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Recently [Opt. Lett. 25, 1092 (2000)], two of the present authors proposed extending the domain of applicabil-
ity of grating theories to aperiodic structures, especially the diffraction structures that are encountered in in-
tegrated optics. This extension was achieved by introduction of virtual periodicity and incorporation of arti-
ficial absorbers at the boundaries of the elementary cells of periodic structures. Refinements and extensions
of that previous research are presented. Included is a thorough discussion of the effect of the absorber quality
on the accuracy of the computational results, with highly accurate computational results being achieved with
perfectly matched layer absorbers. The extensions are concerned with the diversity of diffraction waveguide
problems to which the method is applied. These problems include two-dimensional classical problems such as
those involving Bragg mirrors and grating couplers that may be difficult to model because of the length of the
components and three-dimensional problems such as those involving integrated diffraction gratings, photonic
crystal waveguides, and waveguide airbridge microcavities. Rigorous coupled-wave analysis (also called the
Fourier modal method) is used to support the analysis, but we believe that the approach is applicable to other
grating theories. The method is tested both against available numerical data obtained with finite-difference
techniques and against experimental data. Excellent agreement is obtained. A comparison in terms of con-
vergence speed with the finite-difference modal method that is widely used in waveguide theory confirms the
relevancy of the approach. Consequently, a simple, efficient, and stable method that may also be applied to
waveguide and grating diffraction problems is proposed. © 2001 Optical Society of America
OCIS codes: 050.1950, 050.1970, 130.01.30, 050.1960, 050.1940.
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1. INTRODUCTION

Numerical characterization and modeling of guided-wave
passive components have been important research topics
in the past four decades. This is so because of increased
research and development in millimeter-wave and photo-
nic integrated circuits. In the early 1960s, efforts were
devoted to establishing the foundations of waveguide
theory. In the late 1980s, more than a dozen numerical
methods of analyzing these components were invented
and the somewhat more classic methods were refined.!
Most of the existing methods have been known from that
time. The development of waveguide theory today con-
tinues to respond to the demands of the increasingly
widespread applications of integrated optics. The theory
features improvements of the existing methods in terms
of numerical stability, convergence speed, and versatility.
Most of this can be said for grating theories as well.2
Clearly, because the theory of electromagnetism and
waveguide and grating methods rely on the same founda-
tion, they share many common features. However, prob-
ably because they are directed to the modeling of different
structures and because the applications are rather differ-
ent, it appears that these theories were developed mainly
independently and that clear bridges between them were
rarely made in the literature. We do so here and propose
a simple, efficient, and stable theory that may apply to
grating and to waveguide diffraction problems, as well.
To illustrate our purpose, we consider the rigorous
coupled wave analysis® (RCWA) hereafter. RCWA is a
frequency-domain method of waveguide analysis that is
widely used in grating theory. It was developed over
many years; see Refs. 2 and 3 and the reference therein
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and in the related research on the so-called differential
method.* RCWA is based on the computations of the
grating modes as eigenvectors and on Fourier expansions
for the permittivity and for the electromagnetic fields in-
side the grating region. It is also called the Fourier
modal method by many authors. Perhaps the main dif-
ference between waveguide and grating theories concerns
the outgoing and ingoing wave conditions inside the inho-
mogeneous region. In grating theory, because of period-
icity, the electromagnetic fields are pseudoperiodic func-
tions and the outgoing and ingoing wave conditions are
strictly fulfilled. In waveguide theory, a computational
domain delimited by absorbing boundaries is defined.
How well the outgoing and ingoing wave conditions can
be satisfied depends on the quality of the absorbers; see
Ref. 5 in the context of finite-difference techniques. As
was shown by some of the present authors,® the extension
of the RCWA to modeling waveguide-diffraction problems
relies on the introduction of absorbers. It is worth men-
tioning that the kinds of absorber (metallic, anisotropic,
magnetic...) that can be efficiently incorporated into a
given method depend on the method itself. Hereafter, we
restrict ourselves to absorbers that can be numerically
implemented efficiently with minor modification of the
RCWA.

