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Abstract:  We identify two physical mechanisms which drastically increase 
the Q/V factor of photonic crystal microcavities. Both mechanisms rely on a 
fine tuning the geometry of the holes around the cavity defect. The first 
mechanism relies on engineering the mirrors in order to reduce the out-of-
plane far field radiation. The second mechanism is less intuitive and relies 
on a pure electromagnetism effect based on transient fields at the sub-
wavelength scale, namely a recycling of the mirror losses by radiation 
modes. The recycling mechanism enables the design of high-performance 
microresonators with moderate requirements on the mirror reflectivity. 
Once the geometry around the defect is optimised, both mechanisms are 
shown to strongly impact the Q and the Purcell factors of the microcavity. 
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1. Introduction 

Electromagnetic resonant cavities, which trap light within a finite volume, are an essential 
component of many important optical devices and effects, from lasers to filters to single 
photon sources.  Cavities are characterized by two main quantities: the modal volume V, and 
the quality factor Q. In many applications, high Q’s and small V’s are highly desirable for the 
high finesse required for laser and filter applications, and for the high Purcell factor [1] 
required for controlling the spontaneous emission of atoms placed in resonance with the 
microcavity mode [2]. For a dipole linewidth much smaller than the cavity linewidth, a simple 
derivation shows the Purcell factor is equal to Q λ3/(4πn3V), where n is the refractive index of 
the medium and λ is the resonant wavelength assumed to matched the emission wavelength. 
This formula holds for a perfect emitter placed at the antinode of the electromagnetic field and 
with its dipole parallel to the electric field. Thus the Purcell factor is a figure of merit of the 
cavity alone, which describes the cavity capability to enhance the spontaneous emission rate. 
At optical frequencies, due to the lack of good metals, the last decade has seen an intense 
research activity on a new generation of microresonator devices based on a three-dimensional 
engineering of the refractive index. Pure total internal reflection is used in  spherical or disk-
shaped resonators [2], whereas Bragg reflection in one or two dimensions (often with 
refractive confinement) is exploited in photonic-crystal microcavities like micropillars [2], 
photonic-crystal wires or two-dimensional photonic-band-gap waveguides [3-4].  

In recent years, a variety of passive and active optical photonic-crystal microcavities has 
been constructed. It has been shown experimentally [5-7] and numerically [8-12] that a fine 
tuning of the geometry of the holes surrounding the cavity defect may drastically increase the 
cavity Q/V factor. In all the above references, the cavity performance has been improved by 
repeatedly adjusting the cavity parameters either during numerical simulation or during device 
fabrication. Many interesting concepts have been used for optimising the quality factors of the 
photonic crystal microcavities, including symmetry arguments [10], cancellation of the 
multipole far-field radiation [9], Bloch-wave engineering for increasing the modal reflectivity 
[8,12] or more recently “gently confining” light to avoid radiation [6,11]. Even so, it appears 
that the optimization of the quality factors of photonic crystal microcavities is indeed 
nontrivial and that the concepts behind it are not yet mature. A better understanding of the 
optimization techniques is highly valuable since three-dimensional computational loads are 
prohibitive. 

In this work, we study the electromagnetic properties of one-dimensional photonic-band-
gap air-bridge cavities (see Fig. 1(a)). Such microcavities have been studied previously [13-
15], and Q factor of ≈ 300 (in good agreement with computational results) for V ≈ 0.03 µm3 
have been observed at telecommunication wavelengths. Although this in-line geometry 
appears conceptually more simple than some other two-dimensional photonic crystal 
geometries [6,10], we will show that its electromagnetic behavior is indeed unexpected and 
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intricate especially for small defect lengths. In Section 2, we interpret the physical origin of 
this novel unexpected behaviour through a modified Fabry-Perot model involving an energy 
recycling through leaky waves. To our knowledge, this phenomenon and its interpretation 
have not been previously discussed in the literature. In Section 3, two methods which rely on 
a fine tuning the geometry of the holes around the defect are proposed in order to increase the 
Q/V factor of the resonator by orders of magnitude. The first method relies on an optimisation 
of the recycling. The second method is based on a Bloch-wave engineering of the mirrors to 
reduce out-of-plane scattering. It has been previously discussed [12] but only for 2D 
geometries. As shown by numerical predictions obtained with a Fourier Modal method to 
solve exactly Maxwell’s equations, both methods lead to Q values of ≈105 with mode volumes 
approximately equal to the theoretical limit (λ/n)3. Additionally, we show that these methods 
may be used for designing microcavities with high extraction efficiencies. 

