various contribu-
tions, and a beating effect on R12. Similar considerations
apply obviously for the reflection on the bottom mirror; since
it is much thicker than the top one, faster oscillations are
expected in that case. Due to these fluctuations of the cross
modal reflectivities on the top and bottom mirrors, the hybrid
character of the cavity mode as well asQ are expected to
oscillate as a function ofd.

To support this analysis, we consider two study cases. In
the first case, we restrict our mode basis to B1 and B2 in the
bottom mirror, M1 and M2 in the spacer, and only mode B1

in the top mirror, in order to neglect the coupling to B2 in the
top mirror. The calculatedQs are shown as the dashed curve
in Fig. 2~b!. They well reproduce the fine sinusoidal struc-
ture, but do not reflect the slow envelopelike variation. In the
second study case, the coupling to B2 is neglected for the
bottom mirror only. This time, the calculatedQs @dotted
curve in Fig. 2~b!#well reproduce the slow envelopelike
character, but not the fine sinusoidal structure. This analysis
evidences the key role played by thepropagating Bloch
modes into the electromagnetic properties of micropillars
with small ds: The slow envelopelike variation ofQ is pri-
marily due to the propagation of B2 through the short top
mirror, while the fine oscillations are associated to the
lengthy bottom mirror. Ford@l0 /n, the oscillation van-
ishes. Not only B2 becomes nonpropagative, but also the
hybrid character of the cavity mode disappears in this ‘‘large
diameter’’ limit, as mentionned previously.

To conclude, the quality factorQ of submicron diameter
GaAs/AlAs pillar microcavities displays a strong and fast
dependence as a function of the pillar diameter. This effect is
related to the hybrid nature of their fundamental mode, re-
sulting from the coupling of HE11 and EH11 modes by reflec-
tion at the spacer/mirror interfaces, and to the propagative
nature of the EH11 Bloch modes of the Bragg mirrors. These
effects must be taken into account when designing micropil-
lar for advanced optoelectronic applications, such as single
photon sources. On a practical side, our results also show
that approximate models based on the expansion of the reso-
nant cavity mode on a small number~here 2! of guided
modes~in the spacer!and Bloch modes~in the mirror!pro-
vide a good insight on the electromagnetic properties of
small diameter micropillars.

The authors gratefully acknowledge fruitful discussions
with B. Gayral and P. Chavel.
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