In Section 2 we describe the main idea of our approach
to coupled-wave analysis. It is assumed that the reader
is familiar with RCWA,? and with its enhanced version’
for TM polarization and its extension to crossed gratings.®
Section 2 also includes a brief description of the S-matrix
propagation algorithm® used for analyzing multilayer
structures and an extension of the RCWA to anisotropic
and magnetic media. This extension is motivated not by

© 2001 Optical Society of America



2866 J. Opt. Soc. Am. A/Vol. 18, No. 11/November 2001

the analysis of waveguides with magnetic or anisotropic
material but by the performance enhancement that is
achieved with magnetic and anisotropic absorbers. The
influence of the absorbers on the computational accuracy
of the method is studied in Section 3. Sections 4 and 5
provide numerical results for two- and three-dimensional
structures. Section 4 is concerned with classic problems,
namely, those concerning distributed Bragg reflectors and
grating couplers. In Section 5 we consider more up-to-
date subjects such as the diffraction of guided waves by
integrated gratings, photonic-crystal waveguides, and
waveguide air-bridge microcavities. The method is
tested both against available numerical data and against
experimental data for photonic-crystal waveguides. In
all cases, excellent agreement is achieved. In Section 6
we conclude the paper and discuss some possible exten-
sions of this research.

2. SOLVING WAVEGUIDE-DIFFRACTION
PROBLEMS WITH RIGOROUS
COUPLED-WAVE ANALYSIS

Figure 1 shows one possible waveguide geometry, which
we use here to illustrate the method of solving two-
dimensional waveguide diffraction problems. It repre-
sents a planar waveguide structure with a binary corru-
gation profile. In every homogeneous section of the
waveguide geometry the permittivity and the permeabil-
ity depend only on the x (vertical) coordinate. The struc-
ture is invariant in the y direction, which is perpendicular
to the figure. Both metallic and dielectric materials may
be considered. The corrugated waveguide is assumed to
be illuminated from the input region by a guided wave,
the fundamental TE, or TM, mode, for instance. TE and
TM polarizations refer to situations for which the electric
and magnetic fields, respectively, are parallel to the y di-
rection. These two states of polarization can be handled
independently. The wavelength in vacuum of the inci-
dent mode is denoted \ (£, = 27/\). Our goal is to com-
pute the light that is scattered in the substrate and the
superstrate, reflected in the input region, or transmitted
in the output region.

A. Artificial Periodicity, Absorbers, and Fourier Series

To analyze such waveguide geometries with RCWA we
introduce® an artificial periodicity along the x coordinate,
thus virtually replacing the actual waveguide isolated in
space with a periodic waveguide structure; see Fig. 2.
This structure defines a period (or a computational box) w

g @ 49 ix
£ oM oam s ioF o3 : s
input T . output
region: ‘.o . - . region
v b Pire b
u{"_nﬂ) Ey “‘um. A 1 = u{m gg z
4 z, vz, z, 3

Fig. 1. General layered waveguide diffraction. Electromag-
netic fields are computed as eigenmodes in every layer, and the
field in each layer is represented as a superposition of left- and
right-propagating modes with amplitudes u'?’ and d‘?’.
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Fig. 2. Artificial periodicity of the waveguide and adjunction of
absorbers between waveguide structures.

in the x direction. With the introduction of this periodic-
ity (which we call “periodization”), RCWA can be applied
to solve the diffraction problem. For the electromagnetic
solution of the periodic waveguide geometry and that of
the isolated waveguide structures to be identical, absorb-
ers have to be incorporated between the waveguides.
These absorbers, represented by dark rectangles in Fig. 2,
are used to satisfy the ingoing wave condition at planes P
and P’, two planes that surround the waveguides. At
plane P or P’ the ingoing wave condition stipulates that
no waves propagate down or up, respectively. It is easily
verified that satisfying the ingoing wave condition
amounts to considering that the absorber does not trans-
mit the light scattered by the corrugation, thus making
the neighboring waveguides of the periodic waveguide
structure electromagnetically independent of each other,
and does not reflect the scattered light, thus preventing
electromagnetic contamination inside a single period.