2. Cavity with fully periodic mirrors 

Throughout this article, the computational results are obtained for a 340-nm-thick, 500-nm-
wide air-bridge, as shown in Fig. 1(a). Unless otherwise mentioned, the periodicity constant 
and the hole-diameter are 450 nm and 250 nm, respectively. The semiconductor refractive 
index (n = 3.48) is assumed to be independent of the wavelength, an approximation largely 
inessential for the following discussion. In the wavelength range of interest, the waveguide 
supports a single TE-like mode (electric field primarily horizontal at the center of the 
waveguide) with a double mirror symmetry. 

Figure 1(b) shows the calculated modal reflectivity of the mirror as a function of the 
wavelength, showing a large gap from λ = 1.4 to 1.9 µm. The reflectivity does not reach unity, 
and the deviation from 1 represents out-of-plane scattering losses because the modal 
transmission for four holes is negligeable. At mid-gap frequencies, ≈ 4% of light is scattered. 
The blue curve shows the cavity transmission spectrum for a defect length of h = 0.3 µm. The 
Q factor of the resonator is 1200, and the peak transmission at resonance is 25%. The three-
dimensional computation is performed with a frequency-domain Fourier modal method [16-
17]. In brief, the method relies on a supercell approach and incorporates Perfectly-Matched 
Layers [18] on the transversal side of the air-bridge. Since these layers absorb the evanescent 
and propagative radiation, the electromagnetic fields are null on every transversal boundaries 
of the supercell. Thus they are periodic functions of the transverse coordinates and can be 
extended into a Fourier series (plane-wave basis). This allows the calculation of the radiation 
and guided modes in a Fourier basis in each layer (the hole shapes are discretized in a series 
of thin uniform sections) and to use a scattering matrix approach to relate recursively the 
mode amplitudes in the different layers.  

2.1 Unexpexted resonator behavior 

Figure 1(c) shows the calculated transmission spectra of the cavity for default-length h 
varying from 0 to 1.5 µm. Within the gap of the mirrors, the transmission pattern exhibits a 
series of white fringes which correspond to cavity resonance. Examination of the fringe 
pattern reveals an intricate and unexpected behavior: the peak transmission at resonance of the 
second-order mode is abnormally high. For example, at mid-gap frequency, it is ≈50 times 
larger than that of the first-order, ≈30 times larger than that of the third-order and ≈20 times 
larger than the peak transmission Tmax predicted with a Fabry-Perot model, Tmax = |tm|4/[1-
|rm|2]2 [2], a value independent of the resonance order (tm and rm are the modal amplitude 
transmission and reflectivity of the photonic-band-gap mirrors). As we shall see hereafter, the 
Q factors associated with that resonance are also abnormally high. These computational 
results indicate that, although the Fabry-Perot model (commonly used in literature for the 
analysis of photonic crystal microcavities) well predicts the resonance locations in the (λ, h) 
plane when arg(rm)+2π/λ neff h is a multiple of 2π, it largely misestimates the intricate 
resonance mechanism for small defect lengths. This is due to the fact that the Fabry-Perot 
model only considers modal quantities and completely ignores radiated fields. Intuitively, to 
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account for the factor of twenty times increase in the second-order-resonance peak 
transmission, one has to assume that the radiated field cooperates beneficially to the resonance 
mechanism. 

hhh

    

1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

wavelength (µm)

mirror reflectivity
cavity transmission

 

 
Fig. 1.  (a) Air-bridge cavity geometry. The cavity is defined by two sets of four holes 
(diameter 250 nm, lattice constant 450 nm) separated by a defect of length h.  The holes are 
assumed to be fully etched into a semiconductor (n = 3.48) air-bridge waveguide 340-nm thick 
and 500-nm wide. (b) Red curve : calculated modal mirror reflectivity spectrum. Blue curve : 
cavity transmission spectrum for h = 0.3 µm. (c) Calculated modal  transmission as a function 
of wavelength and geometric cavity length h. 

