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We present a semianalytical model that quantitatively predicts the scattering of light by a single subwave-
length slit in a thick metal screen. In contrast to previous theoretical works related to the transmission prop-
erties of the slit, the analysis emphasizes the generation of surface plasmons at the slit apertures. The model
relies on a two-stage scattering mechanism, a purely geometric diffraction problem in the immediate vicinity of
the slit aperture followed by the launching of a bounded surface-plasmon wave on the flat interfaces surround-
ing the aperture. By comparison with a full electromagnetic treatment, the model is shown to provide accurate
formulas for the plasmonic generation strength coefficients, even for metals with a low conductivity. Limita-
tions are outlined for large slit widths ���� or oblique incidence ��30° � when the slit is illuminated by a plane
wave. © 2006 Optical Society of America
OCIS codes: 050.1220, 050.1940, 260.2110, 260.3910.
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. INTRODUCTION
ecause of the advent of nanotechnology and the recent
pplications of surface plasmon polaritons (SPPs) for ma-
ipulating light at a subwavelength scale, there has re-
ently been reawakened interest in the physics governing
he electromagnetic behavior of metal films perforated
ith subwavelength apertures for visible light
peration.1–5 In that context, light scattering by an opti-
ally opaque metal film perforated by a single subwave-
ength aperture, like a hole or a slit, represents the more
asic diffraction problem. Although it has been studied for
long time (see the early references6–8), this problem is

till currently the subject of intense research from a the-
retical point of view. Most of the earlier theoretical
orks relied on semianalytic or on intensive computa-

ional approaches9–12 of the near-field patterns and well
eproduced or interpreted global experimental data such
s the transmission through the aperture. However, they
id not address the problem of the SPP generation at the
nput or output nanoaperture sides in a quantitative

anner, although this generation has been evidenced ex-
erimentally through far-field measurements4,5 or direct
ear-field measurements performed on a single nanohole
erforated in a thin metallic film.13,14 Recently, the SPP
eneration at a metallic interface perforated by an iso-
ated subwavelength slit, when the slit is illuminated by
ts fundamental guided mode [Fig. 1(a)] or by an incident
lane wave [Fig. 1(b)], has been tackled through a full
lectromagnetic treatment and a semianalytical model.15

owever, due to space limitations, the model has been
nly briefly documented.

In this work we provide a detailed description of the
odel and quantitatively test its domain of validity. It is

ound that the model predictions are accurate even for
oble metal with a low conductivity, as encountered in the
isible region of the spectrum. In Section 2 we first
resent a theoretical formalism for the rigorous calcula-
1084-7529/06/071608-8/$15.00 © 2
ion of the scattering coefficients between the incident
ight and the SPP modes launched at the slit aperture.
his general formalism is rigorous in the sense that the
cattering coefficients are computed with high accuracy.16

t represents an important outcome of this work that will
e used to validate the model. Section 3 is devoted to the
erivation of the semianalytical model. Approximate but
ccurate expressions for the SPP generation coefficients
re obtained for the two scattering problems shown in
ig. 1. In Section 4, the model is applied to several geom-
tries of interest in practice such as grooves in a metallic
ubstrate. This allows us to discuss the influence of the
ifferent parameters of the scattering problem. Addition-
lly, the model predictions are tested against data ob-
ained with the theoretical formalism, which allows an in-
epth test for the complex amplitude scattering
oefficients associated with the SPP generation mecha-
isms. Section 5 summarizes the main results.
Hereafter, the metal is considered as a real metal with
finite conductivity. Gold will be used to illustrate our

iscussion, and its frequency-dependent permittivity � is
aken from Ref. 17. Let us emphasize that although gold
s used throughout the paper, the analysis and the ob-
ained results remain valid for other metals.