As is shown in Section 3 below, the absorbers are com-
posed of two independent parts, one placed in contact
with the superstrate and the second in contact with the
substrate. Note that the absorbers’ permittivity and per-
meability depend on the refractive indices of the super-
strate and the substrate in only an analytical way. Thus
the absorbers are designed straightforwardly; see Section
3 below. Each absorber part absorbs light. This absorp-
tion guarantees that the electromagnetic field quantities
are null at the border of the computational box. Thus we
use the Fourier series to expand periodic electromagnetic
field quantities that are null at the borders of the compu-
tational box and that are identical to the real solution of
the isolated waveguide-diffraction problem outside the
absorber regions.

With the inclusion of the absorbing layers that results
in modification of the index distribution profile, the wave-
guide modes and their effective indices in every uniform
section are computed as eigenvectors and eigenvalues.
Then the S-matrix algorithm is used to link the field am-
plitudes without any numerical instability, as we discuss
in Subsections 2.B and 2.C.

Generally speaking, the proposed method belongs to
the class of modal spectral methods.! The originality of
our approach lies in the use of Fourier series to expand
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the modes in every uniform section of the waveguide.
Let us first note that, because the same expansion bases
are used in every section, mode-matching techniques' are
straightforwardly applied to matching the fields on both
sides of two discontinuities of adjacent sections. Second,
it is worth mentioning that, since the recent discovery
made by the authors of Refs. 7 and 10, the use of Fourier
series in electromagnetic computations is placed on a firm
mathematical foundation'! and permits high-convergence
performance for lamellar gratings,”®1° for continuous-
profile gratings,'> and for photonic-crystal-related
problems.'® Thus we believe that Fourier series repre-
sent a simple and relevant expansion basis not only for
grating theories when they appear naturally but also for
more-general aperiodic cases. For instance, as was
shown in Subsections 3.B and 5 of Ref. 14, modal theories
that rely on Fourier series outperform finite-difference
techniques in terms of convergence performance, even
when permittivity interpolation schemes and nonuniform
sampling are implemented in the finite-difference ap-
proach. In Section 5 of this paper similar results are re-
ported.

B. Eigenproblem Formulation with Magnetic and
Anisotropic Media

As we have just said, the approach to eigenproblem for-
mulation is based on the adjunction of absorbing bound-
aries on a periodic waveguide structure. The absorbing
boundaries are purely numerical layers and consequently
may have an arbitrary permittivity or permeability distri-
bution. Previously,® Lalanne and Silberstein considered
simple gradient-index absorbers. Here we consider
more-sophisticated absorbers, which are composed of
magnetic and anisotropic media. Using these types of
absorber guarantees that, when a propagating or evanes-
cent plane wave is incident from the superstrate or sub-
strate onto the absorber, no light is reflected. In fact,
these absorbers are a specific type of perfectly matched
layers!® (PMLs) that can be implemented efficiently with
RCWA. Adding magnetic and anisotropic properties pro-
vides the opportunity for access to a supplementary de-
gree of freedom and for improving the quality of the ab-
sorbers. The TM polarization case is described in detail
hereafter. TE polarization is deduced by use of the sym-
metry of Maxwell’s equations, as is briefly outlined at the
end of this section.

