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Abstract:   We present a general, rigorous, modal formalism for modeling 
light propagation and light emission in three-dimensional (3D) periodic 
waveguides and in aggregates of them. In essence, the formalism is a 
generalization of well-known modal concepts for translation-invariant 
waveguides to situations involving stacks of periodic waveguides. By 
surrounding the actual stack by perfectly-matched layers (PMLs) in the 
transverse directions, reciprocity considerations lead to the derivation of 
Bloch-mode orthogonality relations in the sense of E × H products, to the 
normalization of these modes, and to the proof of the symmetrical property 
of the scattering matrix linking the Bloch modes. The general formalism, 
which rigorously takes into account radiation losses resulting from the 
excitation of radiation Bloch modes, is implemented with a Fourier 
numerical approach. Basic examples of light scattering like reflection, 
transmission and emission in periodic-waveguides are accurately resolved.  
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1. Introduction  

In recent years, the race for faster optical telecommunication and data processing has 
motivated research towards solutions to minimize the involvement of electronics in signal 
manipulation. In the quest for ultimate miniaturization, circuits relying on high refractive-
index contrast waveguides, like semiconductor-air/oxide photonic wires, appear as a 
promising approach [1]. Alternatively to these systems relying on a conventional guiding in a 
high index core surrounded by a low index cladding, one can use a periodic structure, 
photonic crystals (PhCs) for instance, with high refractive index contrasts and a period of the 
wavelength order [2]. These strong contrast and a well-chosen periodicity can create a 
photonic bandgap, and when a line defect is created in the crystal structure, monomode 
guidance is achieved. The PhC waveguides share many common features with their z-
invariant photonic-wire counterparts [3] but, in addition, due to the periodicity along the 
propagation axis, they may welcome guided modes with dramatically slow group velocities 
[4] and anomalous dispersion, with potential applications for true all-optical signal processing 
[5,6]. Thus, photonic-crystal waveguides and aggregates of them, as shown in Fig. 1(a), offer 
a robust platform for light-matter interaction phenomena, which is becoming more and more 
important in advanced integrated circuit designs. 

In the analysis and design of integrated-optics circuits with classical z-invariant 
waveguides, modal concepts play a central role. The normal mode theory of bound-radiation-
leaky modes [7,8] provides a powerful formalism and allows a physical description of many 
important phenomena, such as light propagation in z-invariant sections, mode-coupling at 
discontinuities, or light emission in waveguides. The exploitation of this formalism has given 
birth to a large variety of numerical tools for z-invariant waveguides, see [9-14] and 
references therein. By contrast, a similar modal approach with Bloch mode is often ignored in 
the design and analysis of integrated components relying on periodic waveguides, like 
photonic-crystal microcavities or tapers [15-17]. 

Of course, semi-analytical methods relying on Bloch-mode transfer techniques [18-21] 
have already been developed but they are mostly restricted to the analysis of lossless 2D 
problems and thus do not tackle the important problem of radiation into the cladding. For 3D 
problems, softwares are available for calculating Bloch modes [22-26], and yet numerical 
tools that relies on a full sampling in space and time are often preferred to handle with 
aggregates of periodic waveguides. Although these methods may provide accurate results, 
they are mainly numerical and do not provide physical insight into the underlying physics of 
light propagation. Recent works have tackled the important problem of handling non-
conservative periodic-waveguide aggregates with Bloch mode concepts in the frame of light 
emission [27] and extrinsic radiation losses [28,29] computations. To handle with the 
radiation losses, they use Born-like approximations and restrict the analysis to the bound 
Bloch modes without explicitly considering radiation Bloch modes. Finally and despite its 
importance, the works on computation and theory of Bloch modes still remains scattered and 
to our knowledge, no complete description of the formalism used to calculate the Bloch-mode 
modal reflection or transmission coefficients has already been given. 

In this work, we present a general theoretical formalism for modeling light emission and 
propagation in periodic waveguides and in aggregates of them. Conceptually, the formalism 
can be seen as a generalization of the classical formalism developed for z-invariant 
waveguides. It allows to handle both the bound and radiation Bloch modes of periodic 
waveguides and by combining independent Bloch mode calculations of intermediate sections, 
it also allows a semi-analytical treatment of light propagation in aggregates of periodic 
waveguides. In Section 2, we establish the Lorentz reciprocity relation for periodic waveguide 
aggregates surrounded by perfectly-matched absorbers (PMLs). This relation is frequently 
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referred to in Sections 3 and 4, where important properties, like the Bloch-mode orthogonality 
and the symmetrical property of the scattering matrix are derived. These derivations provide a 
theoretical background to the numerical aspects that are presented in Section 5. Finally, we 
illustrate several problems related to the calculation of light emission and propagation in 
periodic waveguides, especially focussing on the accuracy of the computational results. 
Section 6 summarizes the main results. 

2. Lorentz reciprocity theorem in periodic waveguides aggregates 

To illustrate our purpose, let us consider the geometry shown in Fig. 1(a). The geometry is 
composed of aggregates of periodic waveguides (possibly incorporating z-invariant 
waveguides), for which the claddings are assumed to extend toward infinity in the transverse 
x-y directions. If the material is lossless, at any frequency, every periodic section (as that 
shown in Fig. 1(c) supports a finite set of bound modes and a continuum of radiation modes. 
These are the so-called normal Bloch modes that are pseudo-periodic functions of the z-
coordinate. As for classical z-invariant waveguides, there are two main difficulties related to 
normal-Bloch-mode concepts. The first one is the fact that the radiation modes form a 
continuum which is difficult to take into account in numerical methods. The second one is 
much more problematic: indeed for open periodic systems that extend toward infinity in the 
transverse directions, the radiation Bloch modes of the waveguide carry an infinite power and 
only linear combination of these modes may represent physical quantities, see the related 
discussion for radiation modes in z-invariant waveguides in [7,8]. 

 

 
Fig. 1. Actual and computational geometries considered in this work. (a) Sketch of a geometry 
composed of aggregate of different periodic-waveguide sections. The geometry is assumed to 
be surrounded by infinite uniform claddings in the x- and y-transverse directions. (b) 
Associated computational system obtained by bounding the actual waveguide with PMLs (in 
blue) in the transverse directions. (c) A periodic-waveguide section of (a). (d) Associated 
periodic waveguide bound with PMLs. In (b) and (d), the PMLs have a finite thickness that is 
not represented for the sake of clarity. 

