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We consider the squeezed vacuum state emitted by a degenerate optical parametric oscillator below threshold.
We show, by using a confocal cavity and an appropriate matching lens, that the observed level of squeezing can
become largely independent of the spatial intensity configuration of the local-oscillator field. © 1997 Optical
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1. INTRODUCTION
Although theoretical studies on squeezed states started
more than fifteen years ago,1 the majority of these inves-
tigations dealt only with temporal/frequency aspects, ne-
glecting all features related to space. Until recently, the
exceptions were only few, and in this connection we would
like to mention the pioneering works of Refs. 2–8.
In particular, in the travelling wave case, the analysis

of Ref. 5 showed that, in the detection of the squeezed
beam emitted by an optical parametric amplifier, the ob-
served level of squeezing can be substantially degraded
by the poor matching between the transverse configura-
tions of the deamplified signal beam and of the Gaussian
local-oscillator (LO) field. An answer to this difficulty
was proposed and implemented recently by matching a
nonGaussian shape of the LO to the distorted squeezed
vacuum.6

For squeezed fields emitted by nonlinear cavities, two
recent papers7,8 analyze carefully the dependence of the
observed level of squeezing on the spatial configuration of
the LO field, with the aim of providing an operational de-
scription of the spatial structure of squeezed states. This
approach was then applied to the case of the degenerate
optical parametric oscillator (OPO) below threshold.7,8

We will use here an approach inspired by these papers
to answer the following question: Is it possible, under
appropriate conditions and to a significant degree, to en-
sure that the observed level of squeezing becomes inde-
pendent of the spatial configuration of the LO field? By
following the approach developed in Refs. 7 and 8, we
show in this paper that the answer is positive in the case
of the squeezed vacuum field emitted by a degenerate
OPO below threshold. Clearly, this possibility could be
quite convenient in practice, because it allows one to
avoid or at least simplify delicate mode-matching tech-
niques. The key point in our analysis is the use of a con-
focal cavity, for which all the Gauss–Laguerre cavity
modes of even order are frequency degenerate. As it will
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be explained in Section 4, the mode matching can then be
done with a lens that does not depend directly on the LO
beam shape and size.
In Section 2 we present again the quantum model of

the OPO below threshold, including diffraction effects,
and we express the model in terms of Gauss–Laguerre
modes. Section 3 reviews the general definition of the
spectrum of squeezing, including spatial aspects,7,8 and,
in the case of the degenerate OPO below threshold, ex-
presses the spectrum in terms of single mode contribu-
tions. The main part of the analysis is contained in Sec-
tion 4, in which we show that the observed level of
squeezing is partially independent of the intensity con-
figuration in the LO field. In Section 5 we compare the
technique used here with standard mode matching. Sec-
tion 6 summarizes the results obtained and contains sev-
eral considerations and comments.

2. QUANTUM MODEL FOR THE OPTICAL
PARAMETRIC OSCILLATOR BELOW
THRESHOLD
For our purpose, we will have to consider a mode-
degenerate cavity that we will simply assume here to be
confocal, i.e., made of two spherical mirrors separated by
a distance equal to their radius of curvature. We will as-
sume that the cavity contains a x(2) crystal (Fig. 1), which
converts a pump field of frequency 2vS into a signal field
of frequency vS and vice versa. The crystal is located at
the center of the cavity and is much shorter than the Ray-
leigh length that characterizes diffraction (or equiva-
lently, much shorter than the cavity length). The cavity
center will be taken as the reference plane z 5 0, and the
cavity beam waist will be denoted wC . Because of its cy-
lindrical symmetry, the cavity supports a complete set of
Gauss–Laguerre modes9 that have the following trans-
verse configuration in the vicinity of the cavity center:
1997 Optical Society of America
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where p, l 5 0, 1, 2, ... and p (respectively, l ) is the ra-
dial (respectively, angular) index; r denotes the radial co-
ordinate Ax2 1 y2, and Lp

l are Laguerre polynomials of
the indicated argument. All the modes with l even have
the same frequency; the same is true for the modes with l
odd; the frequency separation between the two groups of
modes is equal to one half the free spectral range. Since
the crystal is close to the beam waist and much shorter
than the Rayleigh length, the configuration of the Gauss–
Laguerre modes along the crystal is still given by Eqs. (1)
and (2). Moreover, we assume the validity of the
paraxial and the slowly varying approximations and of
the mean field-limit conditions so that the envelopes of all
the fields are uniform along the crystal.
In the OPO below threshold one can neglect the deple-