. THEORETICAL FORMALISM
et us consider the geometry shown in Fig. 1(a). The slit
as the same direction as the magnetic field Hy
transverse-magnetic polarization) and is illuminated by
ts fundamental guided mode at a fixed wavelength ��k
2� /�=� /c�. In the figure, n1 and n2 refer to the refrac-

ive indices of the dielectric materials in the slit and be-
ow the slit. We denote the slit width by w. Inside the slit
n medium 1, the magnetic field admits a modal expan-
ion of the form
006 Optical Society of America
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H1�x,z� = �0�x�exp�ikn0
effz� + �prp�p�x�exp�− iknp

effz�,

�1�

here p is an integer, �p is the magnetic field of mode p,
nd np

eff is its normalized propagation constant. The sub-
cript 0 refers to the fundamental propagative mode with
weak attenuation Im�n0

eff��1. Similarly, below the slit
n medium 2, the magnetic field H2 can be expanded into

plane-wave basis:

H2�x,z� =�
−	

	

dutu exp�ikn2ux�exp�ikn2
uz�, �2�

here u2+ �
u�2=1. Many numerical tools can be used to
igorously solve for the reflection �rp� and transmission
tu� amplitudes by matching the tangential field compo-
ents Hy and Ex at the metal–dielectric interface.12,13,18,19

ereafter we use a frequency-domain modal method rely-
ng on Fourier-expansion techniques. The Fourier-
xpansion method20 is a generalization of the rigorous
oupled-wave analysis21–24 initially used for grating
nalysis for arbitrary nonperiodic structures. In brief, the
pproach relies on an analytical integration of Maxwell’s
quations along the longitudinal z axis and on a supercell
pproach in the x direction. Perfectly matched layers25

mplemented as nonlinear coordinate transforms26 are
sed in this direction to satisfy the outgoing wave condi-
ions at the supercell boundaries. Since these layers ab-
orb nonevanescent radiations like the generated SPP
odes, the electromagnetic fields are null on the bound-

ries of the supercell and are thus periodic functions of
he transversal coordinates. This allows the calculation of
he radiated and guided modes in a Fourier (plane-wave)
asis inside and below the slit. By matching the tangen-
ial field components at the metal–dielectric interface, the
lectromagnetic fields are calculated everywhere. Figures
(a)–2(d) show the electromagnetic fields Hy�x ,z� and
z�x ,z�, which will be of main concern in the following for

wo different wavelengths, �=1.5 and 0.6 �m, respec-
ively. Because a saturated scale is used to reinforce the
eld in the vicinity of the slit, the standing-wave pattern

n the slit does not show up. However, this scaling allows
or the clear visualization of the near-field pattern, which
xhibits a marked expansion of several wavelengths away
rom the slit aperture in medium 2. This is consistent
ith the involvement of SPPs at the slit aperture, but
ow do we recognize a quantitative signature of the SPP-
ode excitations in these near-field patterns?

ig. 1. SPP excitations at a metallic interface perforated by a
ingle slit under illumination by (a) the fundamental mode of the
lit or (b) a plane wave with an incidence angle �. The slit width
s denoted by w, and n1 and n2 refer to the refractive indices in-
ide and below the slit. 
+�x�, 
−�x�, �+�x�, and �−�x� are the SPP
eneration coefficients defined for an incident wave with a unit
ower flow over the slit aperture area.
To clarify this question, we have developed an original
pproach that mainly exploits the completeness theorem
or the normal modes of optical waveguides.27 This theo-
em has diverse applications in integrated optics, ranging
rom the proof of mode orthogonality to the formulation of
oupled-mode equations, and provides a useful electro-
agnetic representation of light propagation in transla-

ionally invariant systems. It stipulates that any trans-
erse field pattern of such a system can be decomposed in
linear combination of forward- and backward-traveling

ounded and radiative modes. For our slit geometry and
or w /2�x and x�−w /2, it results that the transverse
lectromagnetic fields shown in Figs. 2(a)–2(d) can be ex-
anded into the set of normal modes of a flat gold–
ielectric interface:

Hy = �
+�x� + 
−�x��HSP�z� + ��a��x�H�
�rad��z�, �3a�

Ez = �
+�x� − 
−�x��ESP�z� + ��a��x�E�
�rad��z�. �3b�

n Eqs. (3a) and (3b), the transverse magnetic and electric
elds �HSP,ESP� of the bounded SPP mode is the analog of
he guided mode of the waveguide theory, while the sum-
ation represents a continuum of radiation modes of the
at metal–dielectric interface. The SPP fields are know
nalytically28:

HSP�z� = �NSP�−1 exp�i
SPz�, �4�

ith NSP a normalization constant such that the SPP en-
rgy flow is unity and 
SP= ��k2− �kSP�2�1/2 in the metal
nd ��n2k�2− �kSP�2�1/2 in the dielectric, respectively. kSP is
he well-known SPP propagation constant along the
etal–dielectric interface and is given by28

kSP = k��n2
2/�� + n2

2�. �5�

n Eqs. (3a) and (3b) 
+�x� and 
−�x� are important coeffi-
ients that play a central role related to the SPP genera-
ion. The plus and minus superscripts refer to SPP propa-
ating forward and backward. The x dependence is known
nalytically: 
+�x�=
+�w /2�exp�ikSP�x−w /2�� and 
�x�

�w /2�exp�−ikSP�x+w /2��, where 
+�w /2� and 
−�
w /2� represent the complex unknown coefficients re-

ated to the strength of the SPP excitation at the exit
ides of the slit �x= ±w /2�. Using the mode orthogonality
ondition,26 we obtain for 
+ and 
−

�
−	

	

dzHy�x,z�ESP�z� = 2�
+�x� + 
−�x��, �6a�

�
−	

	

dzEz�x,z�HSP�z� = 2�
+�x� − 
−�x��. �6b�

ecause we are concerned by lossy metals with a finite
onductivity, the modes are not orthogonal in the sense of
he power flow as is usually the case in waveguide theory
ith weakly absorbing materials. This is the reason why
e have used the unconjugate general form of
rthogonality29 in Eqs. (6a) and (6b) with E H products in-
tead of the E H* product often used in waveguide theory.
he coefficients 
+�x� and 
−�x� are obtained by calculat-

ng numerically the overlap integrals on the left-hand
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ides of Eqs. (6a) and (6b). Figures 2(e) and 2(f) represent
he modulus squared of these coefficients for the scatter-
ng problems considered in Figs. 2(a)–2(d). The results
re obtained for an incident slit mode with a unit inten-
ity; thus 	
+�x�	2 and 	
−�x�	2 represent the normalized
PP excitation strength. For −w /2�x�w /2, the coeffi-
ients are meaningless since there is no air–metal inter-
ace. Let us consider 	
+�x�	2; the discussion is similar for

−�x�	2. For x�w /2, the computed 	
+�x�	2 values per-
ectly fulfill the expected SPP attenuation law

+�w /2�	2 exp�−2 Im�kSP��x−w /2��, which are shown as
ircles in Fig. 2(f). For �=1.5 �m, 	
+�x�	2 is found to be
early independent of x in the 2� large x scale used in Fig.
(e). This is again consistent with the SPP attenuation
aw since the 1/e SPP attenuation length at �=1.5 �m for
old is 130 �. Further analysis, not reported here, has
hown that the phase dependence of 
+�x� exactly coin-
ides with the SPP propagation constant exp�−i Re�kSP�
�x−w /2��. In addition, let us note that, consistent with

he outgoing radiation condition at the slit output, 	
+�x�	2

resp. 	
−�x�	2�	 is found to be approximately null ��10−6�
or x�w /2 �resp.x�w /2�.

Figure 3 shows the variation of the main relevant
uantities involved in the scattering problem as a func-
ion of the slit width. All results are obtained for an inci-
ent slit mode with a unitary power. The modal reflectiv-

ig. 2. (Color online) Validation of the rigorous formalism for the
enerated at a gold interface under illumination by the fundame
lue is low, and a saturated scale is used to reinforce the field in


−�x�	2 obtained from the near-field patterns shown in (a)–(d) by
re numerical data equal to 	
+�w /2�	2 exp�−2 Im�kSP��x−w /2�� w
=0.35 �m; (b), (d), and (f) are for �=0.6 �m and w=0.14 �m. O
ty R0= 	r0	2, shown with a thin solid curve, monotonously
ecreases with w and reaches unity in the limit of w→0.
he total power EFF radiated into the far field in medium
exhibits a more intricate behavior (see the gray curve).

t strongly depends on the wavelength, i.e., on the dielec-
ric properties of the metal, and is maximum whenever w
s approximately a multiple of the wavelength that corre-
ponds to the passing off of symmetric evanescent slit
odes, which become propagative. This intricate behavior

eflects that of the total SPP excitation efficiency,

+�w /2�	2+ 	
−�−w /2�	2, which will be discussed in more
etail in Section 3 through a semianalytical model.

