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Abstract: We present a general, rigorous, modal formalism for modeling
light propagation and light emission in three-dimensional (3D) periodic
waveguides and in aggregates of them. In essence, the formalism is a
generalization of well-known modal concepts for translation-invariant
waveguides to situations involving stacks of periodic waveguides. By
surrounding the actual stack by perfectly-matched layers (PMLSs) in the
transverse directions, reciprocity considerations lead to the derivation of
Bloch-mode orthogonality relations in the sens&eofH products, to the
normalization of these modes, and to the proof of the symmetrical property
of the scattering matrix linking the Bloch modes. The general formalism,
which rigorously takes into account radiation losses resulting from the
excitation of radiation Bloch modes, is implemented with a Fourier
numerical approach. Basic examples of light scattering like reflection,
transmission and emission in periodic-waveguides are accurately resolved.
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1. Introduction

In recent years, the race for faster optical telecommunication and data prgpckasi
motivated research towards solutions to minimize the involvement df@ies in signal
manipulation. In the quest for ultimate miniaturization, circuits relying gh héfractive-

index contrast waveguides, like semiconductor-air/oxide photonic wires, appear as a
promising approach [1]. Alternatively to these systems relying on a conventional guiding in a
high index core surrounded by a low index cladding, one can use a periodic structure,
photonic crystals (PhCs) for instance, with high refractive index contmadta period of the
wavelength order [2]. These strong contrast and a well-chosen periodicity cém @&rea
photonic bandgap, and when a line defect is created in the crystal structure, monomode
guidance is achieved. The PhC waveguides share many common features with their z-
invariant photonic-wire counterparts [3] but, in addition, due to the peitipdilong the
propagation axis, they may welcome guided modes with dramatically slow group velocities
[4] and anomalous dispersion, with potential applications for true all-optical signal processing
[5,6]. Thus, photonic-crystal waveguides and aggregates of them, as shown in Fig. 1(a), offer
a robust platform for light-matter interaction phenomena, which isntiegomore and more
important in advanced integrated circuit designs.

In the analysis and design of integrated-optics circuits with classical z-invariant
waveguides, modal concepts play a central role. The normal mode theory of bound-radiation-
leaky modes [7,8] provides a powerful formalism and allows a physical description of many
important phenomena, such as light propagation in z-invariant sections, mode-coupling at
discontinuities, or light emission in waveguides. The exploitation of this formalismves gi
birth to a large variety of numerical tools for z-invariant waveguides, see [9-14] and
references therein. By contrast, a similar modal approach with Bloch mditienisgmored in
the design and analysis of integrated components relying on periodic waveguides, like
photonic-crystal microcavities or tapers [15-17].

Of course, semi-analytical methods relying on Bloch-mode transfer techniques [18-21]
have already been developed but they are mostly restricted to the analysis of lossless 2D
problems and thus do not tackle the important problem of radiation into the cladutir8P F
problems, softwares are available for calculating Bloch modes [22-26], and yet numerical
tools that relies on a full sampling in space and time are often preferfegnte with
aggregates of periodic waveguides. Although these methods may provide accurate results,
they are mainly numerical and do not provide physical insight into the underlying physics of
light propagation. Recent works have tackled the important problem of handling non-
conservative periodic-waveguide aggregates with Bloch mode concepts in the franmé of lig
emission [27] and extrinsic radiation losses [28,29] computations. To handle with the
radiation losses, they use Born-like approximations and restrict the analysis to the bound
Bloch modes without explicitly considering radiation Bloch modes. Finally and despite its
importance, the works on computation and theory of Bloch modes still reseattered and
to our knowledge, no complete description of the formalism used to calculate the Bloch-mode
modal reflection or transmission coefficients has already been given.

In this work, we present a general theoretical formalism for modigjhgemission and
propagation in periodic waveguides and in aggregates of them. Conceptually, the formalism
can be seen as a generalization of the classical formalism developed for z-invariant
waveguides. It allows to handle both the bound and radiation Bloch modes of periodic
waveguides and by combining independent Bloch mode calculations of intermediate sections,
it also allows a semi-analytical treatment of light propagation in aggregates of periodic
waveguides. In Section 2, we establish the Lorentz reciprocity relatiperfiodic waveguide
aggregates surrounded by perfectly-matched absorbers (PMLs). This relation is fyequent
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referred to in Sections 3 and 4, where important properties, like the Bloch-mode orttipgonal
and the symmetrical property of the scattering matrix are derived. These derivatiods provi
theoretical background to the numerical aspects that are presented in Section 5. Finally, we
illustrate several problems related to the calculation of light emission apégation in
periodic waveguides, especially focussing on the accuracy of the computational results.
Section 6 summarizes the main results.

2. Lorentz reciprocity theorem in periodic waveguides aggregates

To illustrate our purpose, let us consider the geometry shown il (Bjg.The geometry is
composed of aggregates of periodic wavwees (possibly incorporating z-invariant
waveguides), for which the claddings are assumed to extend toward infinity in the transverse
x-y directions. If the material is lossless, at any frequency, every periodic section (as that
shown in Fig. 1(c) supports a finite set of bound modes and a continuum of radiation modes.
These are the so-called normal Bloch modes that are pseudo-periodic functions of the z-
coordinate. As for classical z-invariant waveguides, there arertan difficulties related to
normal-Bloch-mode concepts. The first one is the fact that the radiationsnfioce a
continuum which is difficult to take into account in numerical mdshd he second one is
much more problematic: indeed for open periodic systems that extend toward infinity in the
transverse directions, the radiation Bloch modes of the waveguide carry ae ipdwer and

only linear combination of these modes may represent physical quantities, see the related
discussion for radiation modes in z-invariant waveguides in [7,8].

(a)

Substrate

(c)

Substrate

Fig. 1. Actual and computational geometries considered in thik.\a) Sketch of a geometry
composed of aggregate of different periodic-waveguide sections. The gecsnessuimed to
be surrounded by infinite uniform claddings in the x- and y-transveistions. (b)
Associated computational system obtained by bounding the actwvaiguide with PMLs (in
blue) in the transverse directions. (c) A periodic-waveguide sectidia)of(d) Associated
periodic waveguide bound with PMLs. In (b) and (d), the PMLs have te fimickness that is
not represented for the sake of clarity.