tion of the pump field and treat the pump field as a clas-
sical quantity, described by a coherent, stationary field Ep
of frequency 2vS . An important assumption will be that
the input pump field has an axial plane-wave configura-
tion (i.e., a uniform field distribution) in correspondence
to the crystal. The simplest way to implement this con-
dition is to assume that the pump-beam waist is much
larger than the cavity beam waist at the crystal location.
In practice, the pump field should not be reflected by the
cavity mirrors and should simply travel once through the
crystal. For the signal beam we assume that one mirror
has a high reflectivity and that the other one is com-
pletely reflecting; hence the cavity has only one input–
output port at the signal wavelength. Finally, we as-
sume that the frequency vS of the signal field is close to
resonance with a frequency-degenerate set of Gauss–
Laguerre modes with l even.
The quantum model for the OPO below threshold can

be expressed in terms of an appropriate master equation
that governs the time evolution of the intracavity signal
field AC(x) at cavity center, which obeys the commutation
rule:

@AC~x!, AC
1 ~x8!# 5 d~x 2 x8!, (3)

Fig. 1. OPO using a confocal cavity. At the signal frequency
vS , the input–output mirror has a high reflectivity, whereas the
other spherical mirror has 100% reflectivity. Both mirrors
transmit the pump field Ep of frequency 2vS .
where x 5 (x, y), and x, y are the Cartesian coordinates
in the transverse plane. The field AC(x) can be expanded
on the basis of the Gauss–Laguerre modes:

AC~x! 5 (
pl i

Apl i~r, w, 0!apl i , (4)

where the mode operators apl i obey the commutation
rule,

@apl i , ap8l 8i8
1

# 5 dp,p8d l ,l 8d i,i8 . (5)

If we indicate by r the density operator of the intracav-
ity signal field in the interaction picture, the master equa-
tion reads7,8

dr

dt
5

1
i\

@H,r# 1 ( 8
pl i

Lpl ir. (6)

The prime in (pl i8 means that in the summation we in-
clude only the set of degenerate Gauss–Laguerre modes
with l even, which are quasi-resonant with the signal
field frequency vs , and call vc their frequency. As a mat-
ter of fact, practically all of the other cavity modes do not
interact with the nonlinear material and simply remain
in the vacuum state.
The Liouvillian terms

Lpl i 5 g@2apl irapl i
1 2 rapl i

1 apl i 2 apl i
1 apl ir# (7)

describe the escape of signal photons from the cavity,
which occurs with the rate g. The Hamiltonian H is
given by:

H 5 HFREE 1 HINT , (8)

where HFREE describes the free evolution of the cavity
modes:

HFREE 5 \~vc 2 vs!( 8
pl i

apl i
1 apl i . (9)

The interaction Hamiltonian HINT is given by

HINT 5 i\
Ap

2 E d2x$@AC
1~x!#2 2 AC

2 ~x!%

5 i\
Ap

2 ( 8
pl i

@~apl i
1 !2 2 apl i

2 #, (10)

where the C number Ap is proportional to the x(2) coeffi-
cient of the material and to the amplitude Ep of the pump
field, which as before is assumed to be independent of x,
and is therefore taken out of the integral. The last ex-
pression in Eq. (10) arises from the orthonormality and
the reality of the modes (1) and (2). As we said, only the
modes with even l are involved in the interaction, be-
cause the other modes are too far from resonance with re-
spect to the signal frequency vs .
As we can see, from Eqs. (7)–(10), master Eq. (6) de-

scribes the evolution of an infinite set of uncoupled,
single-mode optical parametric oscillators with the same
frequency, corresponding to the even Gauss–Laguerre
modes.
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3. BALANCED HOMODYNE DETECTION
AND SPECTRUM OF SQUEEZING
The well-known balanced homodyne detection scheme for
squeezed states is illustrated in Fig. 2. In the propaga-
tion from the cavity center (z 5 0) to the beam splitter
(z 5 zLO), the configuration of the Gauss–Laguerre
modes changes owing to diffraction and to possible match-
ing lenses, which will be discussed later in the paper.
Let us indicate as Apl i(r, w, z) the configuration of the
Gauss–Laguerre modes at a generic distance z from the
cavity center [the explicit expression of Apl i(r, w, z) is
given in Appendix A]. Because the transformation of the
field from the plane z 5 0 to the plane z is unitary, the
functions Apl i(r, w, z) obey in any plane z the orthonor-
mality relations:

E
0

`

rdrE
0

2p

dwApl i* ~r, w, z !Ap8l 8i8~r, w, z !