 
To remove these theoretical difficulties, mathematicians consider analytical 

continuations by making complex some variables that are usually real, like the wave 
frequency for instance [30]. The same approach is adopted hereafter and instead of 
considering the scattering problem of the actual geometry in Fig. 1(a), we will consider that of 
the associated geometry shown in Fig. 1(b). The new computational system is obtained by 
surrounding the actual geometry with PMLs. We adopt here the approach in [31,32] and 
consider that the PML can be viewed as a linear complex coordinate stretching. Within this 
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picture, the solution of Maxwell's equations remain unchanged except in the PMLs where the 
cladding permittivity and permeability distributions are renormalized by constant complex 
numbers. These complex numbers actually define the analytical continuation used to satisfy 
the outgoing wave conditions in the claddings. Because all the electromagnetic-field 
components fall off exponentially in the PMLs, we will assume that, after propagating over a 
given finite propagation distance, these components are negligible. This allows to define an 
outer boundary for the PMLs and to deal with finite transverse grid volume. The PML 
thickness, not represented in Fig. 1(b), depends on the specific stretching coefficients chosen 
for the numerical implementation. 

The new computational system of Fig. 1(b) largely differs from that of Fig. 1(a). We are 
now facing a closed system and not an open one and even if the system in Fig. 1(a) is 
composed of lossless materials, the new system of Fig. 1(c) is dissipative because of the 
complex continuation so that each radiation Bloch mode carries on a finite power. Moreover, 
it implies that the modes of any periodic section of the computational system, see Fig. 1(d), 
are quantized (there is an enumerable set of modes, not a continuum) and, except for the truly 
guided modes, they depend on the specific analytical continuation, i.e. on the choice of the 
PMLs used for the calculation. Hereafter, they will be referred as quasi-normal Bloch modes 
(QNBMs) to emphasize that they are not identical to the normal Bloch modes of the actual 
periodic waveguide. They are conceptually similar to the quasi-normal modes used for solving 
Maxwell’s equations in aggregates of z-invariant waveguides [11-14]. 

We now derive the explicit form of the Lorentz reciprocity theorem [7] for the 
computational system of Fig. 1(b). This theorem will be repeatedly used in the remaining. In 
the orthogonal cartesian coordinate (x, y, z) system and in the presence of a dipole source J, 
the curl Maxwell equations in the Gaussian system of units are 

 ∇ × E = jωµ(r)H  and ∇ × H = -jωε(r)E+Jδ(r-r 0),  (1) 

where H and E are the magnetic and electric fields at a given frequency ω, ε and µ are the 
relative permittivity and permeability tensors, δ is the Dirac distribution and j2 = -1. In the 
following, we assume that the materials of the waveguide and of the cladding are reciprocal 
and possibly anisotropic. Thus everywhere we have µ = µT and ε = εT, where the upper-script 
T denotes matrix-transposition. We consider two solutions (labeled by the subscripts 1 and 2) 
at two frequencies ω1 and ω2 for the same permittivity and permeability distributions,  

 ∇×E1 = jω1µH1 and ∇×H1 = -jω1εE1+J1δ(r-r 1),  (2a) 

 ∇×E2 = jω2µH2 and ∇×H2 = -jω2εE2+J2δ(r-r 2).  (2b) 

Applying the Green-Ostrogradski formula to the vector E2 × H1 on a closed surface S of 
volume V enclosing the sources J1 and J2, one gets 

 ∫∫S
 (E2×H1)•dS =∫∫∫V

  j(ω1E2
Tε E1 + ω2 H1

Tµ H2)dV - E2(r 1)•J1. (3) 

By subtracting to Eq. (3) the related relation obtained by exchanging the indices 1 and 2, we 
further obtain 

∫∫S
 (E2×H1 - E1×H2)•dS =∫∫∫V

  j[ω1(E2
Tε E1 - H2

Tµ H1) - ω2 (E1
Tε E2 - H1

Tµ H2)]dV 

                                          - [E2(r 1)•J1-E1(r 2)•J2]. (4) 

 In the following, we will consider closed surfaces formed by two waveguide cross-sections, 
A1 and A2 defined by z = z1 and z = z2 > z1, and by the outer-boundary-PML surface S' that 
closes the two cross-sections. Because of the PML attenuation, the field can be assumed to be 
negligible on the outer-boundary-PML surface so that the integral on S' is null and the surface 
integral in the left-side of Eq. (4) reduces to two surface integrals over A1 and A2. 
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Additionally, noting that E2
TεE1  = E1

TεE2 and that H2
TµH1 = H1

TµH2 since the materials are 
reciprocal, we obtain from Eq. (4) 

∫∫z = z2
 (E2×H1 - E1×H2)•zdS - ∫∫z = z1

 (E2×H1 - E1×H2)•zdS  =  

                               j(ω1-ω2) ∫∫∫V
  (E1

Tε E2 - H1
Tµ H2)dV – [J1•E2(r 1) – J2•E1(r 2)]. (5) 

Equation (5) represents the Lorentz reciprocity relation applied to a waveguide (or more 
generally to an aggregate of waveguides) surrounded by PMLs. Since it will play a central 
role hereafter, we conveniently introduce a few notations for the sake of simplicity. Denoting 
by Φ1 = |E1,H1> and by Φ2 = |E2,H2> the vector formed by the 6-components of the electric 
and magnetic fields, we define 

 Fz(Φ1,Φ2) = ∫∫S
 (E2×H1 - E1×H2)•zdS,  (6a) 

  EV(Φ1,Φ2) =∫∫∫V
  (E1

TεE2 - H1
TµH2)dV.  (6b) 

Fz and EV define two continuous bilinear forms of Φ1 and Φ2 that are respectively anti-
symmetric and symmetric. With these notations, Eq. (5) is conveniently rewritten  

 Fz2
(Φ1,Φ2) - Fz1

(Φ1,Φ2) = j(ω1-ω2) EV + J2•E1(r 2) - J1•E2(r 1). (7) 

Importantly, let us note that for ω1 = ω2 and in the absence of any source (J1 = J2 = 0), the 
term on the right side of Eq. (7) is null and thus Fz(Φ1, Φ2) is independent of z. In this case, it 
will be simply denoted F(Φ1,Φ2). 

3. Quasi-normal Bloch mode properties 

In the analysis of light scattering in aggregates of periodic waveguides, the QNBMs of every 
periodic sections play a key role. In this Section, we aim at deriving the main properties of 
these modes like their orthogonality and their group velocity. The whole set of radiation and 
bound modes is studied but a special attention is paid to bound QNBMs as they govern most 
of the physics in waveguide sections sufficiently far from any source of excitation (spatial 
steady state).  