lation of the SPP coupling coefficients. (a)–(d) Near-field patterns
it mode. (a) and (b) 	Hy	; (c) and (d) 	Ez	. Red is high magnitude,
inity of the slit. (e) and (f) SPP generation strengths 	
+�x�	2 and
ting the overlap integrals of Eqs. (6a) and (6b). In (f), the circles
+�w /2�	2=0.202. (a), (c), and (e) are obtained for �=1.5 �m and
arameters are n1=n2=1.

ig. 3. Variation of the main physical quantities associated with
he scattering problems considered in Fig. 2 as a function of the
lit width. 	
+�x�	2+ 	
−�x�	2 represents the total SPP excitation,
0= 	r0	2 is the modal reflectivity, and EFF is the far-field energy

adiated in medium 2. The power of the incident slit mode is 1.
calcu
ntal sl
the vic
calcula
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. APPROXIMATE MODEL
o obtain useful and analytical expressions for the SPP
eneration without relying on a fully vectorial software to
olve Maxwell’s equations, we have developed an intuitive
pproximate model. As suggested by the previous analy-
is, the SPP generation results from a two-step mecha-
ism: a purely geometric diffraction problem followed by
he launching of the bounded SPP modes on the flat inter-
aces surrounding the slit. An analytic treatment has to
ely on assumptions. We assume that the diffraction prob-
em that results in a specific nearfield distribution in the
mmediate vicinity of the slit aperture [the Hy ,Ez fields of
qs. (6a) and (6b) at x= ±w /2] is weakly dependent on the
ielectric properties of the metal and that it can be esti-
ated by considering the metal as a perfect conductor

PC). On the contrary, the launching of the bounded SSP
ode strongly depends on the intrinsic dielectric proper-

ies of the metal–dielectric interface [the HSP,ESP fields of
qs. (6a) and (6b)]. In other words, the model takes into
ccount the main physical properties of the two-step
echanism carefully and independently. Assuming that

he metal is perfectly conducting for solving the geometri-
al scattering drastically reduces the complexity. We have
urther assumed that the field inside the slit is composed
f the forward- and backward-reflected fundamental
ode. The approach developed below for calculating the

ear-field distribution obtained for a slit in a perfect
etal largely follows that developed in Ref. 30 for light

iffraction by slit arrays.

. Slit-Mode Illumination
nder the one-mode approximation, Eq. (1) becomes

H1�x,z� = �1 + r0��0�x,z�, �7�

here the fundamental mode �0�x ,z� is given by
0�x ,z�= �N0�−1/2 rect�x /w�exp�−ikn1z�, with N0
w / �2�0n1� a normalization constant such that the power
ow is unitary. The function rect�x� is defined by rect�x�
1 if 	x 	 �1/2, and 0 otherwise. Equation (2) is un-
hanged. By matching the PC boundary conditions at z
0 (continuity of Ex for any x and continuity of Hy over

he slit apertures), one easily obtains for the field radi-
ted in medium 2

tu = �N0�−1/2
2�n2/n1�w�

�1 + �n2/n1�w�I0�

sinc��w�u�


u
, �8�

here w�=w / �� /n2� is the normalized slit width, I0

−	

	 du sinc2��w�u� /
u, and sinc�·�=sin�·� / �·�. Similarly,
he modal reflectivity coefficient r0 defining the field in
edium 1 is shown to be given by

r0 =
�n2/n1�w�I0 − 1

�n2/n1�w�I0 + 1
. �9�

quations (7), (2), (8), and (9) completely determine the
lectromagnetic fields scattered in media 1 and 2. From
his near-field distribution, the overlap integrals of
qs. (6a) and (6b) are now considered. These integrals

hat hold for 	x 	 �w /2 are no longer valid for the perfectly
onducting case, but according to our ansatz, remains ap-
roximately valid in the close vicinity of the slit aperture.
y writing Eqs. (6a) and (6b) for x= ±w /2 and then by ex-
loiting the mirror symmetry for Hy and Ez with respect
o the plane x=0, one obtains

2
+�w/2� = 2
−�− w/2� = −�
0

	

dzHy�x,w/2�ESP�z�,

�10�

here the integrand runs from 0 to +	 since the field in
he metal is equal to zero under the perfectly conducting
ondition used in the model. To derive Eq. (10), we have
dditionally assumed that 
+�−w /2�=
−�w /2�=0; this is
easonable according to Section 2. From Eqs. (2), (8), and
10) and for NSP�	�	1/2 / �4��0n2