2.2 Radiation-loss recycling model 

To support the above statement and to analyze the physical origin of the intricate resonance 
behavior, we have developed an analytical model with minimum parameters. Like for 
classical Fabry-Perot cavities, the model attributes the resonance to a phase-matching of the 
fundamental waveguide mode along one cavity cycle, but in addition, it encompasses a 
possible recycling of the radiated field. This recycling is taken into account within the model 
by introducing a leaky mode in the cavity resonance mechanism, as shown in Fig. 2. This 
representation is reasonable since leaky modes are powerful representations which are often 
sufficient for describing a portion of the total radiation field (in particular the portion close to 
the waveguide core) in many situations of practical interest [19], like prism-coupling into a 
surface-guide, coupling into hollow dielectric guides and scattering at Y-junctions in 

(a) (b) 

(c) 
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integrated optics [20]. In the context of microcavities, they have not been previously studied 
to our knowledge. Referring to Fig. 2 and denoting by r’ the reflection-coupling coefficient 
between the leaky mode and the fundamental mode, one easily obtains the master cavity 
equations 

                                             α1 = tm + rm β1 + r’ β2  (a) 

                                                     α2 = r’ β1 (b) 

                                                  r = r’m + tm β1 (c) 

                                                      t = tm α1 exp(iφ1)      (d) (1) 

                         β1 exp(-iφ1) = rm α1 exp(iφ1) + r’ α2 exp(iφ2)  (e) 

                                     β2 exp(-iφ2) = r’ α1 exp(iφ1), (f) 

where φ1 and φ2 are the phase delays through the geometrical cavity length h. φ1 = k0neffh and 
φ2 = k0(n’+in”)h, with n’+in” being the complex effective index of the leaky mode. In Eq. 1, 
αj and βj, j = 1 or 2, denote the amplitudes of the fundamental and leaky waves travelling to 
the right and to the left directions in the cavity. Under the assumption that the mirrors have 
symmetric refractive index profiles, r’m= rm (reciprocity). Equations 1(a)-(f) are easily solved 
for the cavity modal transmission coefficient t and reflection coefficient r. Let us denote by reff 
the effective mirror reflectivity defined by  

                                          reff = rm [1+2(r’/rm)2exp(iφ2 -iφ1)]
1/2. (2) 

If we assume that |r’/rm| << 1 (i.e. reff ≈ rm ≈ 1), an assumption valid for good mirrors, we find  

                                               t = 
)i2(expr1

)i(expt

1
2
eff

1
2
m

φ−
φ

, (3) 

and r = reff[1+t exp(iφ1)]. Using the above assumption, the cavity reflection and transmission 
coefficients can be formally identified as those of a Fabry-Perot cavity whose mirror 
amplitude modal reflectivity and transmission coefficients are reff and tm, respectively. 
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Fig. 2. Minimal model for recycling radiation in microcavities. Black and red arrows 
correspond to the fundamental and leaky modes, respectively. The cavity being symmetrical, 
the coupling coefficients rm and r’ are the same for both mirrors. 

Let us now consider an isolated mirror illuminated by the fundamental guided mode with unit 
light intensity. This guided wave will be partly transmitted with an intensity |tm|2 and partly 
reflected with an intensity |rm|2. Due to the impedance mismatch between the fundamental 
Bloch mode supported by the mirror and the incident guided wave [8], a fraction L = 1-|rm|2-
|tm|2 of the energy carried by the incident wave will also be radiated in the air cladding. If we 
denote by f the fraction of the radiation losses of the isolated mirror which can be potentially 
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recycled inside the cavity by the leaky wave (f = |r’|2 /L), then the effective mirror reflectivity 
of Eq. (2) can be conveniently rewritten as 

                         reff / rm = 1+fL/|rm|2 exp(-k0n”h) exp[ik0(n’-neff)h+2iθ], (4) 
 

where θ = arg(r’/rm). By noting that |reff| is maximum for θ = 0 and h = 0, energy conservation 
for the cavity (|reff|