To remove these theoretical difficulties, mathematicians consider analytical
continuations by making complex some variables that are usually lilea the wave
frequency for instance [30]. The same approach is adopted hereafter and instead of
considering the scattering problem of the actual geometry in Fig. 1(a), we will cohsitlef t
the associated geometry shown in Fig. 1(b). The new computational system is obtained by
surrounding the actual geometry with PMLs. We adopt here the approach in [31,32] and
consider that the PML can be viewed as a linear complex coordinate stretching. Within this
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picture, the solution of Maxwell's equations remain unchanged except in the PMLs where the
cladding permittivity and permeability distributions are renormedliby constant complex
numbers. These complex numbers actually define the analytical continuation usesfyto sa
the outgoing wave conditions in the claddings. Because all the electromagnetic-field
components fall off exponentially in the PMLs, we will assume that, after propagatng
given finite propagation distance, these components are negligible. This allows to define an
outer boundary for the PMLs and to deal with finite transverse grid volume. The PML
thickness, not represented in Fig. 1(b), depends on the specific stretchiigjecagefchosen
for the numerical implementation.

The new computational system of Fig. 1(b) largely differs from that of Fig. 1(aaréve
now facing a closed system and not an open one and even if the system in Fig. 1(a) is
composed of lossless materials, the new system of Fig. 1(c) is dissipative because of the
complex continuation so that each radiation Bloch mode carries on a finite poweovétore
it implies that the modes of any periodic section of the computational system, see Fig. 1(d)
are quantized (there is an enumerable set of modes, not a continuum) and, except for the truly
guided modes, they depend on the specific analytical continuation, i.e. on the choice of the
PMLs used for the calculation. Hereafter, they will be referred as quasi-normal Bloch modes
(QNBMSs) to emphasize that they are not identical to the normal Bloch modes of the actual
periodic waveguide. They are conceptually similar to the quasi-honodes used for solving
Maxwell's equations in aggregates of z-invariant waveguides [11-14].

We now derive the explicit form of the Lorentz reciprocity theorem [7] for the
computational system of Fig. 1(b). This theorem will be repeatesidg in the remaining. In
the orthogonal cartesian coordinate (x, y, z) system and in the presence of a dipold,source
the curl Maxwell equations in the Gaussian system of units are

V X E =jop(r)H andV x H = -joe(r)E+Jd(r-r o), @)

whereH andE are the magnetic and electric fields at a given frequengyandp are the
relative permittivity and permeability tensois;is the Dirac distribution and & -1. In the
following, we assume that the materials of the waveguide and of the claddiregiarecal

and possibly anisotropic. Thus everywhere we havai" ande =¢', where the upper-script
T denotes matrix-transposition. We consider two solutions (labeled by the subscripts 1 and 2)
at two frequencies; andm, for the same permittivity and permeability distributions,

VXE]_ = jmlqu andVXHl = 'j®18E1+J16(r-r 1), (2a)
VXEZ = jO)zl.le andVXHz = 'jO)zEE2+J26(r-r 2). (Zb)

Applying the Green-Ostrogradski formula to the vedir< H; on a closed surface S of
volume V enclosing the sourcésandJ,, one gets

[[s ExxH1edS =[[[, j(01E2"e Ex + 02 il Ho)AV - Ex(r1)eds. 3

By subtracting to Eq. (3) the related relation obtained by exchanging the indices2] we
further obtain

.Us (E2xH1 - ExxHy)edS =IJIV jl01(E2'e Ey - Hy'W Hy) - @, (Ei'e Ez - Hi'p Ho)ldV

Ei(r 1)0\]1'E1(r2)'J2]. (4)

In the following, we will consider closed surfaces formed by two waveguide cross-sections,
A; andA; defined by z=gzand z = z> z, and by the outer-boundary-PML surface S' that
closes the two cross-sections. Because of the PML attenuation, the field can be assumed to be
negligible on the outer-boundary-PML surface so that the integral on S' is null andfalce sur
integral in the left-side of EQ.(4) reduces to two surface integrals Aveand A,.
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Additionally, noting thaE,'eE,; = E,'eE, and thaH,'uH; = H,"uH, since the materials are
reciprocal, we obtain from Eq. (4)

I[.. ,(EoxH1-ExxHp)ezdS -[[ _ (ExxHy - ExxHp)ezdS =

G- [[f, (Ei'e Eo- HiuHo)AV — [JueEalrs) — JEx(r2)]. (5)

Equation (5) represents the Lorentz reciprocity relation apptiea waveguide (or more
generally to an aggregate of waveguides) surrounded by PMice 8iwill play a central
role hereafter, we conveniently introduce a few notations for the sake of simpliaitytifize

by @, = E;,H,> and byd, = [E,,H,> the vector formed by the 6-components of the electric
and magnetic fields, we define

FA®@1,®2) = || (EoxH - EpxHo)ezdS, (6a)
Ev(®.®,) =[[[,, (E1'€E2- Hi'uH,)aV. (6b)

F, and E, define two continuousilmear forms of®; and®, that are respectively anti-
symmetric and symmetric. With these notations, Eq. (5) is conveniently sswritt

Fzz(q)1,¢2) - le(q)l.q)z) = J(01-002) By + JpeEq(r) - J1eEx(ry). (7)

Importantly, let us note that fan, = m, and in the absence of any sourde=J, =0), the
term on the right side of Eq. (7) is null and ti#8b,, ®,) is independent of z. In this case, it
will be simply denotedr(P,,D,).

3. Quasi-normal Bloch mode properties

In the analysis of light scattering in aggregates of periodic waveguides, the QNBMs of every
periodic sections play a key role. In this Section, we aim at deriving the main E®m@dért
these modes like their orthogonality and their group velocity. The whole set aticadind
bound modes is studied but a special attention is paid to bound QNBMs as they gastern mo
of the physics in waveguide sections sufficiently far from any source of excitation (spatial
steady state).