3�, one gets for the SSP gen-
ration strength 
 on both sides of the aperture


 = 
+�w/2� = 
−�− w/2�

= − i� 4

�

n2
2

n1

�	�	

�− � − n2
2�

w�
1/2 I1

1 + �n2/n1�w�I0
, �11�

ith

I1 =�
−	

	

du
sinc��w�u�exp�− i�w�u�


u�
u + �n2
2/�� + n2

2��
.

he corresponding efficiencies 	
	2 are given by

	
	2 = 	
+�w/2�	2 = 	
−�− w/2�	2

=
4w�n2

2

�n1
� �1/2

� + n2
2�� I1

1 + �n2/n1�w�I0
�2

. �12�

quations (11) and (12) represent the semianalytical ex-
ressions for the complex SPP excitation coefficients and
he SPP excitation efficiencies when the slit aperture is il-
uminated by the fundamental slit mode. The integrals I1
nd I0 are calculated numerically.

. Plane-Wave Illumination
et us now consider the scattering problem shown in Fig.
(b). Inside the slit, the magnetic field H1 admits a modal
xpansion of the form

H1�x,z� = t0�0�x,z�, �13�

here t0 is the unknown modal transmission coefficient.
n medium 2 below the slit, the magnetic field H2 can be
xpanded into a plane-wave basis:

H2�x,z� = �NP�−1/2 exp�ikn2 sin���x − ikn2 cos���z�

+�
−	

	

duru exp�ikn2ux�exp�ikn2
uz�, �14�

here ru are unknown plane-wave reflection coefficients
nd NP= �w cos���� / �2�0n2� is a normalization constant
uch that the power flow of the incident plane wave on the
lit aperture is unitary. By matching the PC boundary
onditions at z=0, one obtains

t0 = �N0/NP�1/2
2 sinc��w� sin����

�n2/n1�w�I0 + 1
�15�

or the modal transmission and
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ru = ���� − t0�N0/NP�1/2w�
n2

n1

sinc��w�u�

�1 − u2�1/2 �16�

or the plane-wave expansion coefficients. In Eq. (16), �
epresents the Dirac distribution. Using the same ap-
roach as that used in subsection 3.A, we obtain

� = �+�w/2� = �−�− w/2�

= − �N0/Np�1/2 sinc��w� sin����
+�w/2�, �17�

here �+�w /2� and �−�−w /2� denote the SPP generation
oefficients for the plane-wave illumination case. The cor-
esponding efficiencies are given by

	�	2 = 	�+�w/2�	2 = 	�−�− w/2�	2

=
4w�n2

3

� cos���n1
2� �1/2

� + n2
2�� I1 sinc��w� sin����

1 + �n2/n1�w�I0
�2

. �18�

. Surface-Plasmon Polariton Generation at Slits and
rooves in a Metal Film
he SPP generation coefficients 
 and � represent basic
cattering quantities that may be used to analyze more
ophisticated diffraction situations. For instance, let us
onsider the scattering problem by a slit perforated in a
etal film deposited on a substrate with a refractive in-

ex n2 and illuminated by a plane wave incident from the
ubstrate; see Fig. 4 for a definition of the parameters.
et us denote by a and b the unknown modal coefficients
f the fundamental mode in the slit traveling upward and
ownward, respectively. If one neglects higher-order
odes in the slits,31 the master coupled-mode equations

or this system are easily derived using a Fabry–Perot
odel. With obvious notation one gets

a = t21 + r12b exp�ikn0
effh�, �19a�

b = r13a exp�ikn0
effh�, �19b�

here n0
eff is the effective index of the fundamental mode

n the slit, and t21,r12, and r13 are slit-mode coupling co-
fficients related to the r0 and t0 coefficients defined in
qs. (9) and (15). From Subsections 3.A and 3.B, the SPP
eneration coefficients s2 ,s2� ,s3 ,s3� are given by s2=s2�=�
b
 exp�ikn0

effh� and s3=s3�=a
 exp�ikn0
effh�. From those

quations and after solving Eqs. (19a) and (19b) for a and

ig. 4. SPP excitations at a slit perforated in a metal film
thickness h) sandwiched between two uniform media of refrac-
ive indices n2 and n3 and illuminated by a plane wave with an
ncidence angle �. Inside the slit the refractive index is denoted
y n1. The s2 ,s2� ,s3 ,s3� represent the SPP generation coefficients
t the top and bottom interfaces.
, one obtains for the SPP generation coefficients at the
lit interfaces