3.1 Quasi-normal Bloch modes 

For a given frequency ω, the forward-propagating QNBMs are potentially constituted of a 
finite number of truly guided modes for lossless materials and of an enumerable set of other 
modes. For the sake of simplicity, we assume that the waveguide is monomode and we denote 
the forward-propagating guided mode by Φ(1,ω)=|E(1),H(1)>exp(jk1(ω)z) with Im(k1)=0 . 
Similarly we denote by Φ(m,ω)=|E(m),H(m)>exp[jkm(ω)z], with m > 1 and Im(km) > 0, the other 
modes. Apart from the bound mode, the set of forward-propagating QNBMs (m > 1) 
potentially encompasses leaky QNBMs that are modes operating below the cutoff [23,33] and 
also a finite number of evanescent truly guided modes with a complex propagation constant k, 
Real(k) = π/a (modulo 2π/a) [17]. Although the latter do not carry energy, they have to be 
taken into account in any calculation. Because of the Bloch theorem, the QNBMs are pseudo-
periodic functions of the z-coordinate 

 |E(m)(r+az),H(m)(r+az)> = |E(m)(r ),H(m)(r )>, (8) 

with a being the waveguide period. In the Annex 1, we show that it is possible to associate a 
backward-propagating mode Φ(-m,ω)=|E(-m), H(-m)>exp[-jkm(ω)z], with E(-m) and H(-m) periodic 
functions of the z-coordinate, to every forward-propagating mode Φ(m,ω). Without proof, we 
will assume that the forward- and backward-propagating QNBMs form a complete set and 
that, in any intermediate section of periodic-waveguide aggregates, the electromagnetic 
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solution of a given scattering problem for a fixed frequency ω can be written as a linear 
combination of the section QNBMs. 

Let us consider two QNBMs, Φ(p,ω’) and Φ(-q,ω), that satisfy Maxwell's equations in the 
absence of source for the same periodic-waveguide geometry, at two frequencies ω’ and ω. 
Equation (8) implies that Fz+a(Φ

(p,ω’),Φ(-q,ω)) = exp{j[kp(ω’)-kq(ω)]a}  Fz(Φ
(p,ω’),Φ(-q,ω)). The 

Lorentz reciprocity relation, Eq. (7), applied in the absence of source to a volume V denoted 
Cell(z) and delimited by the cross-section planes z and z+a, becomes  

 Fz(Φ
(p,ω’),Φ(-q,ω)) (1- exp{j[kp(ω’)-kq(ω)]a}) = j(ω-ω’) ECell(z)(Φ

(p,ω’),Φ(-q,ω)). (9) 

We now consider two important properties of the QNBMs, which are straightforwardly 
derived from Eq. (9). Note that similar approaches are classically used for z-invariant 
waveguides [8,10]. 

3.2 Quasi-normal Bloch mode orthogonality 

To derive the orthogonality of QNBMs, we apply Eq. (9) for ω = ω’. Since the term on the 
right side of Eq. (9) is null, we deduce that Fz(Φ

(p,ω),Φ(-q,ω)) = 0, provided that exp[j{kp(ω)-
kq(ω)}a] ≠ 1. Therefore, we obtain the following orthogonality relation 

 Fz(Φ
(p,ω),Φ(-q,ω)) =∫∫z

(E(-q,ω)×H(p,ω) - E(p,ω)×H(-q,ω))•zdS = F(p,ω) δp,q, (10) 

where δq,p is equal to 1 for p = q, and 0 otherwise. F(p,ω) is a complex constant, which can be 
used for normalizing the QNBMs. In the next subsection, it will be expressed as a function of 
the QNBM group velocity and mode volume. Note that because of the presence of PMLs, the 
orthogonality relation of Eq. (10) is not defined with usual Poynting E×H* products and 
therefore the energy carried in any periodic section of the system cannot be decomposed as a 
sum of energies carried by individual QNBMs, even if the waveguide materials are lossless. 
Nevertheless, the orthogonality relation remains central in the analysis of light propagation 
into aggregates of periodic waveguides since it allows for closed-form expressions of the 
scattering reflection and transmission coefficients at the waveguide-section interfaces. 

3.3 Group velocity of quasi-normal Bloch modes 

As mentionned in the introduction, one of the most promising property of periodic 
waveguides is their ability to offer very slow group velocities. Classically, the group velocity 

of a bound mode Φ(1,ω) is defined as  )1(
gv =dω/dk1. In the following, this definition is 

generalized to radiation modes, even if the group velocity looses its physical meaning: the 
propagation speed of the energy. 

For p=q and for two different frequencies ω and ω’, Eq. (9) becomes 

 Fz(Φ
(p,ω’),Φ(-p,ω)) {1-exp[j{k p(ω’)-kp(ω)}a]} = j( ω-ω’) ECell(z)(Φ

(p,ω’),Φ(-p,ω)). (11) 

As the frequency ω’ tends towards the frequency ω, Φ(p,ω’) → Φ(p,ω) and since the bracketed 

term of the left-hand side of Eq. (11) tends towards ja
ω∂

∂ pk
(ω-ω’) we have 

 F(p,ω)  = E(p,ω) )p(
gv /a , (12) 

where E(p,ω) = ECell(z)(Φ
(p,ω), Φ(-p,ω)) is the complex modal volume that is actually independent 

of the z origin of the unitary cell and vg can be complex for radiation QNBMs. In a general 

sense, 
)p(

gv =dω/dkp is understood as a proportionality factor between the two most important 

quantities of QNBMs, F(p,ω) and E(p,ω). Furthermore, by applying Eq. (3) to Φ(p,ω) and Φ(-p,ω) 
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onto a unit cell in the absence of source, we obtain 0 =∫∫∫Cell
 [E(-p)Tε E(p)+ H(p)Tµ H(-p)] dV, by 

noting that the surface integral on the left-hand side of the Eq. (3) is null because (E(p) × H(-p)) 
is fully periodic with period a. Therefore, we have for any cell 

 E(p,ω) = 2∫∫∫Cell
 E(-p)TεE(p)dV = -2∫∫∫Cell

 H(p)TµH(-p)dV. (13) 

From a numerical point of view, it is important to note that a better accuracy for computing 
E(p,ω)  is obtained with the integral on the right-hand side of Eq. (13) rather than with the one 
on the left-hand side. Indeed as one is generally dealing with non-magnetic materials (µ = 1), 
the magnetic fields H(p) and H(-p), contrary to the electric ones, are continuous everywhere 
except at the inner PML boundary. Finally, note that since we are dealing with E × H products 
and not with E × H*  ones because of the PMLs, the complex mode volume and the complex 
group velocity are not related to energy flow, except for the important case of truly guided 
QNBMs that we now consider. 

To deal with this case, it is convenient to start with the “real” Bloch modes of the actual 
system of Fig. 1(c), i.e. without PMLs. We will denote by Φ(1,r) = |E(1,r),H(1,r)> exp(jk1z) and 
Φ(-1,r) = |E(-1,r),H(-1,r)> exp(-jk1z) the forward- and backward-guided Bloch modes propagating 
in the periodic waveguide at frequency ω, the upper-script 'r' being used to differentiate these 
modes from the corresponding truly guided QNBM Φ(1,ω) and Φ(-1,ω) of Fig. 1(d). Truly guided 
Bloch modes exist only if the waveguide and cladding materials are lossless. Since ε(r), µ(r ) 
and k1 are all real, it is easily shown from the conjugate form of the curl Maxwell's equations 
that 

 |E(1,r),H(1,r)> = |E(-1,r)*,-H(-1,r)*>, (14) 

at least if the modes are non-degenerate. The truly guided QNBMs of the computational 
system of Fig. 1(d), Φ(1,ω) and Φ(-1,ω), are identical to the real Bloch modes, Φ(1,r) and Φ(-1,r), 
inside the inner PML boundaries, but differ in the PML regions. In practical situations, it is 
necessary to normalize the power flow or the volume energy of the truly-guided QNBMs. 
Indeed, since the latter are only known in a finite volume (inside the inner PML boundaries), 
it is not easy to reconstruct the missing field in real space outside the inner PML boundaries. 
Actually, this problem can be fully released. In the annex 2, we show that PMLs allow for 
some conservation laws, and more specifically, that F(p,ω) and E(p,ω) are invariant quantities 
that do not depend on the specific choice of the PML. In particular, this implies that F(1,ω) and 
E(1,ω), which are defined for a given PML implementation, are equal to their associated 
quantities defined for the actual Bloch mode obtained for a unitary PML stretching 
coefficient. In other words, we have  