3.1 Quasi-normal Bloch modes

For a given frequencw, the forward-propagating QNBMs are potentially constituted of a
finite number of truly guided modes for lossless materials and of an enumerable set of other
modes. For the sake of simplicity, we assume that the waveguide is monomodedambise

the forward-propagating guided mode &"“=E® H®>exp(jk(m)z) with Im(k)=0 .
Similarly we denote b®™®=E™ H™>exp[jkn(®)z], with m > 1 and Im(k) > 0, the other
modes. Apart from the bound mode, the set of forward-propagating QNBMs (m > 1)
potentially encompasses leaky QNBMs that are modes operating below the cutoff [23,33] and
also a finite number of evanescent truly guided modes with a complex propagation constant k
Real(k) =n/a (modulo 2Zva) [17]. Although the latter do not carry energy, they have to be
taken into account in any calculation. Because of the Bloch theorem, the QNBMs are pseudo-
periodic functions of the z-coordinate

E™(r+az),H™(r+az)> = E™(r),H™(r)>, ©)

with a being the waveguide period. In the Annex 1, we show that it is possible to associate a
backward-propagating mode™®=|Et™ HM>exp[-jkq(®)z], with E™ andH™ periodic
functions of the z-coordinate, to every forward-propagating n@f1&. Without proof, we

will assume that the forward- and backward-propagating QNBMs &oromplete set and

that, in any intermediate section of periodic-waveguide aggregates, the electticnagn
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solution of a given scattering problem for a fixed frequemcgan be written as a linear
combination of the section QNBMs.

Let us consider two QNBM@®*) and®@®), that satisfy Maxwell's equations in the
absence of source for the same periodic-waveguide geometry, at two freque raniesw.
Equation (8) implies thaF,.(@®*) @) = exp{j[ky(®’)-ko(®)]a} F(@®P @) The
Lorentz reciprocity relation, Eq. (7), applied in the absence of source to aevdludanoted
Cell(z) and delimited by the cross-section planes z aadbecomes

F(@®), @) (1- exp{j{kp(e)-ko(@)]a) = j(0-0") Eceiz(@® @ ). (9)

We now consider two important properties of the QNBMs, which are straighttbywar
derived from Eg. (9). Note that similar approaches are classicadiy dor z-invariant
waveguides [8,10].

3.2 Quasi-normal Bloch mode orthogonality

To derive the orthogonality of QNBMs, we apply Eg. (9) dor ®’. Since the term on the
right side of Eq. (9) is null, we deduce tha(®®*,® %) = 0, provided that exp[j{Kw)-
kq(w)}a] # 1. Therefore, we obtain the following orthogonality relation

Fz(q)(pm),q)(-q,w)) :”Z(E(-q,w)XH(pm) - EP)H ('q’m))oZdS: F(Po) 6p,q, (10)

whered,, is equal to 1 for p=q, and 0 otherwis®® is a complex constant, which can be
used for normalizing the QNBMSs. In the next subsection, it will beesgad as a function of
the QNBM group velocity and mode volume. Note that because of the presence of PMLs, the

orthogonality relation of Eq. (10) is not defined with usual PoynExgi* products and
therefore the energy carried in any periodic section of the system cannot be decomposed as a
sum of energies carried by individual QNBMSs, even if the waveguide materials are lossless.
Nevertheless, the orthogonality relation remains central in the analysis of light giiopag

into aggregates of periodic waveguides since it allows for closed-form expressions of the
scattering reflection and transmission coefficients at the waveguide-section interfaces.

3.3 Group velocity of quasi-normal Bloch modes

As mentionned in the introduction, one of the most promising property of periodic
waveguides is their ability to offer very slowogip velocities. Classically, the group velocity

of a bound moded™® is defined as v{’=dw/dk.. In the following, this definition is

generalized to radiation modes, even if the group velocity looses its physical meaning: the
propagation speed of the energy.

For p=qg and for two different frequenciesandw’, Eq. (9) becomes
F@®) @) {1-exp[i{k o(o')-k (@)} al} = j( @-0") Ecen( @ @P). (11)
As the frequency’ tends towards the frequenay, ®®*) — &® and since the bracketed

Jk
term of the left-hand side of Eq. (11) tends towamlg—f— (0-0’) we have
(O]

EPw) = gPo) Vép) la, (12)

whereEP® = Ecgyy(@P), ®P®) is the complex modal volume that is actually independent
of the z origin of the unitary cell ang ean be complex for radiation QNBMs. In a general

sense,vg’) =dw/dk, is understood as a proportionality factor between the two most important

quantities of QNBMsF®® andE®®). Furthermore, by applying Eq. (3) ®"* and @™
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onto a unit cell in the absence of source, we obtaiff Q= [E®e E®+ HPTu HP] dv, by

noting that the surface integral on the left-hand side of the Eq. (3) is null beE&UseH(™)
is fully periodic with periodh. Therefore, we have for any cell

£ = ], EeE v = ], HOTuH v, @

From a numerical point of view, it is important to note that a better accuracy fputom
EP®) is obtained with the integral on the right-hand side of Eq. (13) rather than withehe
on the left-hand side. Indeed as one is generally dealing with non-magnetic materid)s (
the magnetic field$1® andH, contrary to the electric ones, are continuous everywhere
except at the inner PML boundary. Finally, note that since we are dealing withproducts
and not withE x H* ones because of the PMLs, the complex mode volume and the complex
group velocity are not related to energy flow, except for the important case of truly guided
QNBMs that we now consider.

To deal with this case, it is convenient to start with the “real” Bloch modes of thed act
system of Fig. 1(c), i.e. without PMLs. Wéllwdenote by®®" = E®) H®)> exp(jkz) and
@10 = LD HIDs exp(-jlkz) the forward- and backward-guided Bloch modes propagating
in the periodic waveguide at frequenoythe upper-script 'r' being used to differentiate these
modes from the corresponding truly guided QNB#® and®™® of Fig. 1(d). Truly guided
Bloch modes exist only if the waveguide and cladding materials are losslesse(8inpé’)
and k are all real, it is easily shown from the conjugate form of the curl Maxwell's equations
that

|E(1,r)’H(1,r)> — E(-l,r)*’_H (-l,r)*>, (14)

at least if the modes are non-degenerate. The truly guided QNBMs of the computational
system of Fig. 1(d)p™® and® ), are identical to the real Bloch modds*"” and®™",

inside the inner PML boundaries, but differ in the PML regions. In practical sitsattas
necessary to normalize the power flow or the volume energy of the truly-guided QNBMs.
Indeed, since the latter are only known in a finite volume (inside the inner PML boundaries),
it is not easy to reconstruct the missing field in real space outside the inner PML boundaries.
Actually, this problem can be fully released. In the annex 2, we show that PMLs allow for
some conservation laws, and more specifically, Bt and EP® are invariant quantities

that do not depend on the specific choice of the PML. In particular, this implig="tHaand

E®®) which are defined for a given PML implementation, are equal to their associated
guantities defined for the actual Bloch mode obtained for a unitary PML stigtchi
coefficient. In other words, we have