All uniform sections of the waveguide geometry, includ-
ing the input and output regions, are treated similarly.
Hereafter the superscript (p), p = 0,1,...,n + 1, refers
to the uniform section under consideration. We assume
that the materials in section p are magnetic with relative
permeability u(x) and anisotropic with a relative tensor
of permittivity defined by ¢,,(x) and ¢,,(x), all the other
tensor coefficients being null. From the curl Maxwell
equations, after eliminating the electric-field components
E'? and E{?’, we obtain

277(p)
J Hy J

1 HP
= —kge () u@)HP — & (x)

’

922 x| e,,(x)  Ix

(D)
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where H ;p ) is the y component of the magnetic field in
section (p). As for classic RCWA, the electric and mag-
netic fields are expanded in Fourier series. For the y
component of the magnetic field we have

©

HP = > U,)exp(jmK), )

m=—ox

where K = 27/w, j2 = —1, and U,, is the unknown nor-
malized amplitude of the mth space-harmonic field.
Note that the electromagnetic field is looked for as a
purely periodic function of the x coordinate and not as a
pseudoperiodic one as in classic RCWA. We achieve this
simply by setting the angle of incidence equal to zero in
standard RCWA code. To perform the computation we
must truncate the Fourier series in Eq. (2). We denote by
[U] the vector formed by the finite set of the normalized
amplitudes retained for the computation. Let us denote
by E, A, and B the Toeplitz matrices associated with Fou-
rier coefficients of ,,(x), 1/e,,(x), and u(x), respectively.
By substituting Eq. (2) into Eq. (1) and identifying terms
in the Fourier basis, we find that the set of second-order
differential equations for the magnetic field can be put in
the compact form

PU

y) = kA Y(K.E'K, — B)][U], (3)

where K, is a diagonal matrix and the (m, m) element is
mK/ky. It is easy to determine that the matrices in-
volved in Eq. (3) verify the Fourier factorization rules of
Ref. 11 and that Eq. (3) reduces to Eq. (9) of Ref. 7 for non-
magnetic and isotropic media (B is the identity matrix in
this case). Although the matrix involved in Eq. (3) is
more complex than that used for isotropic and nonmag-
netic media [see Eq. (9) of Ref. 7 for comparison], this ad-
ditional complexity remains weak (only two additional
Toeplitz matrices have to be computed) and is worth being
implemented, as it allows one to obtain accurate results
for small w values; see Section 3 below for more details.
From Eq. (3), the modes Wf,f’) and the propagation con-
stants )\ﬁ,f) in every section p are computed as the eigen-
vectors and the square roots of the eigenvalues of the ma-
trix A Y(K.E 'K, — B). Thus, in each section,
electromagnetic field vap ) is looked for as a superposition
of modes

Uy(2) = 2 WP{ulP |~k (z = 2, 1))

+ dP explko\P(z — 2,1}, 4)

where u'?’ and d‘” are column vectors whose elements
are the amplitudes of the modes propagating backward
(in the —z direction) and forward (in the z direction), re-

spectively. The unknown normalized amplitudes S, of
the pth x component of the electric field, defined by
172+
B = —) D Smexp(jmKx) (5)
€o m=—w

and used to match the boundary conditions at planes z
= z,and z = z,,;, are simply
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S.p(2) = 2 ViPLulP) expl—ko\P(z = 2,-1)]

— d'P explko\P(z — z,-1)]}, (6)

where v!P is the mth column vector of matrix V7

= AWP)\(P \(P) is a diagonal matrix, and the (m, m)
element is \(?’ .

The TE polarization case is easily deduced from the
previous analysis by use of the symmetry of Maxwell’s
equations, ¢ <+ u and H < E. For instance, the eigen-
matrix becomes C YK, D 'K, — F), where C, D, and F
are the Toeplitz matrices of 1/u,,, u,,, and e(x), respec-
tively. The corresponding V vector that is proportional to
the x component of the magnetic field is CW 2\ P, Tt is
noteworthy that the symmetry of Maxwell’s equations is
reflected in the numerical code implementations. Once
the code is implemented for a given polarization, we can
obtain the other polarization case straightforwardly just
by interchanging the e(x) and w(x) distributions.