 2∫∫z
 Re(E(1,r)×H(1,r)*)•zdS = F(1,ω), and (15a) 

 ∫∫∫Cell
 [E(1,r)*εE(1,r) + H(1,r)*µH(1,r)]dV = E(1,ω), (15b) 

where the integrals over the “real” Bloch modes on the left-hand sides extend over infinite 
transverse cross-sections, while those related to F(1,ω) and E(1,ω) on the right-hand side run over 
finite transverse grid sizes bounded by the PML outer boundary. In practice, Eqs. (15a) and 
(15b) can be used to calculate the power flow or the cell energy of a bound QNBM. They can 
also be used for normalization, a bound QNBM with a unitary power flux being obtained with 
F(1,ω)=4. Furthermore, Eq. (12) shows that the electric and magnetic fields of a normalized 

bound QNBM (or of a bound Bloch mode) scale as (a/ )1(
gv )1/2.  
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4. Scattering-matrices of periodic waveguides aggregates 

In this Section, we assume that the QNBMs are all normalized, i.e. F(p,ω)=4 for any p. For this 
specific normalization, we show that important reciprocity relations hold for light scattering or 
light emission in aggregates of periodic waveguides. We especially focus on the symmetry-
property of the scattering matrix related to periodic-waveguide sections. Since the analysis is 
fully performed at a single frequency ω, we drop the ω-dependence in the notation of the 
QNBMs. 

4.1 Symmetry property of the scattering matrix 

Figure 2 shows a general scattering problem between two periodic waveguides. Hereafter, we 
will define a scattering matrix S that relates the QNBM amplitudes of the left and right 
periodic-waveguide sections, potentially incorporating coupling with dipole sources and we 
show that S = ST like in classical z-invariant waveguides. 

 

 
Fig. 2. The two solutions used for deriving the S-matrix reciprocity relation. At a given 
frequency ω, the QNBMs of the left periodic-waveguide section (z<L1), labelled by "L" for 
“left”, are denoted by Φ (p,L) and those on the right side (z>L2), labelled by "R" for “right”, by 
Φ(p,R), p being a relative integer. The geometries are arbitrary and may contain sources for the 
left and right ends of the structure and for L1<z<L2. The whole system is assumed to be 
surrounded by PMLs (not shown) everywhere in the transverse directions. 

 
We consider two arbitrary solutions, Φ1=|E1,H1> and Φ2=|E2,H2> (represented in Fig. 2) 

of Maxwell’s equations at frequency ω with different dipole sources, J1 and J2, respectively. 
The sources are located at positions r 1 and r2 in the arbitrary geometry section. By applying 
the Lorentz reciprocity theorem of Eq. (7) to a volume delimited by the transverse-section 
plane z=L1 and z=L2, we obtain  

 FL2
(Φ1,Φ2) – FL1

(Φ1,Φ2) = E1(r 2)•J2 - E2(r 1)•J1. (16) 

Assuming again that the QNBMs form a complete set in the periodic-waveguide sections, the 
fields Φ1 and Φ2 can be written as a superposition of backward- and forward-propagating 
QNBMs in the left periodic-waveguide section. At z=L1, we have 
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1 =∑ >0p

L)(p,
1I Φ(p,L) + L)(p,

1D Φ(-p,L),  (17a) 

2 =∑ >0p

L)(p,
2I Φ(p,L) + L)(p,

2D Φ(-p,L), (17b) 

where the L)(p,
1I , L)(p,

1D , L)(p,
2I and L)(p,

2D  are the complex modal QNBM-expansion coefficients 
for the solutions 1 and 2 in the left periodic waveguide. Since the form Fz is bilinear, the 
application of the QNBM orthogonality relation straightforwardly leads to 

  FL1
(Φ1,Φ2) = 4 ( )∑ >

−
0p

L)(p,
1

L)(p,
2

L)(p,
2

L)(p,
1 DIDI . (18) 

Note that for deriving Eq. (18), we have used the fact that the QNBMs are normalized 
(F(p,ω)=4 for any p). With similar notations and for z=L2, we have 

 FL2
(Φ1,Φ2) = 4 ( )∑ >

−
0p

R)(p,
2

R)(p,
1

R)(p,
1

R)(p,
2 DIDI . (19) 

A combination of Eqs. (16), (18) and (19) leads to 

  4 ( )∑ >
+

0p

R)(p,
2

R)(p,
1

L)(p,
2

L)(p,
1 DIDI  - E2(r 1)•J1 = 4 ( )∑ >

+
0p

R)(p,
1

R)(p,
2

L)(p,
1

L)(p,
2 DIDI -E1(r 2)•J2. (20) 

By introducing the scattering matrix S that relates the vector D = |D(p,L),D(q,R)> (formed by the 
association of the diffracted modal QNBM-expansion coefficients) to the vector 
I  = |I (p,L),I (q,R)> (formed by the incident modal QNBM-expansion coefficients), Eq. (20) can be 
rewritten in a compact form 

 (I1)
TSI2 - E2(r 1)•J1 = (I 2)

TSI1 – E1(r 2)•J. (21) 

In particular for J1=J2=0, we have S=ST, like for classical z-invariant waveguides. Note that 
the symmetry property holds the appropriate QNBMs normalization defined in Section 3. We 
emphasize that Eq. (21) is a direct consequence of the use of materials with symmetrical 
constitutive parameters. Some of its important implications are summarized in Fig. 3.  