2[[, ReE™MxH"")ezdS =F*), and (15a)

[T con [E-TeES+ HETUHA AV = EC), (15b)

where the integrals over the “real” Bloch modes on the left-hand sides extend oves infinit

transverse cross-sections, while those relat&dtd andE™® on the right-hand side run over
finite transverse grid sizes bounded by the PML outer boundary. In practice, Egs. (15a) and
(15b) can be used to calculate the power flow or the cell energy of a bound QNBM. They can
also be used for normalization, a bound QNBM with a unitary power flux being obtained with

F®)=4 Furthermore, Eq. (12) shows that the electric and magnetic fields of a normalized
bound QNBM (or of a bound Bloch mode) scaleads § )"
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4. Scattering-matrices of periodic waveguides aggregates

In this Section, we assume that the QNBMs are all normalize& &4 for any p. For this
specific normalization, we show that important reciprocity relations hold for light scgtter

light emission in aggregates of periodic waveguides. We especially focus on the symmetry-
property of the scattering matrix related to periodic-waveguide sections. Since thésasalys
fully performed at a single frequenay, we drop thew-dependence in the notation of the
QNBMs.

4.1 Symmetry property of the scattering matrix

Figure 2 shows a general scattering problem between two periodic waveguides eHeveaft
will define a scattering matris that relates the QNBM amplitudes of the left and right
periodic-waveguide sections, potentially incorporating coupling with dipole sourceseand

show thatS= S’ like in classical z-invariant waveguides.
Periodic 1 A;l)):;le‘:;y Periodic
NN waveguide L w waveguide R "y
N N asen 1O O O
ZWOI:P,L)@(]J,L) I 1 ZP>OD(:J,R)®(1J,R)
1 1 q
1 1 »
Do | I ®R) 5 (-P.R) z
DI A S NSRS
SNAAP X000
z=L, z=L,
I 1
™ LYY ~
S~~~ e 10 O O
zpwl(zp,uq)(p,u I X | ZP>OD(§,R)®<;=,R)
1 | el
i ] _R i zZ
ZPWD(ZP,L)(D(*P,L) I J, 8g.r2)| Zp)olgp, Dp PR
I 1

Fig. 2. The two solutions used for deriving the S-matrix reciprocitytioela At a given
frequencyo, the QNBMs of the left periodic-waveguide section (2xlabelled by "L" for
“left”, are denoted byb®" and those on the right side (z¥Llabelled by "R" for “right”, by
®®R) p being a relative integer. The geometries are arbitraryraydcontain sources for the
left and right ends of the structure and feri<L,. The whole system is assumed to be
surrounded by PMLs (not shown) everywhere in the transverse directions.

We consider two arbitrary solution®;=|E;,H,> and®,=|E,,H,> (represented in Fig. 2)
of Maxwell's equations at frequenay with different dipole sourcegd; andJ,, respectively.
The sources are located at positiopgndr, in the arbitrary geometry section. By applying
the Lorentz reciprocity theorem of Eq. (7) to a volume delimitedhleyttansverse-section
plane z=l, and z=L, we obtain

FLZ(CI)L(I)Z) _FLl(q)lycI)Z) = Eq(ro)eds - Ex(ry)eds. (16)

Assuming again that the QNBMs form a complete set in the periodic-waveguidmsetiie
fields ®; and @, can be written as a superposition of backward- and forward-propagating
QNBMs in the left periodic-waveguide section. At z=Wwe have
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@, :Zp>0| (1) dPL 4+ Dip'L) P (17a)
o, :z’»o |(2p,L) (I)(P’L) + D(ZPJ—) q)(-p,L)’ (17b)

where thel™ ,pPY ,|®Y and P are the complex modal QNBM-expansion coefficients

for the solutions 1 and 2 in the left periodic waveguide. Since the Foris bilinear, the
application of the QNBM orthogonality relation straightforwardly leads to

FL(@1.®2) = 4Zp>o(l (POpPL _ b Dip"‘)). (18)

Note that for deriving Eg. (18), we have used the fact that the QNB#Ms@malized
(F®®)=4 for any p). With similar notations and for zzle have

FL(®1.®2) = 4zp>o (1PRDER | EP,R)D(ZP,R))_ (19)
A combination of Egs. (16), (18) and (19) leads to
4zp>o(, PLDPY 4| iD,R)D(ZPR)) ~Ex(ry)edi = 4Zp>0(|(2p,L)D£p,L) + |(2p,R)D§p,R))_El(r2).J2, (20)

By introducing the scattering matr&that relates the vect@ = P®Y, DR (formed by the
association of the diffracted modal QNBM-expansion coefficients) to the vector
| = |®D1@Rs (formed by the incident modal QNBM-expansion coefficients), Eq. (20) can be
rewritten in a compact form

(1)7Slz - Ex(r1)eds = (1) "SIy —Ex(r2)ed. (21)

In particular forJ;=J,=0, we haveS=S', like for classical z-invariant waveguides. Note that

the symmetry property holds the appropriate QNBMs normalization defined in Section 3. We
emphasize that Eq. (21) is a direct consequence of the use of materials with symmetrical
constitutive parameters. Some of its important implications are summarizied 1 F

s — N—eee
PR Arbitrary oY Arbitrary

geometry tCD(q’R)# <4 ¢ geometry G @R
FANPANPAN O00 aana O O O
~— ~——

(b) cI)(p,L) . - rcD(—P,L)
M4 vArbitraryO O O A vArbitra O O O
geometry geomet:))'l
PPN OHONG®) aanan 000
<4 D O e—t

e i
)~ VmQ O O Y~ 7 Amiway )
JE (D(—P,L) geometry (D(p,L) geometry

aanan BO00 anas 5E0O0O

Fig. 3. Some implications of Eq. 21. (a) The complex modal transmission-teefico not
depend on the propagation sense. (b) Same property for the crosgefledtbn-coefficients.
(c) The excitation amplitude of a QNBM by a dipole souréér-do) located at point r sris
equal to the scalar product between the source J and the fig)ds&ttered at the dipole
location by exciting the same geometry with the reciprocal QNBM.
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4.2 Excitation of QNBMs by localized currents: local density of states