C. S-Matrix Algorithm

Once the eigenmodes and their propagating constants are
known in every layer, we use an S-matrix algorithm to
compute the u'?’ and d'”’ amplitude vectors. The differ-
ence between the research reported here and the
S-matrix implementation used for classic grating theories
is rather small: In grating theories, a Rayleigh expan-
sion is used to describe the electromagnetic field in the in-
put and output homogeneous regions. In the present
case, the field expansions in the input and output regions
are periodic Floquet expansions, as for all the layers of
the corrugated region. This difference even simplifies
the implementation of the S-matrix algorithm.

The S-matrix algorithm is a stable and efficient algo-
rithm that does not exhibit any numerical instabilities
with the growing exponential terms in Egs. (4) and (6).
To avoid repetition of already published results, we ex-
actly follow the notation of Ref. 9, where many details of
the stability and efficiency of propagation algorithms are
discussed. We define the S-matrix S'?’ that links the
waves in the section p + 1 and those of medium 0 in this
way:

u(ptl) u©
g | =S| g, (7
with
(p) (p)
S(p) _ Tuu Rud (8)
RP o)
du dd

The transmission and reflection submatrices in Eq. (8)
are computed in a recursive way. If no light is impinging
on the corrugated waveguide from the output region
[u'® = 0], only Rufl) and Tff"}) are required for computing
u'?*Y and d'”. These recursion formulas are®

— -1 —-1)7-1
R = (B + tBRE I - BRI,
-1 —1)7—
T4 = T4 V1 = ripRE T ). ©

In Egs. (9) the matrices denoted by lowercase letters are
the reflection and transmission submatrices of the S ma-
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trix that relate the waves in the two adjacent layers p and
p + 1. They are given by

- -1 1 -1 1)7-1
tg)u) = 2[WP)-Iw(p+D) 4 yip)-ly(p+D]-1X(p)

I'LZ) = [W(p>flw<p+1)
+ V(p)*lv(p+1)]*l[w(p)*1w(p+l)
_ V(p)—lv(pﬂ)]’

r&ﬁ) = X(p)[v(pﬂ)*lv(p)

+ W(p+1)—lw(p)]—l[V(p+1)—lv(p)
— wWpth-Iw(px(r),

tt(ilé) = zx(p)[v(pﬂ)—lv(p) + W(p+1)—lw(p)]—1‘
(10)

where X'?) is a diagonal matrix and the (m, m) coefficient
is exp[—)\i,f)(zp_l —2p)  We initialize the matrix
S-recursion by setting S™1 equal to the identity matrix.
Matrices S'?’ are computed recursively until matrix S
is obtained. The amplitudes of the modes propagating
backward in the input region, u*™?, and forward in the
output region, d'?’, are obtained from Eq. (7), where u'®
= 0 and d” "V represent the components of the incident
wave expanded on the complete set of modes supported by
the waveguide of the input region. Under the usual as-
sumption that the corrugated waveguide is illuminated
by the fundamental TE, or TM;, mode with unitary ampli-
tude, all components of vector d™*1 are zero, except the
ith component dg’”l) , which is equal to 1, where i is the
eigenmatrix column number that corresponds to the fun-
damental mode. If we define the reflected intensity R,,
by the amount of light that is backreflected into mode m,
R, is simply equal to |uf§”l) 2 times the ratio between
the time-averaged Poynting-vector z components of the
reflected mode m and that of the fundamental input
mode:

Rm — |u(n+1)|2<W(n+1) ’V(n+1)>/<W(_n+1) ,V(_n+1)>, (11)

where (x,y) is the absolute value of the imaginary part of
the scalar product of x and the complex conjugate of y.
Similarly, for the transmitted intensity 7, into mode m
we have

Ty = |d3) W) V(WD vy (12)

The programmer’s effort to transform a grating RCWA
code equipped with the S-matrix algorithm into a wave-
guide code is rather minimal. The main effort, which
consists in modifying the permittivity and permeability
distributions to include the absorbers, is the more inten-
sive, but the modifications are straightforward.