 
Fig. 3. Some implications of Eq. 21. (a) The complex modal transmission-coefficients do not 
depend on the propagation sense. (b) Same property for the cross modal reflection-coefficients. 
(c) The excitation amplitude of a QNBM by a dipole source J δ(r-r0) located at point r = r0 is 
equal to the scalar product between the source J and the field E(r0) scattered at the dipole 
location by exciting the same geometry with the reciprocal QNBM. 
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4.2 Excitation of QNBMs by localized currents: local density of states 

Given a source of excitation prescribed by a distribution of currents, either at the periodic 
waveguide endface or within the waveguide, the modal amplitude of the radiation and bound 
QNBMs can be straightforwardly calculated. In this subsection, we determine the amplitudes 
of the bound and leaky QNBMs excited by a dipole source located at r=r 0 outside the PML 
region. In the electromagnetic description adopted here and in the weak coupling regime, this 
amounts to determine the classical photonic local density of states (LDOS) [34-35] of periodic 
waveguides. Referring to Fig. 4, the total electromagnetic field, Φ=|E, H>, radiated by a Dirac 
dipole source J δ(r-r 0) can be expanded in terms of the complete set of outgoing QNBMs 

 for z>z0, Φ =∑
>0p

D(p,R) Φ(p),  (22a) 

 and for z<z0, Φ =∑
>0p

D(p,L) Φ(-p), (22b) 

where the D(p,R) and D(p,L) are the modal amplitude coefficients of the forward and backward 
QNBMs, respectively. To calculate these coefficients, we apply Eq. (20) for r 1=r 2=r 0. For 

solution 1, we consider Φ1=Φ [i.e. 0II L)(p,
1

R)(p,
1 == , J1=J and r 1=r 0, in Eq. (20)], while solution 

2 is successively prescribed by Φ2=Φ(m) [i.e. ==
L)(p,

2
R)(p,

2 I0,I δp,m and J2=0, in Eq. (20)] and 

then by Φ2=Φ(-m) [i.e. 0I ,δI L)(p,
2mp,

R)(p,
2 == and J2=0, in Eq. (20)]. We obtain 

 D(m,L) = -E(m)(r 0) •J exp(jkmz0)/4, and (23a) 

  D(m,R) = -E(-m)(r 0) •J exp(-jkmz0)/4. (23b) 

These equations show that the total electromagnetic field radiated by the Dirac source is 
analytically determined by the sole knowledge of the QNBM electric fields on the source. 
Note that the excitation coefficient D(m,R) of a forward-propagating QNBM Φ(m) is directly 
proportional to the field amplitude of the backward-propagating QNBM Φ(-m) at the dipole 
source location, and vice versa. 

 

 
Fig. 4. Excitation of QNBMs by a Dirac dipole source J δ(r -r 0) located at point r  = r 0. The 
D(p,R) and D(p,L) coefficients represent the modal amplitude coefficients of the excited forward- 
and backward-QNBMs, respectively. The periodic waveguide is not necessarily symmetric for 
the study, as shown by the échelette profile. 

 
Truly guided Bloch modes deserve a particular attention. By virtue of Eq. (14), we have 

E(-1)(r 0)=[E(1)(r 0)]
*, since the truly guided QNBMs of the computational system, Φ(1,ω) and Φ(-

1,ω), are identical to the real Bloch modes, Φ(1,r) and Φ(-1,r), inside the inner PML boundaries. 
For a linearly polarized source, J = Iu, I being a complex number and u a 3x1 real vector. 
From Eq. (23) and from E(-1)(r 0)=[E(1)(r 0)]

*, it is easily shown that the excitation coefficients 
D(1,R) and D(1,L) of the forward- and backward-propagating fundamental Bloch modes are 
related by the simple relation : D(1,R)I* =D(1,L)*I. Remembering that the QNBM are all 
normalized in this Section, Φ(1,ω) and Φ(-1,ω) have a unitary Poynting flux in the z direction. 
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Thus the powers P1 or P-1, coupled into either Φ(1,ω) or Φ(-1,ω), are equal to |D(1,R)|2 and |D(1,L)|2, 
respectively. They are found to be equal and are given by 

 P1 =  P-1 = |I|
2| E(-1)(r 0)•u|2/16.  (24) 

Perhaps counter intuitively, Eq. (24) shows that the coupled powers into Φ(1,ω) or Φ(-1,ω) are 
equal, independently of the location of the source in the unit cell of the periodic waveguide, or 
of the existence of a symmetry axis for the waveguide. Additionally, since the electric fields 

of a normalized bound QNBM scale as (a/ )1(
gv )1/2, the power emitted diverges as 1/)1(

gv  in the 

slow light regime. Note that this divergence holds for lossless and infinitely long periodic 
waveguides, and that any waveguide termination or any residual material absorption would 
prevent such a divergence. 

5. Numerical implementation  

In this Section, we discuss practical issues in relation with QNBM calculations and with their 
use for the analysis of light scattering in periodic waveguides. Firstly, the main steps to 
implement the aperiodic Fourier Modal Method (a-FMM) are described. The principles of this 
method originate from a generalization [12,36] of classical grating methods known as the 
Rigorous-Coupled-Wave-Analysis [37], to handle non-periodic geometries through an 
artificial periodization and the use of PML. A particular attention is paid to the influence of 
the PML on the QNBM calculation and also to the scattering matrix formalism. Then, to 
illustrate our purpose and to test the accuracy of the a-FMM, two basic 3D scattering 
problems related to light reflection and emission in periodic waveguides are considered.  

In the following, all numerical results are obtained for a PhC silicon (n=3.55) slab 
waveguide, composed of a line-defect in a 2D triangular lattice of air holes, see Fig. 5(a) for a 
schematic view of the structure along with definitions of the different parameters. This 
waveguide supports a single guided TE-like Bloch mode in the gap, as shown by the 
dispersion curve in the inset. 

5.1 Quasi-normal Bloch mode calculation 

The method used for calculating the QNBMs has been described in a previous work [23] and 
hereafter, we simply summarize it for the sake of consistency. In general, the computational 
system associated to the actual periodic waveguide geometry incorporates PMLs in both the 
x- and y-directions as in Fig. 1(d). Nevertheless, for the PhC-waveguide of Fig. 5(a), we use 
purely periodic boundary conditions in the y-direction. The validity of this assumption has 
been checked a posteriori by verifying that the calculated data do not depend on the number P 
of hole rows surrounding the line defect. All the results provided hereafter are obtained for 
P = 6. Because of the periodic boundary in the y-direction and of the PML in the x-direction, 
the field solution of the scattering problem is null on the boundaries of the computational 
domain. Moreover, the artificial periodization along the x- and y-directions makes the field 
periodic, which allows to expand the electric E and magnetic H fields in a Fourier basis [12],  

 H(r ) =∑
q,p

(Uxpq x+Uypq y+Uzpq z) exp(jpGxx+jqGyy), (25a) 

 E(r ) =∑
q,p

(Sxpq x+Sypq y+Szpq z) exp(jpGxx+jqGyy),  (25b) 

where Gx=2π/Λx and Gy=2π/Λy, Λx and Λy being the lengths of the unit cell of the transverse 
section. In Eqs. (25a) and (25b), the Sαlm and Uαlm (α=x, y or z) are unknown z-dependent 
coefficients. In practice, the Fourier series have to be truncated, we denote by mx and my the 
truncation ranks, -mx<p<mx  -my<q<my. By incorporating expressions (25a) and (25b) into the 
curl Maxwell’s equations, and by expanding the permittivity and the permeability in the 
Fourier basis, we obtain after elimination of the z-components [23] 
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)z(
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k

1

0

= , (26) 

In Eq. (26), Ψ is equal to [Sx Sy Ux Uy], a column-vector formed by the electric- and 
magnetic-field coefficients and Ω is a matrix formed by the Fourier coefficients of the 
permittivity and of the permeability. The matrix Ω in Eq. (26) depends on the variable z since 
the permittivity function is z-dependent. 