s2 = s2� = � +
t21r13
 exp�2ikn0

effh�

1 − r12r13 exp�2ikn0
effh�

, �20a�

s3 = s3� =
t21
 exp�ikn0

effh�

1 − r12r13 exp�2ikn0
effh�

. �20b�

hese equations show that the optimization of the SPP
eneration efficiency s3=s3� on the upper side solely con-
ists in setting up a waveguide resonance in the slit by
ulfilling the Fabry–Perot condition, i.e., by choosing the
etallic film thickness so that 1−r12r13 exp�2ikn0

effh� is
inimal. On the illuminated side, the SPP generation ef-
ciency s2=s2� takes a more complicated form, and its op-
imization additionally requires a phase matching be-
ween the two terms on the right side of Eq. (20a).

. MODEL PREDICTIONS, VALIDATIONS,
ND LIMITATIONS
. Model Predictions
he solid curves in Figs. 5 and 6 shows the SPP excitation
fficiencies predicted by the approximate model for the
wo scattering geometries of Fig. 1 and for a broad range
f wavelengths from the visible to the thermal infrared.
he integrals I0 and I1 in Eqs. (12) and (18) are calculated
umerically.32 Table 1 provides numerical data of I0 and
1 for several values of w� and for �=−26.27+1.85i (gold at
=800 nm). Note that I0 depends on a single parameter
�, whereas I1 depends on the metal permittivity and on
�. All plots in Figs. 5 and 6 are relative to the total SPP

xcitation efficiency eSP on both sides of the aperture, eSP
eing equal to 	
+�w /2�	2+ 	
−�−w /2�	2 in Fig. 5 and to

�+�w /2�	2+ 	�−�−w /2�	2 in Fig. 6. They are obtained for an

ig. 5. Total SPP generation efficiencies eSP= 	
+�x�	2+ 	
−�x�	2 for
slit illuminated by its fundamental guided mode as a function

f the slit width. Solid curves represent the model predictions.
he symbols represent the calculated data obtained with the rig-
rous formalism. (a) Influence of the metal (gold) permittivity,
1=n2=1. (b) Influence of the substrate refractive index n2, n1
1 and �=3 �m.
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ncident light with a unit power per slit opening area. Fig-
res 5(a) and 6(a) show the SPP excitation efficiencies for

lluminations by the slit mode and by the plane wave, re-
pectively. These efficiencies strongly depend on the slit
idth and on the metal–dielectric properties. They are
aximum for an optimal slit width of w�0.23�, a value
early independent of the wavelength of interest. At vis-

ble wavelength, �=0.6 �m, the efficiency is fairly large
nd reaches a value as high as �0.45 for the optimal slit
idth; as much light is scattered into the SPPs as it is ra-
iated in the far field. This result is not specific to the gold
etal used in the example. Other noble metals used at

requencies close to the plasma frequency exhibit similar
ehavior, as shown by the �1/2 / ��+ �n2�2� dependence in
he expressions of Eqs. (12) and (18). For large wave-
engths, the efficiency rapidly decreases; it is only 2.8%
or �=10 �m. From Eqs. (12) and (18), it is easily shown
hat the efficiency scales as 	����	−1/2 since �n2�2� 	�	. Fig-
re 5(b) shows the effect of the substrate refractive index
hen the slit aperture is illuminated by the fundamental

lit mode. The predictions are obtained for �=3 �m and
1=1. As n2 increases, narrower slits provide better SPP
xcitations and the slit width w0=� /n2, which corre-
ponds to a null excitation shift toward smaller values of
. This is a direct consequence of the w�=n2w /� depen-
ence of the I0 and I1 integrals in Eqs. (12) and (18). Ad-
itionally we note that the peak value of the SPP excita-
ion increases with n ��n /n �, and that the optimal slit