2+|tm|2 < 1) imposes an upper boundary for f, namely f < 0.5. The effective 
mirror reflectivity given by Eq. (4) is easily understood. For a cavity length h, the term 
fL exp(-k0n”h) in Eq. (4) represents the fraction of the radiated energy recycled by the leaky 
mode and the argument of the last exponential term in Eq. (4) represents the phase shift over 
one-half cycle of the cavity between the fundamental mode and the recycled leaky mode. 
Depending on if these modes are phased matched or not, the recycling mechanism can be 
beneficial or detrimental for the resonator. For good cavities, the correction coefficient in 
Eq. (4) is small since |rm|2 ≈ 1 and fL exp(-k0n”h) << 1. However, because the fundamental 
mode at resonance bounces many times inside the cavity, weak recycling takes place a great 
number of times and the cavity Tmax, Q and F factors (as we shall see) are significantly 
increased. 

2.3 Model validation 

We have tested the model predictions against exact numerical results. Four independent real 
parameters (θ, n’, n” and f < 0.5) have been estimated. Because a radiated field, i.e. a 
continuum of radiation modes, is likely not to be accurately represented by a single leaky 
mode, we have not performed a thorough estimation for these parameters. Figure 3 shows a 
comparison between exact calculated data and the model predictions for θ = 0.82π, f = 0.5 and 
n’+in” = 0.5+i0.1. n’ is smaller than 1, consistent with the fact that the normalized 
propagation constant of a leaky mode is smaller than the refractive index of the cladding 
materials [19], air in our example. We emphasize that the model predictions are all obtained 
for the same set of parameters, a better agreement being achieved by incorporating a weak 
spectral dispersion for θ. In Fig. 3(a), we compare the Tmax of the first five cavity orders for 
six frequencies covering the 400-nm-wide band-gap region. The model predictions (blue 
curves) are shifted horizontally by 0.05 for the sake of clarity. Clearly, the model well 
reproduces the intricate variations of Tmax from one resonance to another. Other calculations 
not reported here and performed for other frequencies show similar agreement. The model is 
also able to predict accurately the impact of the recycling on the cavity Q. It is easily shown 
that the Q factor can be written as 

                                                    Q = mπ |reff|/(1-|reff|
2),  (5) 

where m is the cavity order given by m = 2neff h/λ - λ/π ∂[arg(rm)] /∂λ - 2h ∂[neff] /∂λ. Figure 
3(b) shows a comparison between the calculated Q’s (circles) and the model predictions (bold 
curve) as a function of the number of holes N, for the second cavity order (h = 0.326) and for 
λ = 1.56 µm. The model predictions are obtained for the same set of parameters as in Fig. 3(a) 
and for m = 3.0, a value calculated with the Fourier modal method. For N >> 1, the intrinsic Q 
factor, predicted by the Fabry-Perot model and denoted QFP in the following, is simply mπ/L, 
with L = 1 - |rm|2. At the mid-gap wavelength of λ = 1.56 µm, L = 4% and m = 3. Thus QFP is 
approximately 220, a value 8 times smaller than the actual Q value (Q = 1700). Clearly, the 
model well reflects the intricate behaviour of the microresonator, both for the Q factor and for 
the peak transmission at resonance.  

3. Tuning hole-geometry around the defect for high Q/V  

Two approaches, which can increase the cavity Q factor by several orders of magnitude while 
keeping the mode volume V of the cavity constant, are now considered. They are intrinsically 
different, but both rely on a fine tuning of the hole-geometry around the defect. The first 
approach (Section 3.1) uses the recycling mechanism described in the previous Section, while 
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the second approach (Section 3.2) consists in engineering the mirror to taper the guided mode 
into the mirror Bloch mode, thus decreasing losses [8,12]. 
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Fig. 3. Validation of the model. (a) Comparison between calculated data (black) and model 
predictions (blue) for the modulus of the cavity transmission coefficients |t| for six different 
wavelengths covering the full band-gap region. The t values for λ = 1.45, 1.6 and 1.75 µm 
values are vertically shifted by 1 and the model predictions are horizontally shifted by 0.05 
(otherwise undistinguishable). The inset in the top center shows an enlarged view of the second 
resonance (h = 0.5 µm) (b) Q’s as a function of the number N of holes for λ = 1.56 µm; black 
circles : calculated data, bold blue curve: model predictions. The horizontal dashed line 
represents the intrinsic QFP factor in the absence of recycling. For all curves, the model 
parameters are θ = 0.82π, f = 0.5 and n’+in” = 0.5+i0.1.  