5 dp,p8d l ,l 8d i,i8 . (11)

In addition, because the transformation is linear, the field
AC(x) 5 A(x, z 5 0) given by Eq. (4) at the cavity center
will become, at the position z,

A~x, z ! 5 (
pl i

Apl i~r, w, z !apl i . (12)

For describing the homodyne detection it is convenient
to define the quantum input and output fields A in(x, t)
and Aout(x, t) at the beam-splitter location z 5 zLO . Be-
cause of the output mirror of the cavity, these fields are
related by

Aout~x, t ! 5 A2gA~x, zLO! 2 A in~x, t !, (13)

where all fields are evaluated at z 5 zLO .
The beam splitter M combines the quantum-field enve-

lope operator Aout(x, t) and the local-oscillator field that
lies in a classical stationary coherent state aL(x) [uaL(x)u

2

is expressed in inverse square centimeters per inverse
second]. The operator Aout obeys the commutation rule:

@Aout~x, t !,Aout
1 ~x8, t8!# 5 d~x 2 x8!d~t 2 t8!. (14)

Assuming that the transmissivity and the reflectivity
coefficients of the mirror M (Fig. 2) are given by t 5 r
5 1/A2, the fields B1 and B2 beyond the mirrors are
given by

Fig. 2. Balanced homodyne detection scheme. The mirror M
has transmission and reflection coefficients t 5 1/(2)1/2 and r
5 1/(2)1/2 for the field amplitude.
B1~x, t ! 5
1

A2
@Aout~x, t ! 1 aL~x!#,

B2~x, t ! 5
1

A2
@Aout~x, t ! 2 aL~x!#, (15)

One measures the difference between the total powers
of the two beams B1 and B2 , which is given by

E d2x@B1
1~x, t !B1~x, t ! 2 B2

1~x, t !B2~x, t !#

5 N21/2EA
(out)~t !, (16)

where

N 5 E d2xuaL~x!u2, (17)

EA
(out)~t ! 5

1

N1/2 E d2x@aL* ~x!Aout~x, t !

1 aL~x!Aout
1 ~x, t !#. (18)

The fluctuations around steady state are described by the
spectrum

V~v! 5 E
2`

1`

dt exp~2ivt !^dEA
(out)~t !dEA

(out)~0 !&, (19)

where

dEA~t ! 5 EA
(out)~t ! 2 ^EA

(out)&, (20)

and ^EA
(out)& is the stationary mean value. By using the

definitions given above, one easily obtains

V~v! 5 1 1 S~v! (21)

with

S~v! 5 E
2`

1`

dt exp~2ivt !^:dEA
(out)~t !dEA

(out)~0 !:&,

(22)

where < indicates normal and time ordering. The first
term in Eq. (21) represents the shot noise level, which is
normalized to 1. One has S(v) > 21, and S(v) 5 21
means that there is complete suppression of quantum
noise at frequency v in the observable EA

(out) .
Inserting Eq. (13) into Eq. (22), and taking into account

that A in (in the vacuum state) does not contribute to the
normal and time-ordered product, we obtain

S~v! 5 2gE
2`

1`

dt exp~2ivt !^:dEA~t !dEA~0 !:&, (23)

where

EA~t ! 5
1

N1/2 E d2x@aL~x!A 1 ~x, zLO!

1 aL* ~x!A~x, zLO!#. (24)

By inserting expansion (12) into Eqs. (23) and (24) and
taking into account that the different modes are uncorre-
lated, one obtains easily that the spectrum can be ex-
pressed in the following form:
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S~v! 5 ( 8
pl i

rpl i
2 Spl i~v!, (25)

where

Spl i~v! 5 2gE
2`

1`

dt exp~2ivt !^:dbpl i~t !dbpl i~0 !:&,

(26)

and we have set

bpl i 5 apl i
1 exp~iwpl i! 1 apl i exp~2iwpl i! (27)

and (rpl i is a real number)

rpl i exp~2iwpl i! 5
1

N1/2 E
0

`

rdrE
0

2p

dwaL* ~r, w!

3 Apl i~r, w, zLO!. (28)

The sum in Eq. (25) has again been restricted to the
modes with l even because the odd modes are too far
from resonance and do not feel the interaction with the
nonlinear material. The expression of the single-mode
spectra [Eq. (26)] is well known in the literature10,11 and
is given by

Spl i~v!