 
 

 
Fig. 5. QNBM calculation of a PhC waveguide. (a) Schematic view of the PhC waveguide 
formed by removing a line defect in the ΓK direction of a 2D PhC structure composed of a 
triangular lattice of air holes (lattice constant a=0.24 µm) etched into a silicon slab (n=3.55). 
The slab thickness is 0.6a and the air holes radii 0.29a. The inset shows the dispersion relation 
of the fundamental guided QNBM Φ (-1). (b) Display of the 300-first normalized propagation 
constants of the QNBMs for a frequency a/λ=0.255 , point A in the inset. Blue dots and red 
squares are obtained for (fPML)

-1=(1+i) and (fPML)
-1=5(1+i), respectively. 

 
The calculation of the QNBMs requires the integration of Eq. (26) over a unit cell from z 

to z + a. For the integration, we approximate the real profile of the circular holes by a stack of 
slices with locally z-invariant permittivities [23]. We have used Ns = 9 slices per holes, i.e. a 
z-discretisation step of ≈ λ/35. Indeed, the accuracy of the computational results increases as 
Ns increases, but calculations performed for Ns=19 have revealed that the discretisation error 
is much smaller than the truncation errors discussed hereafter. Within this approximation, the 
integration along the z-direction can be performed analytically. The N local modes of each 
slice (p) can be called quasi-normal modes (QNMs) as they correspond to the mode of a 

z-invariant waveguide surrounded by PMLs [12]. The QNMs, denoted by the vectors (p)
nW  

and (p)
n−W  (n=1,…N) in the Fourier basis, are calculated in every slice (p) as the eigenvector 

of a local matrix Ω(p). Denoting by λ(p) the corresponding eigenvalue (the QNM propagation 
constant), the electromagnetic fields Ψ(p) can be written as a superposition of QNMs in very 
slice (p) 

(p) =∑
=

−+−
N

1n

(p)
n

(p)
n

(p)
n

(p)
n

(p)
n

(p)
n z)exp(λfz)λexp(b WW ,  (27) 

where b(p) and f(p) are column vectors whose elements are the amplitudes of the QNMs 
propagating backward (in the negative z-direction) and forward (in the positive z-direction), 
respectively. The linearity of Maxwell's equations assures the existence of a linear relationship 
between the mode amplitudes of the slice (i), b(i) and f(i), in the input z-plane and those of the 
slice (t), b(t) and f(t), in the output (z+a)-plane. To avoid any numerical problems, a S-matrix 
approach is used to relate these amplitudes. In a compact form, we have  
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where the matrix on the right-hand side of the equation is simply the S-matrix of a unit cell. 
Details concerning the recursive calculation of S can be found in [38]. 

Since the QNBMs are pseudo-periodic, their mode amplitudes at planes z and z + a are 
proportional. Denoting by ρ the proportionality factor, we have b(t)=ρb(i)  and f(t)=ρf(i), and 
incorporating Eq. (28), we obtain  
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Eq. (29) is solved as a generalized eigenproblem without numerical instabilities [24, 39]. Note 
that for periodic waveguides possessing a mirror-symmetry plane in the z-direction, enhanced 
performance is achieved by a related simplified eigenproblem scheme [40]. Because of the 
truncation, a total of 2N=4(2mx+1)(2my+1) QNBMs are calculated. One half corresponds to 
forward-propagating modes and the other half to backward-propagating ones. The QNBMs 

are denoted 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
QNBM
m

QNBM
m

f

b
, with m=1,...2N. The QNBM

mb  and QNBM
mf  are Nx1 vectors, whose 

coefficients represent the components of the mth QNBM in the local QNM basis associated to 
the slice at planes z and z+a. From the eigenvalues ρ, the propagation constants of the 
QNBMs are obtained from ρ=exp[ik a], where the vector k is formed by the propagation 
constants kp of the QNBMs. 

Figure 5(b) shows the 300-first QNBM propagation constants kp obtained for the 
geometrical parameters defined in the caption and for mx=15 and my=26. The calculation has 
been performed for two different PMLs, implemented as a linear complex coordinate 
stretching [36]. Blue dots and red squares respectively correspond to (fPML)

-1=(1+i) and 
(fPML)

-1=5(1+i), where fPML is the stretching parameter defined in Annex 2. With the exception 
of the fundamental QNBM located on the real axis near Real(kp)=9, the distribution of kp 
depends on the specific PML implementation. This is understood by considering that the 
actual radiation Bloch modes of the periodic waveguide in Fig. 1(a) are modified by the PML 
and that the modification depends on the PML themselves. In other words, a PML represents a 
cut in the complex plane that allows to satisfy outgoing-wave conditions. By changing the 
PML parameters (thickness, stretching, gradual variation …), the cut is modified and 
consequently the QNBMs distribution varies. Yet, some of the QNBMs weakly depend on the 
PML parameters, they deserve a special attention. An inspection of their electromagnetic field 
has revealed that some of them, especially those with small Im(kp) values (attenuation) and 
with 10<Re(kp)<18, possess two zeros in the x-direction of the membrane, indicating that they 
are related to the leaky TE2 mode of the membrane without holes. More generally, we believe 
that these modes which are almost insensitive to the PMLs’ choice, are leaky QNBMs but a 
quantitative discussion would deserve further studies. Note that the relation between leaky-
mode expansion and PML with varying absorption for a simple slab waveguide has already 
been discussed in the literature, see Ref [10]. A thorough discussion of the accuracy of the a-
FMM method to calculate the attenuation of leaky Bloch modes operating above the cladding 
light lines can be found in [41]. 

5.2 Light scattering in periodic waveguides 

To illustrate the potential of the approach, we consider two basic 3D scattering problems in 
PhC-waveguide aggregates, the reflection of light onto a semi-infinite PhC mirror [Fig. 6(a)] 
and the emission of a dipole source into a semi-infinite PhC waveguide closed by a mirror at 
one of its extremity [Fig. 7(a)]. To solve these problems, the outgoing wave conditions have 
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to be satisfied in the QNBM basis to take into account terminations by semi-infinite periodic 
waveguides. For that purpose, one needs to derive the scattering matrices which link the 
forward- and backward-modal coefficients, fQNBM and bQNBM, in the QNBM basis to the 
forward and backward modal coefficients, fQNM and bQNM, in the QNM basis. In General, two 
cases have to be considered. We simply consider a termination with a semi-infinite periodic 
waveguide that extends to the positive z-direction hereafter, but similar considerations can be 
straightforwardly applied for termination with semi-infinite periodic waveguides extending 
towards the negative z-direction. For this termination, the S-termination matrix ST reads as 
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⎤

⎢
⎢
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⎡
⎥
⎦
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⎦
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⎡
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QNBM

2221

1211

QNM

QNBM

QNBM

QNM

f

b

SS

SS

f

b
S

f

b
T .  (30) 

The ST matrix is simply related to a basis transformation. By matching the continuous 
tangential field components at the termination in the Fourier basis, like for classical z-
invariant waveguides, elementary algebraic manipulations lead to 

 S22 = (F+)-1, S12 = B+S22, S21 = -S22F
- and S11 = B- - S12F

-, (31) 

where B- and B+ denote the NxN matrices whose column vectors are the Nx1 eigenvectors, 
QNBM

m−b and QNBM
mb  and F- and F+ are related matrices formed with the vectors QNBM

m−f and 
QNBM
mf . The ST scattering matrix defined in Eq. (30) and (26) can be used with standard S-

matrix products [38] to handle intricate scattering geometries. 
 