3.1 Recycling optimization 

According to the model, the recycling is understood as a constructive interference between the 
fundamental and leaky modes. For a given resonance located in the (λ, h) plane by the Fabry-
Perot condition arg(rm)+2π/λ neff h = 0 (mod 2π), a full recycling is expected if the argument 
[k0(n’-neff)h+2θ] of the exponential in Eq. (4) is a multiple of 2π. Because the effective-index 

(a) 

(b) 
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difference (n’-neff) is large for high index-contrast waveguides, only small modifications of 
the periodic-mirror geometry (i.e., small changes of arg(rm) and θ) accompanied by small 
changes of h are likely to be sufficient for increasing further the recycling of the second-order 
cavity mode. In order to confirm this statement, we consider symmetric cavities formed by 
slightly varying the location of the two inner holes of the resonator and less importantly, their 
diameter. 

Since the model is non-predictive concerning the details of the geometry, we performed 
calculations with the Fourier modal method for optimizing the Q factor. Figure 4 shows the 
transmission spectrum of an optimized geometry obtained for a 30-nm reduction of the hole-
diameter and to a 70-nm outer displacement of the center hole-locations. In comparison with 
Fig. 1, much higher peaks are obtained for all cavity orders. This overall increase, which is 
not of special interest in the present context, is due to a better overlap between the 
fundamental mode and the Bloch mode of the photonic crystal mirror, and thus due to a 
reduction of the mirror losses L from 4% to 1.3% at mid-gap frequencies. This increase will 
be discussed in more detail in the next Section. More important for our current discussion is 
the beneficial impact of the recycling on the second cavity mode for which a ≈100% 
transmission is achieved at resonance over the full band-gap. This impact is especially 
remarkable when considering the cavity Q (see Fig. 5). While the classical Fabry-Perot model 
predicts an intrinsic QFP = 750 for the second cavity mode (m = 3.15) at λ = 1.56 µm, the 
calculated intrinsic Q is actually ≈105. Thus for the engineered geometry, the recycling is 
responsible for an enhancement of the cavity Q by a factor 130. The large Q value mainly due 
to a strong recycling well compares with the highest Q values theoretically predicted so far for 
engineered two-dimensional PC geometries [6,10] and evidences the importance of the 
phenomenon for applications. Within the model picture, such an enhancement implies 
that 99 % of the radiated energy is effectively recycled. 

 
Fig. 4. Calculated modal transmission as a function of wavelength and cavity length h for the 
engineered cavity (N=4). 

3.2 Modal reflectivity optimization  

The previous optimisation allows for high Q/V ratios while working with moderate mirror 
losses in the range of 0.01. Hereafter, we consider another approach which provides a drastic 
Q/V improvement through a reduction of the mirror losses. No recycling is involved. In 
general terms, the far-field radiation at an interface between a z-invariant waveguide (the 
defect) and a z-periodic Bragg-mirror is due to the impedance-mismatch between the 
fundamental guided mode of the defect and the (non-propagating) fundamental Bloch mode of 
the Bragg mirror [8]. The radiation loss L varies linearly with the square of the overlap 
integral η between these two modes. Reducing these losses can be achieved by tapering the 
guided mode of the defect into the Bloch mode of the mirror. Details on the design of such a 
taper through Bloch-wave engineering can be found in [12]. 
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Fig. 5. Q factor as a function of the number of holes for the cavity with optimised recycling. 
Circles represent calculated data. The horizontal dashed line represents the cavity intrinsic QFP 
factor in the absence of recycling. 
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Fig. 6. Engineered mirrors. (a) Cavity with engineered mirrors. (b) Comparaison  between the 
modal reflectivity spectra of a classical mirror (dotted curve) and that of the engineered mirror 
(solid curve). Vertical lines  indicate the bandgap edges. 