Given a source of excitation prescribed by a distribution of currents, either at the periodic
waveguide endface or within the waveguide, the modal amplitude of the radiadidooand
QNBMs can be straightforwardly calculated. In this subsection, we determine the agsplitud
of the bound and leaky QNBMs excited by a dipole source located abutside the PML
region. In the electromagnetic description adopted here and in the weak coupling regime, thi
amounts to determine the classical photonic local density of states (LDOS) [34-35] of periodic
waveguides. Referring to Fig. 4, the total electromagnetic fieldE;, H>, radiated by a Dirac
dipole sourcé &(r-r o) can be expanded in terms of the complete set of outgoing QNBMs

for z>z, ® = z DPR P, (22a)
p>0
andfor z<z, @ = z DPL P, (22b)
p>0

where the #® and B"" are the modal amplitude coefficients of the forward and backward
QNBMs, respectively. To calculate these coefficients, we apply Eq. (20)=fos=r,. For

solution 1, we considab;=a® [i.e. 1?7 =|*" =0, J,=J andr,=r,, in Eq. (20)], while solution
2 is successively prescribed B=0™ [i.e. IP7 =0,1" =8, , andJ,=0, in Eq. (20)] and
then byd,=0™ [i.e. PP =5 1®Y =0 andJ,=0, in Eg. (20)]. We obtain

=8y m
D™Y = EM(r,) «J exp(jknzo)/4, and (23a)
D™R) = ECM(r o) o exp(-jknZo)/4. (23b)
These equations show that the total electromagnetic field radiated by the Dirac source is
analytically determined by the sole knowledge of the QNBM electric fields on the source.

Note that the excitation coefficient™ of a forward-propagating QNBND™ is directly

proportional to the field amplitude of the backward-propagating QNEN? at the dipole
source location, and vice versa.

Fig. 4. Excitation of QNBMs by a Dirac dipole sourg&é(r-ro) located at point =r,. The
DPR and OPY coefficients represent the modal amplitude coefficients of the exoiterd-
and backward-QNBMs, respectively. The periodic waveguide is not necessamityetric for
the study, as shown by the échelette profile.

Truly guided Bloch modes deserve a particular attention. By virtue of Eq. (14), we have
ED(ro)=[E™(ro)]", since the truly guided QNBMs of the computational sys@t” andd®
1) are identical to the real Bloch mod@'” and®‘™", inside the inner PML boundaries.
For a linearly polarized sourcé=lu, | being a complex number anda 3x1 real vector.
From Eq. (23) and frorE )(ro)=[EX(ro)]", it is easily shown that the excitation coefficients
DR and B'Y of the forward- and backward-propagating fundamental Bloch modes are
related by the simple relation :“" =D®V"|. Remembering that the QNBM are all
normalized in this Sectio™® and®™** have a unitary Poynting flux in the z direction.
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Thus the powersfor Py, coupled into eithe®™® or 1), are equal to [B¥P and |B-VF,
respectively. They are found to be equal and are given by

P= Py= I EY(ro)suf/16. (24)

Perhaps counter intuitively, Eq. (24) shows that the coupled power®fitoor @) are
equal, independently of the location of the source in the unit cell of the periodic waveguide, or
of the existence of a symmetry axis for the waveguide. Additionally, since thecefusdtis

of a normalized bound QNBM scale a\({’)"% the power emitted diverges as/§) in the

slow light regime. Note that this divergence holds for lossless and infinitety periodic
waveguides, and that any waveguide termination or any residual material iabsaqtld
prevent such a divergence.

5. Numerical implementation

In this Section, we discuss practical issues in relation with QNBM calculations and with their
use for the analysis of light scattering in periodic waveguides. Firstly, the main steps to
implement the aperiodic Fourier Modal Method (a-FMM) are described. The principles of this
method originate from a generalization [12,36] of classical grating methods knothe as
Rigorous-Coupled-Wave-Analysis [37], to handle non-periodic geometries through an
artificial periodization and the use of PML. A particular attention is paid tonfheence of

the PML on the QNBM calculation and also to the scattering matrix figmmaThen, to
illustrate our purpose and to test the accuracy of the a-FMM, g IBD scattering
problems related to light reflection and emission in periodic waveguides are considered.

In the following, all numerical results are obtained for a PhC silicer3.6%) slab
waveguide, composed of a line-defect in a 2D triangular lattice of air holes, see Fig. 5(a) for a
schematic view of the structure along with definitions of the different paresnéfais
waveguide supports a single guided TE-like Bloch mode in the gap, as shown by the
dispersion curve in the inset.

5.1 Quasi-normal Bloch mode calculation

The method used for calculating the QNBMs has been described in a previous work [23] and
hereafter, we simply summarize it for the sake of consistency. Imajetie computational
system associated to the actual periodic waveguide geometry incorporates PMLstireboth

x- and y-directions as in Fig. 1(d). Nevertheless, for the PhC-waveguide of &jign&(use

purely periodic boundary conditions in the y-direction. The validity of this adsumbpas

been checked a posteriori by verifying that the calculated data do not depend on the humber P
of hole rows surrounding the line defect. All the results provided hereafter are olftained

P = 6. Because of the periodic boundary in the y-direction and of the Pk ixdirection,

the field solution of the scattering problem is null on the boundaries dcfaimgutational
domain. Moreover, the artificial periodization along the x- and y-directions makes the field
periodic, which allows to expand the elecEiand magneti¢l fields in a Fourier basis [12],

H(r) :Z (Uspg X+Uypqy+Uzpg2) €Xp(IPGx+qGyy), (25a)
pa

E(r) :Z (Stpa X*ShhaY+Sepg2) €XPIPGXHAGY), (25b)
pa

where G=2r/A, and G=2r/A,, Ay andA, being the lengths of the unit cell of the transverse
section. In Eqgs. (25a) and (25b), thg,Sand Um (=X, y or z) are unknown z-dependent
coefficients. In practice, the Fourier series have to be truncated, we dencteabgt my the
truncation ranks, -gEp<m, -my<g<m,. By incorporating expressions (25a) and (25b) into the
curl Maxwell's equations, and by expanding the permittivity and #mneability in the
Fourier basis, we obtain after elimination of the z-components [23]
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1 d[¥]
——2=0(2) [¥] 26
o -t (26)
In Eq. (26), Wis equal tof S, U Uy, a column-vector formed by the electric- and
magnetic-field coefficients anf is a matrix formed by the Fourier coefficients of the

permittivity and of the permeability. The matfXxin Eq. (26) depends on the variable z since
the permittivity function is z-dependent.