 
Fig. 6. Scattering at the interface between two periodic sections. (a) Schematic top view of the 
3D scattering problem. The PhC parameters are the same as in the caption of Fig. 5. (b) 
Convergence of the a-FMM for the modal reflectivity R of the fundamental guided QNBM 
Φ(-1). The calculation is performed for a/λ = 0.255 , point A in the inset of Fig. 5(a). 

 

The S-termination matrices approach has been implemented for solving the scattering problem 
of Fig. 6(a) by using the products of ST matrices associated to the two different QNBMs 
encountered for z < 0 (mirror) and z >0 (waveguide). Figure 6(b) shows the convergence 
performance for the modal reflectivity R of the fundamental PhC bound mode as a function of 
mx for several values of my. The calculation is performed for a/λ = 0.255. For the sake of 
convergence performance, the cladding PML are implemented as complex nonlinear 
coordinate transforms [36]. As expected, both mx and my impact the computational accuracy. 
For all curves, we note that a plateau is obtained for mx > 30, the peak-to-peak residual-
oscillation amplitude being smaller than 0.0001. The curves obtained for different my are 
vertically shifted from each other by an offset value that rapidly decreases as my increases. 
This property allows for an accurate interpolation of R. Starting from the calculated data 
obtained for small mx values (mx = 15) and for large my values (my = 30 for instance), the data 
can be corrected from the deviation observed on the curve with my = 15 and mx = 15 to large 
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mx values (mx = 45). On overall, R is estimated to be equal to 0.9740 ± 0.0001. Note that 
similar calculations performed for a related scattering geometry have been previously reported 
[42] and that the agreement between the experimental and numerical data has indicated an 
absolute error below 0.0002 for the calculated modal reflectivity. Typical CPU times for the 
computation of R in Fig. 6(a) with (my/mx)=(15/15), (25/20) and (20/35) are approximately 30 
min, 300 min and 900 min on a PhC computer equipped with a 3-GHz Intel Pentium 4 
processor and with Matlab. 

 

 
Fig. 7. Dipole emission into PhC waveguides closed at one extremity by a PhC mirror. (a) 
Schematic top view of the 3D problem. The PhC parameters are the same as in the caption of 
Fig. 5. The dipole is parallel to the x-axis and is located in the central plane of the membrane at 
z0 = 0. (b) Convergence of the a-FMM for the β-factor defined as the power emitted into Φ (1) 
normalized to the total power emitted. The calculation is performed for a/λ = 0.255 , point A in 
the inset of Fig. 5(a). 

Let us now consider the emission of a dipole source J δ(r-r 0) in the geometry shown in 
Fig. 7(a). As in the previous example, two periodic sections are involved. They will be 
labelled by the subscripts "M" and "W" hereafter, "M" referring to the PhC mirror on the left 
side and "W" to the single-row defect waveguide on the right side of the figure. For the 
calculation, one may first compute the scattering matrix ST which links the forward- and 
backward-modal coefficients, bM and fM, in the QNBM basis of the PhC mirror to those 

(denoted bW- and fW-) of the single-row defect waveguide at plane z =−
0z  

 
⎥
⎥
⎦

⎤
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⎣
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=
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f

b
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f

b
.  (32) 

In Section 4.2, we have solved the emission of a dipole source in a periodic waveguide by 
providing an analytic experession for the QNBM excitation coefficients D(m,L) and D(m,R). In 
fact, as shown by Eq. (20), the presence of a dipole source in a periodic waveguide results in a 
field discontinuity, which is described in the QNBM basis as a step discontinuity of the 
QNBM excitation coefficients at z=z0. Because of the linearity, the step discontinuity is 
simply that obtained in Section 4.2 in the absence of incident QNBM illumination, and is 
equal to the D(m,L) and D(m,R) coefficients given by Eqs. (23a) and (23b) for the QNBMs of the 
single-row defect waveguide. Thus if we denote by bW+ and fW+ the forward- and backward-

modal of the single-row defect waveguide at plane z =+
0z  and by bW- and fW- the similar 

quantities defined at plane z =−0z , we have 
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, (33) 
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where the Nx1 vectors, D(L) and D(R), are formed by the D(m,L) and D(m,R) coefficients. Since 
these vectors are known analytically, Eqs. (32) and (33) can be solved for the unknown fW+ , 
bW-, bM  and fW- vectors with bW+ = fM = 0. The electromagnetic-field distribution is then 
recovered everywhere. 

Figure 7(b) shows the convergence performance of the spontaneous emission β-factor as a 
function of mx for different values of my. The β-factor is defined as the fraction of light 
emitted into the fundamental forward-propagating QNBM of the waveguide W. It is an 
important parameters which may drastically impact many optoelectronic devices, like lasers 
or single-photon sources, if it may be made close to unity [43]. Again the data shows a well-
converged situation: a plateau with a negligible residual fluctuation is obtained for mx values 
as small as 20 and the plateau height is weakly dependent on my. In addition, cross-checking 
tests obtained by varying the PML thickness and the number of hole rows surrounding the 
defect in the y-direction have further confirmed the accuracy of the results. This cross-
checking tests are important, because the QNBM basis changes as one varies the PML 
implementation. But accordingly to Eqs. (32) and (33), the excitation coefficients D(m,L) and 
D(m,R) also change. Obtaining nearly identical β-factor predictions for totally different 
extension basis thus represents a strong test for the theoretical and computational aspects 
developed in this work. For this Green-function problem, CPU times are almost identical to 
those obtained for the previous scattering problem. Other computational data obtained with 
this approach for the broadband and directive emission of light in single-row-defect PhC 
waveguides can be found in [44] for the two in-plane dipole orientations. 

6. Conclusion 

A rigorous modal formalism for modeling light propagation and light emission in three-
dimensional periodic waveguides and in aggregates of them has been presented. In essence, 
this work is a generalization of known modal concepts for translation-invariant waveguides to 
situations involving aggregates of periodic waveguides. By surrounding the actual stack by 
PMLs in the transverse directions, we have shown that both radiation and bound modes can be 
handled and that reciprocity considerations lead to the derivation of Bloch-mode orthogonality 
relations in the sense of E×H products, to normalization of these modes, and to the proof of 
the symmetrical property of the scattering matrix linking the Bloch modes. The general 
formalism which rigorously takes into account radiation losses resulting form the excitation of 
radiation Bloch modes has been implemented with a Fourier numerical approach. Basic 
examples of light scattering like the emission of a dipole source in periodic-waveguide 
aggregates are accurately resolved.  