Table 1. I1 and I0 for Gold at �=800 nm
„�=−26.27+1.85i…

� 0.1 0.3 0.5 0.7

0 3.09−4.09i 2.72−1.68i 2.13−0.63i 1.54−0.18i

1 0.53−2.93i 1.75−1.80i 1.79−0.40i 1.01+0.35i

ig. 6. SPP generation efficiencies for a slit illuminated by a
lane wave, (a) eSP= 	�+�w /2�	2+ 	�−�−w /2�	2 as a function of the
lit width for different wavelengths, �=0.6,1,3, and 10 �m, for
1=n2=1 and �=0. (b) Influence of the incident angle for �
1.5 �m; other parameters are n1=n2=1 and w /�=0.3. The
odel does not predict any difference between 	�+�w /2�	2 and

�−�−w /2�	2 for any �. In (a) and (b), the solid curves represent the
odel predictions and the symbols represent the calculated data

btained with the rigorous formalism.
2 2 1
idth slightly decreases. Figure 6(b) shows the influence
f the angle of incidence on the SPP excitation for �
1.5 �m and w /�=0.3. A slight increase of the total exci-

ation eSP with � is predicted. Note that the model addi-
ionally predicts that 	�+�w /2�	2= 	�−�−w /2�	2 for any �
alues, see Eq. (18). This questionable result will be
iscussed below.

. Model Validation
o validate the model predictions, we have provided ex-
ensive computational calculations for the SPP excitation,
trictly following the procedure described in Section 2.
he results of the theoretical formalism are shown by the
ymbols in Figs. 5 and 6. Overall, the exact data quanti-
atively agree with the model predictions and confirm the
eneral trends discussed previously, like the existence of
n optimal slit width, the influence of the angle of inci-
ence, and of the metal–dielectric properties. We first
ote that the larger the wavelength, the better the agree-
ent, consistent with the PC metal approximation used

n the model. Some discrepancies between the model pre-
ictions and the calculated data are also observed. As
hown in Fig. 5(b), the null excitation predicted for w0
� /n2 by the model is not observed for n2�1. Addition-
lly, the calculated data show a monotonous increase of

�+�w /2�	2− 	�−�−w /2�	2 with �, see the circles in Fig. 6(b).
In Fig. 7 we provide a comparison between the model

redictions (solid curves) and data obtained with the rig-
rous formalism (squares) for SPP generation strengths
t a groove perforated in a metal substrate. This configu-
ation is interesting since groovelike scratches are often
sed in practice to excite SPP waves for device character-

zations. Plots are shown as a function of the groove depth
for �=0.8 �m and w /�=0.1 in Fig. 7(a) and for �

1.5 �m and w /�=0.1 in Fig. 7(b). The model predictions
re obtained with Eq. (20a) for n1=n2=1 and n3=�1/2; the
ffective index n0

eff is calculated using the Fourier modal
ethod described in Ref. 20. We further assume that the

ig. 7. Total SPP generation efficiency at a groove perforated in
gold substrate as a function of the groove depth h for normally

ncident light ��=0�. Solid curves, model predictions obtained
ith Eq. (20a) for n1=n2=1 and n3=�1/2. Squares, calculated data
sing the rigorous formalism and the Fourier modal method. (a)
=0.8 �m, w /�=0.1, and n0

eff=1.29+0.0098i. (b) �=1.5 �m, w /�

0.1, and neff=1.16+0.0084i.
0
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odal reflectivity r13 of the fundamental slit mode at the
etal–groove interface is equal to one. The model quanti-

atively agrees with the calculated data and well predicts
he most interesting aspect, namely, the SPP generation
nhancement obtained for Fabry–Perot slit resonances.
t these resonances, the light generated into the two SPP
aves is two to three times larger than that which is di-

ectly incident onto the aperture area. We additionally
ote that the excitation maxima are slightly overesti-
ated. This can be attributed to the fact that the model

verestimates the SPP generation efficiencies 	
+�w /2�	2
nd 	
−�−w /2�	2 [see Fig. 5(a)] and to the unitary assump-
ion for r13. The resonance predicted by the model is also
hown to be shifted slightly toward large depth values.
his can be understood by considering that, within the
odel, the phase of the r12 and r13 coefficients are only ap-

roximately predicted. For narrow grooves like those con-
idered in Fig. 7, skin depth effects cannot be neglected,
nd the phase delays for the modal reflectivity depart
rom those predicted with a PC metal approximation.