5 4Āp

3
$2Āp 2 Re@~1 1 v2 2 D2 1 Āp

2 2 2iD!exp~22iwpl i!#%

~1 1 D2 2 Āp
2 2 v̄2!2 1 4v̄2 ,

(29)

where Āp 5 Ap /g, D 5 (vc 2 vs)/g, and v̄ 5 v/g.
We obtained therefore the very intuitive result that the

total squeezing [Eq. (25)] is a weighted sum of single-
mode spectra (29), where the weighting factor involves
the square modulus of scalar product (28) between the
amplitude of the LO beam at a given plane and each mode
propagated up to the same plane. The phase wpl i of the
scalar product determines whether the noise is reduced or
increased, as shown by Eq. (29). In Section 4 we will
present simple conditions so that wpl i does depend on the
mode and so that maximum noise reduction can be ob-
tained.

4. OBSERVED SQUEEZING AND SPATIAL
SHAPE OF THE LOCAL-OSCILLATOR
FIELD
In the previous section all fields were evaluated at the
beam-splitter location. However, in the following it will
be necessary to consider other positions for both the LO
and the signal fields. We will indicate by a (x, z) the con-
figuration of the LO at a generic position z, with
a(x, zLO) 5 aL(x), as defined previously. Let us now
formulate the two following assumptions concerning the
local oscillator:

(i) The LO field has nonvanishing projection rpl i [see
Eq. (28)] only for l even. This is equivalent to the re-
quirement that the LO have the symmetry aL(r, w 1 p)
5 aL(r, w).
(ii) There is a plane P for which the phase of the LO is
constant modulo p but where the spatial distribution of
its intensity remains arbitrary. Hence we can write

a~x, zP! 5 rP~x!exp~iwP!, (30)

where wP is constant and rP(x) is real but not necessarily
positive and fulfills condition (i). For example, rP(x)
could correspond to arbitrary Gauss–Laguerre mode (1)
multiplied by an arbitrary phase factor exp(iwP), but we
note that cylindrical symmetry is not required (an on-axis
elliptical beam will work equally well).

Let us call d the distance between the plane P (on the
axis z, see Fig. 3) and the plane C. We locate, halfway
between planes P and C, a lens of focal length f 5 d/2.
This lens will transform a Gaussian beam of beam waist
wc in plane C into a Gaussian beam of beam waist wP in
plane P, in such a way that the Rayleigh lengths rc
5 pwC

2 /l and rP 5 pwP
2 /l (l is the wavelength) are

linked by the relation9 rCrP 5 d2/4. The explicit field
transformation between the planes P and C is written in
Appendix A. An essential point is that, because of the
unitarity of this transformation, scalar product (28) defin-
ing wpl i can be calculated in any plane. Denoting by
Apl i8 (r, w, z) the image of the mode function
Apl i(r, w, z) beyond the lens and using the results given
in the appendix, we get

rpl iexp~2iwpl i! 5
1

N1/2 E
0

`

rdrE
0

2p

dwrP~r, w!

3 exp~2iwP!Apl i8 ~r, w, zP!

5
1

N1/2 E
0

`

rdrE
0

2p

dwrP~r, w!exp~2iwP!

3 exp@22ipd/l

1 ~2p 1 l 1 1 !ip/2#

3
wC

wP
Apl iS r wC

wP
, w, zCD . (31)

Using the reality of rP and of the mode functions [see Eqs.
(1) and (2)], this equation will ensure that wpl i 5 wP
1 2pd/l 2 (2p 1 l 1 1)p/2 is a constant modulo p for
all p, i, and even values of l . Hence the quantity Spl i
does not depend on p, l , i, and we can write

Spl i~v! 5 F~v! for 2p 1 l even. (32)

As a consequence, expression (25) of the spectrum S(v)
becomes

S~v! 5 F~v!( 8

pl i

rpl i
2 . (33)

Since by the assumption that the LO field has nonvanish-
ing projection rpl i only for l even [see Eqs. (28) and (29)],
the sum S8 can be replaced by the sum over all modes in
Eq. (33) and, because (pl irpl i