All the above results (orthogonality, reciprocity ...) can be straightforwardly generalized 
for other systems involving additional periodicities. For instance, for 2D-periodic systems in 
thin film stack, like semiconductor membranes perforated by triangular hole arrays, the 
QNBMs possess an in-plane parallel wave-vector and PMLs have to be introduced only above 
and below the stack. When using the Lorentz reciprocity theorem, the integral over every 
cross-section planes of the unit cell is not null, but due to the in-plane pseudo-periodicity, the 
integral over two parallel cross-section planes of a unit cell are identical and their 
contributions exactly cancel. For 3D periodic systems, similar results hold and there is no 
need to introduce PMLs. Furthermore, if the media of the fully-periodic system are lossless, 
the orthogonality relation could be used with E×H* products. 

By surrounding the cross-section with PMLs, complex permittivity and permeability are 
introduced even if the ε and µ of the physical system are real. As a consequence, 
orthogonality in the sense of the Poynting vector no longer holds and the system energy 
cannot be reduced to a sum of QNBMs energies even for lossless materials. At first sight, this 
might appear a drawback of the approach, but we emphasize that inside the PML inner 
boundaries, since the solution for the total electromagnetic field is virtually exact, the total 
energy flow on a closed surface can be fully predicted, as shown by the analysis of light 
emission in Section 5.2. In addition, we note that lossy materials, like metals at optical 
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wavelengths, have by essence complex permittivities. Therefore the formalism developed here 
fully applies, as shown by the calculation of PhC surface-plasmon-polariton reflectance and 
transmittance reported in Ref. [45]. 
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ANNEX 1 : Existence of pairs of forward- and backward-modes Φ(p) and Φ(-p) 

By construction, z-invariant waveguides possess a mirror-symmetry for transverse planes 
perpendicular to the z-axis. For any given forward-propagating mode with a exp(jkz) 
dependence, this guaranties the existence of a backward-propagating with an exp(-ikz) 
dependence. The same property holds for periodic waveguides that possess the same 
symmetry [17,40]. For periodic waveguides without symmetry, the demonstration of existence 
of pairs backward- and forward-propagating QNBMs deserves more attention. 

For that purpose, we consider two solutions of Maxwell's equation at the same frequency 
ω. Solution 1 consists in the QNBM Φ(m,ω). Indeed Φ(m,ω) = |E(m), H(m)> exp(jkmz) is non null 
everywhere, and we denote by r 0=x0x + y0y + z0z a point such that |E(m)(r 0,ω)| ≠ 0. As 
solution 2, we consider the solution of Maxwell's equations, Φ(r ,ω) = |E, H>, in the presence 

of a pseudo-periodic array of dipole sources J2=[E(m)(r 0,ω)]*Σp δ(r -r 0-paz) exp(jpka), with k 
an arbitrary complex number. Since the source distribution is pseudo-periodic, the solution 2 
is also pseudo-periodic (Bloch theorem), and we have 

(r+az,ω) = Φ(r ,ω) exp(jka).  (A1.1) 

 Applying Eq. (8) for ω1=ω2=ω and for z1<z0<z1+a=z2, we get 

 Fz2
(Φ,Φm) - Fz1

(Φ,Φm) = |E(m)(r 0)|
2 exp(jkmz0).  (A1.2) 

By further combining Eqs. (A1.1) and (A1.2), one obtains 

 Fz1
(Φ,Φm) = |E(m)(r 0)|

2 exp(jkmz0){exp[j(km+k)a] - 1} -1.  (A1.3) 

Equation (A1.3) holds for any k. As k tends towards -km, the right-hand term diverge since 
|E(m)(r 0,ω)| ≠ 0, i.e. Φ=|E, H> becomes singular in the transverse cross section z = z1 for any 
z1. This singularity represents the signature of the existence of a QNBM Φ(-m) (a solution of 
Maxwell's equations without source) with an exp(-jkmz) dependence. 

ANNEX 2: Electromagnetic invariants in perfectly-matched layers 

The PMLs considered in this work are specified by an "absorption" profile, which is in 
general understood [46] as a set of graded piecewise-constant PMLs stacked over a finite 
thickness. We adopt the complex-stretching presentation and notations of PML in Ref. [36]. 
Although the PML are just applied in the transverse x- and y-directions in this work, we 
consider hereafter transformation in all directions for the sake of generality. The PML profile 
is fully specified by the complex coordinate transform 

 X̂ = X(x),  Ŷ = Y(y),  Ẑ = Z(z),  (A2.1) 

where X(x), Y(y) and Z(z) are complex continuous and piecewise differentiable 
transformations from the complex plane x, y and z (denoted as the real space for the sake of 

simplification) and X̂ , Ŷ and Ẑ  denote the new real coordinate system. We further denote 
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by L  the 3x3 diagonal matrix L  = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

'Z00

0'Y0

00'X

, where X’=dX/dx,  Y’=dY/dy and Z’=dZ/dz. 

In general, X’, Y’ and Z’ are piecewise-constant functions with a gradual variation [46]. For 
the numerical results shown in Fig. 5, the X’ function extends over a finite thickness dPML and 
is constant: X’=fPML; Y’ and Z’ are both equal to 1. 

After a few elementary algebraic operations, it is shown that, if E and H satisfy the 
Maxwell’s equations of Eqs. (2a) and (2b) in the (x,y,z) coordinate systems, the new 

electromagnetic fields  Ĥ =L -1H and Ê =L -1E also satisfy the same Maxwell’s equations in 
the new coordinate system provided that 

 µ̂ = LµL /Det(L ), ε̂ = LεL /Det(L), Ĵ = LJ , (A2.2) 

where µ̂ , ε̂ and Ĵ  represent the permeability, permittivity and dipole source in the new 
coordinate system and Det(L ) denotes the determinant of the operator L . With this formalism, 
it is easily found that important quantities like Fz and EV are conserved quantities that are 
independent of the complex transformation. Let us start with the mode volume ∫∫∫V

 (ETεE -

 HTµH)dV. Using Eqs. (A2.2), it is easily shown that ETεE = Det(L) EεE ˆˆˆ T . Since dV = 

dxdydz= ẐdŶdX̂d /Det(L )= V̂d /Det(L ) , we obtain 

 ∫∫∫V
 (ETεE - HTµH)dV = ∫∫∫ V̂  

( EεE ˆˆˆ T  - HµH ˆˆˆ T ) V̂d .  (A2.3) 

Similarly, it is shown that for any transverse surface S, we have 

 ∫∫S
 (E×H)•z dS = ∫∫

Ŝ
 ( Ê × Ĥ )•z Ŝd . (A2.4) 
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