50, .
(@) oz A (b) EC .
S 025 L R
022 03 04 o5 > - -
k, (2n/a) E’ 25 -
£
.
. . A
Periodic QOO0
boundary % © 10
Real(kp)

Fig. 5. QNBM calculation of a PhC waveguide. (a) Schematic view of theviRheguide
formed by removing a line defect in th¥ direction of a 2D PhC structure composed of a
triangular lattice of air holes (lattice const@x0.24 pm) etched into a silicon slab (n=3.55).
The slab thickness is 0.6a and the air holes radii 0.29a. The inset shows the displatsion r
of the fundamental guided QNBKDY. (b) Display of the 300-first normalized propagation
constants of the QNBMs for a frequenaf=0.255 , point A in the inset. Blue dots and red
squares are obtained fopf) *=(1+i) and (fw)'=5(1+i), respectively.

The calculation of the QNBMs requires the integration of Eq. (26) over a unit cell from z
to z +a. For the integration, we approximate the real profile of the circular holestagkao$
slices with locally z-invariant permittivities [23]. We have used&M slices per holes, i.e. a
z-discretisation step ef A/35. Indeed, the accuracy of the computational results increases as
Ns increases, but calculations performed fgeM® have revealed that the discretisation error
is much smaller than the truncation errors discussed hereafter. Within this apgiaxj the
integration along the z-direction can be performed analytically. The N local modes of each
slice (p) can be called quasi-normal modes (QNMs) as they correspond to the mode of a

z-invariant waveguide surrounded by PMLs [12]. The QNMs, denoted by the vaufBts

and W_(E,) (n=1,...N) in the Fourier basis, are calculated in every slice (p) as the eigenvector

of a local matrixQ®. Denoting byA® the corresponding eigenvalue (the QNM propagation
constant), the electromagnetic fieRt¥ can be written as a superposition of QNMs in very
slice (p)

N
PP =3P exprPZ)WP +f P expePz)W® (27)
n=1

where b® and f® are column vectors whose elements are the amplitudes of the QNMs
propagating backward (in the negative z-direction) and forward (in the positivectiatiy),
respectively. The linearity of Maxwell's equations assures the existence of a linéamgieiat
between the mode amplitudes of the sliceb{)andf?, in the input z-plane and those of the
slice (t),b® andf®, in the output (z+a)-plane. To avoid any numerical problems, a S-matrix
approach is used to relate these amplitudes. In a compact form, we have
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O _[Su S b@ : (28)
fO] [Sa Sz f®
where the matrix on the right-hand side of the equation is simply ther&-wiaa unit cell.
Details concerning the recursive calculation of S can be found in [38].
Since the QNBMs are pseudo-periodic, their mode amplitudes at planes z arate +

proportional. Denoting by the proportionality factor, we hav®=pb® andf®=pf? and
incorporating Eq. (28), we obtain

I =S, || b® Si1 0| b®
L Szj L (i)]:p {‘321 '][f (i)] | .

Eq. (29) is solved as a generalized eigenproblem without numericallitiss&af24, 39]. Note

that for periodic waveguides possessing a mirror-symmetry plane in the tisdirechanced

performance is achieved by a related simplified eigenproblem scheme [40]. Because of the

truncation, a total of 2N=4(2m1)(2m+1) QNBMs are calculated. One half corresponds to

forward-propagating modes and the other half to backward-propagating ones. The QNBMs
QNBM

are denote{ m } with m=1,...2N. Theb@"®" and f 8™ are Nx1 vectors, whose

fr(r?NBM

coefficients represent the components of tfeQNBM in the local QNM basis associated to
the slice at planes z and &+From the eigenvalueg, the propagation constants of the
QNBMs are obtained frorp=exp[ik a], where the vectok is formed by the propagation
constantk, of the QNBMs.

Figure 5(b) shows the 300-first QNBM propagation const&ptbtained for the
geometrical parameters defined in the caption and feflinand np=26. The calculation has
been performed for two different PMLs, implemented as a linear complex coordinate
stretching [36]. Blue dots and red squares respectively correspongytd’${1+i) and
(fomn) *=5(1+i), where fy. is the stretching parameter defined in Annex 2. With the exception
of the fundamental QNBM located on the real axis near Rgaf(kthe distribution ok,
depends on the specific PML implementation. This is understood by considering that the
actual radiation Bloch modes of the periodic waveguide in Fig. 1(a) are mdujfibé PML
and that the modification depends on the PML themselves. In other words, a PML represents
cut in the complex plane that allows to satisfy outgoing-wave conditions. By chahging
PML parameters (thickness, stretching, gradual variation ...), the cut is modified and
consequently the QNBMs distribution varies. Yet, some of the QNBMs weakly depend on the
PML parameters, they deserve a special attention. An inspection of their electromagjdetic fi
has revealed that some of them, especially those with small) Imglkies (attenuation) and
with 10<Re(k)<18, possess two zeros in the x-direction of the membrane, indicating that they
are related to the leaky Tinode of the membrane without holes. More generally, we believe
that these modes which are almost insensitive to the PMLS’ choice, are leaky QNBMs but a
guantitative discussion would deserve further studies. Note that the relation between leaky
mode expansion and PML with varying absorption for a simple slab waveguide has already
been discussed in the literature, see Ref [10]. A thorough discussion of the accuracy of the a-
FMM method to calculate the attenuation of leaky Bloch modes operating above the cladding
light lines can be found in [41].

5.2 Light scattering in periodic waveguides

To illustrate the potential of the approach, we consider two I3siscattering problems in
PhC-waveguide aggregates, the reflection of light onto a semi-infinitenin@ [Fig. 6(a)]

and the emission of a dipole source into a semi-infinite PhC waveguide closed by a mirror at
one of its extremity [Fig. 7(a)]. To solve these problems, the outgoing waveicnadiave
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to be satisfied in the QNBM basis to take into account terminations by semi-infiniteiperiod
waveguides. For that purpose, one needs to derive the scattering matrices which link the
forward- and backward-modal coefficienfS"®™ and b®"®™, in the QNBM basis to the
forward and backward modal coefficiertSy" andb?®"M, in the QNM basis. In General, two
cases have to be considered. We simply consider a termination withi-anfseite periodic
waveguide that extends to the positive z-direction hereaftesirbilar considerations can be
straightforwardly applied for termination with semi-infinite periodic wawgs extending
towards the negative z-direction. For this termination, the S-terignn@tatrixS; reads as

bQNM bQNBM IS IS bQNBM
=S, _| P11 P12 _ (30)
fQNBM fQNM 321 322 fQNM
The Sr matrix is simply related to a basis transformation. By matching the consinu

tangential field components at the termination in the Fourier basis, like f&sicah z-
invariant waveguides, elementary algebraic manipulations lead to

S2= ()", $12=B"Sy, S = -SpF andSi =B - SiF, (31)
whereB™ andB"* denote the NxN matrices whose column vectors are the Nx1 eigenvectors,

b and bO"®™ andF andF* are related matrices formed with the vectb&™" and

erNBM. The Sr scattering matrix defined in Eq. (30) and (26) can be used with standard S-

matrix products [38] to handle intricate scattering geometries.