 

Figure 6(a) shows the cavity with tapered mirrors considered in the following. The high-
reflectivity mirror has a constant number of holes (N’ = 9, considered to have the same effect 
as an infinite number of holes) and incorporates a taper section consisting of two holes. The 
number of holes in the low-reflectivity mirror varies from 0 to 9 while a taper section is also 
incorporated. In this Section, the periodicity constant of the periodic section of the mirrors is 
reduced to 420 nm, while the associated hole-diameter is kept at 250 nm. This change is 
largely inessential and is motivated by future experimental characterization of devices. 
Through simulated annealing, we have optimized the hole-locations and diameters of the taper 
section. At λ = 1.5 µm, a minimum loss L = 1-|rm|2-|tm|2 is obtained for ∅1 = 100 nm, 
∅2 = 210 nm and ∆1 = 327 nm, ∆2 = 330 nm (see Fig. 6(a) for a definition of the parameters). 
Figure 6(b) compares the radiation loss spectrum of the periodic mirror (dotted curve) with 
that of the tapered mirror (solid curve). At the design wavelength, a loss reduction by more 
than two orders of magnitude is achieved. 

In Table 1, we compare the performance of the cavity with tapered mirrors with that of 
the cavity with periodic mirrors as a function of the number of holes N of the low-reflectivity 
mirror. The defect lengths h of the microcavities are chosen so that resonance occurs at 
λ = 1.5 µm (h = 635 nm and 557 nm, for the engineered and classical case, respectively). For 
all cases, we calculate the total power P emitted by a single-frequency (λ = 1.5 µm) linearly-
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polarized dipole (see Fig. 6(a) for the dipole orientation) inserted at the center of the cavity 
defect. In experiments, this situation corresponds to a perfect emitter placed at the antinode of 
the cavity mode with an emission linewidth much smaller than the cavity linewidth. The 
Purcell factor F is derived by removing the small fraction of the dipole emission which is 
radiated into the background of the continuum of radiation states and by normalizing the 
emitted power to the total power emitted by the same dipole in the bulk material. In addition, 
we compute the extraction efficiency ε defined by the fraction of energy emitted through the 
low-reflectivity mirror into the air-bridge waveguide mode. High ε values are highly desirable 
in practice. For single-photon sources, ε represents the probability to emit one photon instead 
of none for a light pulse. As shown in Table 1, the cavity with engineered mirrors outperforms 
the one with classical mirrors both in terms of Q, F and ε. 
 

Table 1. Cavity performance 
 

 N 1 2 3 4 5 

 Q 28 100 180 220 230 

Classical F 6.5 21 38 46 48 

mirrors ε 0.86 0.56 0.21 0.06 0.011 

 Q - 70 280 1300 5600 

Engineered F - 10 40 190 800 

mirrors ε - 0.96 0.98 0.96 0.88 

 

4. Conclusion 

A thorough study of the electromagnetic properties of in-line photonic-band-gap air-bridge 
cavities has revealed two physical mechanisms that can increase the Q/V factor of photonic 
crystal microcavities by several orders of magnitude. Both mechanisms rely on fine tuning the 
geometry of the holes around the cavity defect. The first mechanism relies on engineering the 
mirrors so as to reduce the impedance mismatch between the mirror and the waveguide defect 
and hence reduce the out-of-plane far field radiation. The second mechanism is less intuitive 
and in our opinion deserves further studies. It relies on a pure electromagnetism effect based 
on transient fields at the subwavelength scale, namely a recycling of the mirror losses by 
radiation modes and enables the design of high-perfomance microresonators with moderate 
requirements on the mirror reflectivities. Through an analytical model, we showed that the 
recycling mechanism obeys a phase-matching condition, and that, when appropriately 
optimised, it can boost the Q’s and the Purcell factor by two orders of magnitude. We expect 
that these mechanisms may have an important impact on the ultimate performance of other 
photonic-crystal microcavity geometries [4-6,9-10]. In addition, these mechanisms may be 
useful for understanding some of the recent works on microcavities where a fine tuning of the 
geometry around the defect has had a large impact on the resonator performance. 
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