2 5 1 by definition, one ob-
tains

S~v! 5 F~v!, (34)

independent of the intensity configuration rP
2 (x) of the LO

field.
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5. COMPARISON WITH STANDARD MODE
MATCHING
We demonstrated above that if the LO has a flat phase
and axial symmetry (but any size) in some plane P at an
arbitrary distance d from the cavity center C, and if one
sets one lens of focal length f 5 d/2 halfway between P
and C, then all conditions for noise reduction will be ful-
filled. The reason for this is that a lens transforms a
beam waist (of any size) in its object focal plane into a
beam waist (in general of another size) in its image focal
plane in such a way that the flat phase condition is
obeyed in both planes.
This is to be compared with standard mode matching,

the principle of which is summarized below. In order to
mode match squeezed light corresponding to the TEM00
mode of a nonlinear cavity of beam waist va onto a LO of
beam waist vb , both waists being separated by d, and the
corresponding Rayleigh lengths being ra 5 pwa

2/l and
rb 5 pwb

2/l, one has to use a lens of focal length f at a
distance da from va , given by

da 5 d
ra 6 Ararb@1 1 ~ra 2 rb!2/d2#

~ra 2 rb!
,

db 5 d
rb 6 Ararb@1 1 ~ra 2 rb!2/d2#

~rb 2 ra!
5 d 2 da ,

f 5
~da

2 1 ra
2!~db

2 1 rb
2!

~da
2db 1 dadb

2 1 dbra
2 1 darb

2!
. (35)

Therefore not only the position but also the size of the
beam waist of the LO have to be used to determine the
focal length and the position of the lens. Let us remark
that if one chooses to put the lens at the midpoint be-
tween the two waists, (da 5 db 5 d/2), two cases are in-
teresting:

Fig. 3. A lens of focal length d/2 is inserted halfway between the
planes C (cavity center) and P (the plane where the LO beam has
a uniform phase) that are separated by the distance d. Plane P
can be either before (case a) or after (case b) the beam splitter.
The image of P through the beam splitter is also shown on the
figure.
d One has ra 5 rb and f 5 d/4 1 ra
2/d. This cor-

responds to a limit of the equations above (which look
singular for ra 5 rb , but actually are not), obtained in
the case where the cavity and the LO beam waists have
the same size (the value of f still depends on that size).

d Or one has f 5 d/2 and ra 5 d2/(4rb). This is
what we use here, by changing a waist into a waist of
another size. In general, this would destroy the mode-
matching condition, but it does not matter in our case:
Only the flat phase condition is important.

Let us remark that several lenses of focal length fj can
be used instead of one provided that 2( jf j 5 d and that
the image focal plane of one lens coincides with the object
focal plane of the next one. One can therefore expect a
significant simplification of the mode-matching process by
using the procedure described in this paper.

6. CONCLUSIONS AND CRITICAL
COMMENTS
In order to observe the level of squeezing in the squeezed
vacuum state emitted by a degenerate OPO below thresh-
old, it is easy to use a LO field of Gaussian shape. How-
ever, in order to match the Gaussian with the fundamen-
tal mode of the OPO cavity, one must control the phase
curvature of the Gaussian LO and its width. The re-
quired mode-matching procedure is usually not straight-
forward, and the possible squeezing available in modes
other than TEM00 remains irrelevant. The analysis in
this paper has shown that, by using a confocal cavity and
a matching lens independent of the LO size, a Gaussian
LO of arbitrary width allows one to use the full available
degree of squeezing. In addition, instead of a Gaussian,
one can consider any other intensity configuration
f 2(r, w), provided that f(r, w 1 p) 5 f(r, w); for ex-
ample, any axially symmetrical configuration is good.
All the previous analysis remains unchanged if we as-

sume that the signal-field frequency vs is close to reso-
nance with the modes with l odd instead of l even. In
this case, in all considerations concerning the signal field
one must simply replace the specification l even by l odd
and vice versa.
From a practical viewpoint, in the previous analysis we

must assume that Gauss–Laguerre modes of high order
should not be relevant in expansion (4), which means also
that the LO beam waist should be neither too small nor
too large. This requirement is linked to the following:

(1) The plane-wave approximation for the pump
beam, which cannot be fulfilled with an arbitrary accu-
racy.
(2) The finite angular width of the phase-matching

condition in the nonlinear crystal.
(3) The spherical aberrations, which will lift the de-

generacy of higher-order modes if simple spherical mir-
rors are used. This effect, as well as the one of phase
mismatch in the nonlinear crystal, can in principle be cir-
cumvented by an appropriate design (e.g., using aspheric
mirrors), but makes it difficult to give a simple estimate
of the number of squeezed modes.
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(4) Possible slight deviations from exact confocality,
which would imply that modes with different 2p1l have
slightly different frequencies, and the frequency differ-
ence from the fundamental mode would become large
in the case of high order modes. As is shown in Ref. 8,
near the threshold of the OPO the level of squeezing
for fL5 p/2 and v 5 0 becomes very sensitive to the de-
tuning D, in the sense that there is large squeezing in a
narrow range of D and no squeezing at all out of this
range. One should therefore stay somewhat away from
threshold, where precise confocality becomes very critical,
even if this reduces the maximum squeezing level attain-
able.