(b) -

\
97.43 N

97.41

Reflectivity (%)
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Fourier's harmonics, m,

Fig. 6. Scattering at the interface between two periodic sect@mnSchematic top view of the
3D scattering problem. The PhC parameters are the same as @aption of Fig. 5. (b)
Convergence of the a-FMM for the modal reflectivity R of the fureletal guided QNBM

@Y. The calculation is performed faf\ = 0.255 , point A in the inset of Fig. 5(a).

The S-termination matrices approach has been implemented fogsthlgiscattering problem
of Fig. 6(a) by using the products 8f matrices associated to the two different QNBMs
encountered for z<0 (mirror) and z >0 (waveguide). Figure 6(b) shows the gemver
performance for the modal reflectivity R of the fundamental PhC bound medtiastion of

my for several values of ynThe calculation is performed fa/A = 0.255. For the sake of
convergence performance, the cladding PML are implemented as complex nonlinear
coordinate transforms [36]. As expected, bothamd ny impact the computational accuracy.
For all curves, we note that a plateau is obtained for 80, the peak-to-peak residual-
oscillation amplitude being smaller tharD@01. The curves obtained for differen} are
vertically shifted from each other by an offset value that rapidly decreasegsiasreases.
This property allows for an accurate interpolation of R. Starting fromc#theulated data
obtained for small mvalues (m= 15) and for large ynvalues (m = 30 for instance), the data
can be corrected from the deviation observed on the curve yithl® and m= 15 to large
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my values (m= 45). On overall, R is estimated to be equal to 0.97@¢@001. Note that

similar calculations performed for a related scattering geometey lheen previously reported

[42] and that the agreement between the experimental and numerical data has indicated an
absolute error below 0.0002 for the calculated modal reflectivity. Typical CPU timesefor th
computation of R in Fig. 6(a) with (m,)=(15/15), (25/20) and (20/35) are approximately 30

min, 300 minand 900 min on a PhC computer equipped with a 3-GHz Intel Pentium 4
processor and with Matlab.

25 3% a5
Fourier's harmonics, m,

Fig. 7. Dipole emission into PhC waveguides closed at one extremigy RlyC mirror. (a)
Schematic top view of the 3D problem. The PhC parameters are tlkeasaimthe caption of
Fig. 5. The dipole is parallel to the x-axis and is located in the ¢@targe of the membrane at
7, = 0. (b) Convergence of the a-FMM for tRefactor defined as the power emitted i’

normalized to the total power emitted. The calculation is perfdforea/A = 0.255 , point A in
the inset of Fig. 5(a).

Let us now consider the emission of a dipole souré&-ro) in the geometry shown in

Fig. 7(a). As in the previous example, two periodic sections are involved. They will be
labelled by the subscripts "M" and "W" hereafter, "M" referring to the PhC mirror defthe
side and "W" to the single-row defect waveguide on the right side of the figure. For the
calculation, one may first compute the scattering m&fixvhich links the forward- and
backward-modal coefficientg™ and ¥, in the QNBM basis of the PhC mirror to those

(denotedb™ andf'") of the single-row defect waveguide at planezg =

pM pW-
|:fW—i|=ST|:fM } (32)

In Section 4.2, we have solved the emission of a dipole source in a periodic waveguide by
providing an analytic experession for the QNBM excitation coefficieffts’@and B™R. In

fact, as shown by Eq. (20), the presence of a dipole source in a periodic waveguide results in a
field discontinuity, which is described in the QNBM basis as a step discontinuity of the
QNBM excitation coefficients at zgzBecause of the linearity, the step discontinuity is
simply that obtained in Section 4.2 in the absence of incident QNBM illumimagind is

equal to the B'Y and D™ coefficients given by Egs. (23a) and (23b) for the QNBMs of the
single-row defect waveguide. Thus if we denotebly andf¥* the forward- and backward-

modal of the single-row defect waveguide at planezg =and byb" and " the similar
quantities defined at plane zg, we have

bW+ _D(L) bW—
W+ | = | pR) + Fw- | (33)
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where the Nx1 vector§® andD®, are formed by the BV and B™R coefficients. Since
these vectors are known analytically, Egs. (32) and (33) can be solved for the ufi®hown
b"-, b™ andf"" vectorswith b"* =f" = 0. The electromagnetic-field distribution is then
recovered everywhere.

Figure 7(b) shows the convergence performance of the spontaneous effssimn as a
function of m for different values of g The B-factor is defined as the fraction of light
emitted into the fundamental forward-propagating QNBM of the waveguide W. It is an
important parameters which may drastically impact many optoelectroviedelike lasers
or single-photon sources, if it may be made close to unity [43]. Again the data shows a well-
converged situation: a plateau with a negligible residual fluctuation is obtainegq Yatuas
as small as 20 and the plateau height is weakly dependent ém aaldition, cross-checking
tests obtained by varying the PML thickness and the number of hole rows surrounding the
defect in the y-direction have further confirmed the accuracy of the results. Bs& cr
checking tests are important, because the QNBM basis changes as one varies the PML
implementation. But accordingly to Egs. (32) and (33), the excitation coefficiéhts and
D™R also change. Obtaining nearly identigifactor predictions for totally different
extension basis thus represents a strong test for the theoretical and computatenial asp
developed in this work. For this Green-function problem, CPU times are almost idémtical
those obtained for the previous scattering problem. Other computational datedbtah
this approach for the broadband and directive emission of light in single-row-defect PhC
waveguides can be found in [44] for the two in-plane dipole orientations.