So far, we have discussed only SPP generation efficien-
ies. To further validate the model, we now focus on the
hase factor arg�
� and arg��� associated with the SPP
cattering processes as described by Eqs. (11) and (17).
igure 8 shows a comparison between the model predic-
ions (solid curves) and the computational data obtained
ith the rigorous formalism (plusses) for �=0.6, 0.8, and
�m. The model captures the general trend, i.e., the in-

rease of the phase factor with the slit width. As we pre-
iously noted for the SPP generation strengths, the model
s more accurate for 
 than for � and for large wave-
engths.

. Model Limitations
he inaccuracies of the model predictions are due to the
wo approximations used to derive the near-field pattern
n the vicinity of the slit aperture: the perfectly conduct-
ng approximation and the one-mode model used to de-

ig. 8. Phase factors associated with the SPP scattering pro-
esses. Solid curve, model predictions obtained with Eqs. (11) and
17). Plusses, computational data obtained with the rigorous for-

alism. From top to bottom, �=0.6, 0.8, and 3 �m.
cribe the field in the slit [see Eqs. (7) and (13)]. The per-
ectly conducting assumption contributes only weakly to
naccuracies. Although they are all the more accurate as
he wavelength is large [see Figs. 5(a) and 6(a)], the
odel predictions remain rather accurate even if the
etal permittivity is low, as is the case for gold at �
0.6 �m. The more severe limitation results from the one-
ode approximation. This approximation does not hold
hen several nonevanescent modes exist in the slit. The

utoff of the second (antisymmetric) mode is w /�=0.5n1
nd for the third (symmetric) mode is w /�=n1 under the
deal metal approximation. Because of symmetry reasons,
he second mode is not excited when the slit aperture is
lluminated by the fundamental guided mode or by the
lane wave under normal incidence. This is the reason
hy the model remains accurate even for large slit widths
p to w /�=1 in Figs. 5(a) and 6(a). For w /��1, a much

arger discrepancy is observed, especially for small wave-
engths in the visible part of the spectrum. Another im-
ortant consequence of the one-mode approximation is
he prediction of identical excitation efficiencies 	�+�w /2�	2
nd 	�−�−w /2�	2 for a plane-wave illumination and for �
0 [see Eq. (18)]. This is a direct consequence of the sym-
etry imposed by the one-mode approximation in the slit,
hich reflects in the plane-wave expansion of the scat-

ered field [Eq. (14)] by matching the boundary condi-
ions. As shown in Fig. 6(b), oblique illumination indeed
esults in a difference in the SPP excitation efficiencies on
he right and left sides of the slit aperture. Although we
ave not performed a systematic rigorous study, we have
oted as a general trend that the difference increases as
he slit width increases. Let us note that although it can-
ot predict any difference, the model accurately predicts
he total SPP excitation 	�+�w /2�	2+ 	�−�−w /2�	2 [see Fig.
(b)]. Further improvements of the model may consist in
sing surface impedance boundary conditions33 for en-
ancing the accuracy at visible wavelength or in using a
ouble-mode expansion in the slit. The latter leads again
o analytical expressions for the SPP excitation efficien-
ies at the expense of additional complexity.

. CONCLUSION
e have studied the generation of SPP waves at a metal-

ic interface perforated by an isolated subwavelength slit.
e have derived semianalytical expressions for the SPP

cattering coefficients and efficiencies at the slit aperture.
he model, which provides a microscopic description for
PP generation mechanisms at slit apertures, has been
pplied to the analysis of a variety of slit and groove ge-
metries that are of interest in practice. It provides a
omprehensive discussion of the influence of the main
cattering problem parameters, like the normalized slit
idth, the angle of incidence, and the effect of the dielec-

ric properties of the metallic and dielectric materials. An
mportant outcome of the model is the prediction of a peak
PP excitation efficiency for an optimal subwavelength
lit width of w�0.23�. This peak efficiency is fairly large
or metals with a low conductivity like gold in the visible
egime; in this case, the fraction of the incident radiation
hat couples into the SPP reaches a value as high as the
otal far-field radiated energy. This indicates that even
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imple metallic structures, like slits, may be used to effi-
iently manipulate SPP visible waves at a nanoscale
evel.

The model has been validated by comparisons with
omputational data obtained with a theoretical formalism
elying on a rigorous solution of Maxwell’s equations. A
uantitative agreement has been obtained for the various
eometries analyzed in this work. The model limitations
r inaccuracies have been outlined and explained. We
ave further evidenced that the phases of the SPP scat-
ering mechanisms at the slit aperture are correctly
andled within the approach.
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