To conclude, let us summarize the circumstances that
allowed us to relax strongly the usual mode-matching
conditions, so that the observed degree of squeezing be-
comes widely independent on the spatial configuration of
the LO field:

(i) The use of a confocal cavity, which is a stable cav-
ity in which all Gauss–Laguerre modes with a given par-
ity of l are frequency degenerate;
(ii) The use of a thin crystal at the cavity center, ex-

cited with a nearly plane-wave pump, which allows the
spectrum of squeezing to be given by a superposition of
uncorrelated single-mode contributions;
(iii) The use of a LO field with the axial symmetry

f(r, w 1 p) 5 f(r, w), in a configuration such that there
is a plane orthogonal to the direction of propagation
where the LO has a uniform phase modulo p (beam
waist);
(iv) The use of a matching lens from the cavity to the

LO beam waists, which makes all phases wpl i remain
equal to one another in the propagation outside the cavity
and therefore ensures that all modes will contribute to
maximum noise reduction.

Finally, we note that the condition (ii) does not hold in
the general case of squeezed fields emitted by nonlinear
cavities, where the nonlinear coupling also creates corre-
lations between the transverse modes. However, pos-
sible generalizations of the techniques introduced here to
more complex situations are certainly worth investigat-
ing. Although they do not solve all problems involved in
the production and the use of squeezed light, detailed con-
sideration and control of the spatial aspects of squeezing
can certainly help towards the production of reliable
highly squeezed light.12

APPENDIX A: PROPAGATION OF THE
GAUSS–LAGUERRE MODES
The general expression of Gauss–Laguerre modes9 at
point z along the beam is

Ap0~r, w, z ! 5
2

w~z !A2p
Lp
0F 2r2

w~z !2
GexpF2

r2

w~z !2
G ,
(36)
Apl i~r, w, z ! 5
2

w~z !Ap
F p!

~ p 1 l !!G
1/2F 2r2

w~z !2
G l /2

3 Lp
l F 2r2

w~z !2
GexpF2

r2

w~z !2
G

3 expF22ip
r2

2lR~z !

1 i~ p 1 2l 1 1 !tan21S z

rC
D G

3 H cos~ l w! for i 5 1
sin~ l w! for i 5 2, (37)

where w(z) and R(z) are the beam waist and the radius
of curvature at point z, and rC 5 pwC

2 /l is the Rayleigh
length.9 Propagation from plane C to the lens at dis-
tance d/2 will therefore introduce the shift fC 5 2pd/l
1 (2p 1 l 1 1)tan21@d/(2rC)# whereas from the lens to
plane P the shift is fP 5 2pd/l 1 (2p 1 l

1 1)tan21@d/(2rP)#. The total phase shift is therefore

fC 1 fP 5 22pd/l 1 ~2p 1 l 1 1 !

3 $tan21@d/~2rC!# 1 tan21@d/~2rP!#%

5 22pd/l 1 ~2p 1 l 1 1 !

3 $tan21@d/~2rC!# 1 tan21~2rC /d !%

5 22pd/l 1 ~2p 1 l 1 1 !p/2, (38)

where we use the relation9 rCrP 5 d2/4, which describes
the changes in the wave fronts that are due to the lens
(the constant phase shift that is due to the lens is irrel-
evant and has been omitted here). As a consequence, the
lens induces the following transformation: If FC(x) is the
field configuration in the beam waist plane C, and if one
has the expansion

FC~x! 5 (
pl i

fpl iApl i~r, w, 0!, (39)

where r 5 (x2 1 y2)1/2, then the corresponding field in
the other beam-waist plane P will be

FP~x! 5 (
pl i

fpl iApl i8 ~r, w, zP!

5 (
pl i

fpl i expF2
2ipd

l
1 ~2p 1 l 1 1 !

ip
2 G

3
wC

wP
Apl iS r wC

wP
, w, 0D , (40)

where Apl i8 (r, w, zP) denote the modes functions in plane
P. The same result can also be obtained using ABCD
matrices (see, e.g., Ref. 9, Section 20.2).
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