6. Conclusion

A rigorous modal formalism for modeling light propagation and light emission in three-
dimensional periodic waveguides and in aggregates of them has been presented. In essence,
this work is a generalization of known modal concepts for translation-invariant wdeesdai
situations involving aggregates of periodic waveguides. By surrounding the actuabytack
PMLs in the transverse directions, we have shown that both radiation and bound modes can be
handled and that reciprocity considerations lead to the derivation of Bloch-mode orthggonalit
relations in the sense &xH products, to normalization of these modes, and to the proof of
the symmetrical property of the scattering matrix linking the Bloch modlbe general
formalism which rigorously takes into account radiation losses resulting ferextitation of
radiation Bloch modes has been implemented with a Fourier numerical approach. Basic
examples of light scattering like the emission of a dipole source in periodic-waveguide
aggregates are accurately resolved.

All the above results (orthogonality, reciprocity ...) can be straightforwardly gexsetali
for other systems involving additional periodicities. For instance, for 2D-periodic systems i
thin film stack, like semionductor membranes perforated by triangular hole arrays, the
QNBMs possess an in-plane parallel wave-vector and PMLs have to be introduced only above
and below the stack. When using the Lorentz reciprocity theorem, the integral over every
cross-section planes of the unit cell is not null, but due to the in-plane pseudo-periodicity, the
integral over two parallel cross-section planes of a unit cell are identical and their
contributions exactly cancel. For 3D periodic systems, similaftsehold and there is no
need to introduce PMLs. Furthermore, if the media of the fully-periodic systetossless,
the orthogonality relation could be used witkH " products.

By surrounding the cross-section with PMLs, complex permittiaitgd permeability are
introduced even if the and p of the physical system are real. As a consequence,
orthogonality in the sense of the Poynting vector no longer holds and the system energy
cannot be reduced to a sum of QNBMSs energies even for lossless materials. At first sight, this
might appear a drawback of the approach, but we emphasize that inside the PML inner
boundaries, since the solution for the total electromagnetic field is virteredigt, the total
energy flow on a closed surface can be fully predicted, as shown by the analysis of light
emission in Section 5.2. In addition, we note that lossy materials, like metalsical opt
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wavelengths, have by essence complex permittivities. Therefore the formalism developed here
fully applies, as shown by the calculation of PhC surface-plasmon-polariton reflectance and
transmittance reported in Ref. [45].
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ANNEX 1 : Existence of pairs of forward- and backward-mode@® and ®”

By construction, z-invariant waveguides possess a mirror-symmetry for tranpleanss
perpendicular to the z-axis. For any given forward-propagating mode with a exp(jkz)
dependence, this guaranties the existence of a backward-propagating with an exp(-ikz)
dependence. The same property holds for periodic waveguides that possess the same
symmetry [17,40]. For periodic waveguides without symmetry, the demoostrdtexistence
of pairs backward- and forward-propagating QNBMs deserves more attention.

For that purpose, we consider two solutions of Maxwell's equation at the same frequency
. Solution 1 consists in the QNBE™®. Indeedd™® = E™, H™> exp(jk.z) is non null
everywhere, and we denote Iy=xox + Yoy + zz a point such thafE™(ro,0)|= 0. As
solution 2, we consider the solution of Maxwell's equatid®s,w) = |E, H>, in the presence

of a pseudo-periodic array of dipole sourdgs{E(m)(ro,m)]*Zp O(r-ro-paz) exp(jplka), with k
an arbitrary complex number. Since the source distribution is pseudo-periodic, the solution 2
is also pseudo-periodic (Bloch theorem), and we have

O(r+az,m) = O(r,w) exp(jka). (A1.1)

Applying Eg. (8) form;=m,=w and for 7<z,<z;+a=2z,, we get
Fo(@,@r) - Fo, (@.@m) = [E™(ro)f exp(iknzo)- (A1.2)

By further combining Eqgs. (Al1.1) and (Al1.2), one obtains
Fz,(@®r) = [E™(r o) exp(iknzo){explikntk)a] - 1} (A1.3)

Equation (A1.3) holds for any k. As k tends towards, tke right-hand term diverge since
|E™(ro,m)| # 0, i.e.®=|E, H> becomes singular in the transverse cross section for any
z1. This singularity represents the signature of the existence of a QBEBMa solution of
Maxwell's equations without source) with an expfzkdependence.

ANNEX 2: Electromagnetic invariants in perfectly-matched layers

The PMLs considered in this work are specified by an "absorption" profile, which is in
general understood [46] as a set of graded piecewise-constant PMLs stacked over a finite
thickness. We adopt the complex-stretching presentation and notations of PML [B&Ref
Although the PML are just applied in the transverse x- and y-directions in this work, we
consider hereafter transformation in all directions for the sake of genefd@yPML profile

is fully specified by the complex coordinate transform

X=XX), Y=Y(), Z=Z(2), (A2.1)

where X(x), Y(y) and Z(z) are complex continuous and piecewise differentiable
transformations from the complex plane x, y and z (denoted as the real spaceséetiod

simplification) andX ,Y and Z denote the new real coordinate system. We further denote
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X0 O
by L the 3x3 diagonal matrix =| 0 Y' O |, where X’=dX/dx, Y’=dY/dy and Z'=dZ/dz.
0 0 Z

In general, X', Y' and Z' are piecewise-constant functions with a gradual variationHdg]
the numerical results shown in Fig. 5, the X’ function extends over a finite thickngsandl
is constant: X'=fy; Y’ and Z’' are both equal to 1.
After a few elementary algebraic operations, it is shown that #dH satisfy the
Maxwell's equations of Egs. (2a) and (2b) in the (x,y,z) coordinate systems, the new

electromagnetic fieldsH =L*H and E =L E also satisfy the same Maxwell's equations in
the new coordinate system provided that

fL= LyL /Det(L), & = LeL/Det(L), J = LJ, (A2.2)

where p,g€and J represent the permeability, permittivity and dipole source in the new

coordinate system and De)(denotes the determinant of the operatowith this formalism,
it is easily found that important quantities like andEy are conserved quantities that are

independent of the complex transformation. Let us start with the mode Vof{ir(& eE -
HTuH)dV. Using Egs. (A2.2), it is easily shown tHafeE = Det()ET£E. Since dV =
dxdydz=dXdYdZ /Det(L)=dV /Det(L) , we obtain

[If, ETeE -HTum)av = [ff (ETEE -HTpH)aV . (A2.3)
Similarly, it is shown that for any transverse agd S, we have

[ ExH)szdS =[[ (ExH )ezdS. (A2.4)
S
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