3. INFLUENCE OF THE ABSORBERS ON
NUMERICAL ACCURACY

Perfectly absorbing boundaries that exactly satisfy the in-
going wave condition provide the actual physical solution
to the isolated waveguide diffraction problem. Specifica-
tion of optimal absorbers with small thickness is a chal-
lenge for the computational electromagnetic community,
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and much effort is being devoted to determining it, espe-
cially for finite-difference techniques.'® However, ab-
sorbing boundaries are not perfect in practical situations
and cannot be made arbitrarily thin. Consequently, the
effect on the accuracy and on the convergence perfor-
mance of the absorbers operating with small computa-
tional window sizes (w in the present study) has to be
studied. It is worth noting that this effect depends on
the numerical tool used and that increasing w is detri-
mental to convergence. Hereafter we consider absorbers
that are easily implemented with the Fourier modal ap-
proach described in Subsection 2.A.

To study the various absorbers we consider the
waveguide-diffraction problem depicted in Fig. 3. The
corrugated waveguide is composed of a 300-nm-wide core
(refractive index, 3.5) with claddings with refractive indi-
ces of 2.9 for the substrate and 1 for the cover. Two iden-
tical 150-nm-wide slits are etched into this waveguide.
They are separated by a 150-nm-wide spacer, and the slits
are 300 nm deep. The waveguide is illuminated by its
TE, or TM, fundamental mode, with a 975-nm wave-
length. Inasmuch as the size and the depth of the slits
guarantee that a large amount of light is scattered toward
the absorbers, this structure is useful for the study of the
effect of the absorbers on accuracy of the algorithm.

We tested several absorbers. We report on only three
of them. These absorbers are described for TM polariza-
tion; the TE polarization is straightforwardly deduced.
The absorbers are all /2 thick, and each is composed of
two parts with identical /4 thickness. Part Al is placed
in contact with the air superstrate. Part A2 is placed in
contact with the substrate. The first absorber is isotropic
(eyx = €,,) and is not magnetic (. =1). It has a
gradient-index distribution. For parts Al and A2 the re-
fractive indices vary linearly from 1 to 1 + j and from 2.9
to 2.9 + j, respectively. Similar absorbers were consid-
ered in the research reported in Ref. 6. The second ab-
sorber is also isotropic (e,, = &,, = &), with a gradient-
index distribution like that of the first absorber, but is
magnetic. Part Al has a refractive index n = (eu)?
that varies from 1 to 1 + j with a uniform normalized ad-
mittance (&/u) "2 equal to 1, the normalized admittance of
air. This choice guarantees that no light impinging at
normal incidence onto absorber Al from air is reflected.
Similarly, part A2 has a refractive index n = (eu)"? that
varies from 2.9 to 2.9 + j, with a uniform normalized ad-
mittance (&/ )2 equal to 2.9, the normalized admittance
of the substrate. For the numerical implementation, the
gradient-index absorber profiles are approximated by a
staircase profile with 10 slices. The last absorber corre-
sponds to PMLs. It is anisotropic and magnetic. From
Ref. 15 it is easily found that, at an interface in the (xyz)
plane normal to the z direction between two media [Eqs.
(1) and (2)], no reflection occurs for any incidence angle,

et el

Fig. 3. Investigation of waveguide diffraction for studying the
effectiveness of several absorbers.

Vol. 18, No. 11/November 2001/J. Opt. Soc. Am. A 2869

Table 1. Reflectivity for the Waveguide-
Diffraction Problem of Fig. 2

Nonmagnetic Magnetic PML
Absorbers Absorbers
w/\ (301 orders) (301 orders) 301 Orders 1001 Orders
TE Mode
1 0.3928 0.3877 0.3952 0.395 2113 5
1.5 0.3820 0.3825 0.3952 0.395 21131
2 0.3938 0.3959 0.3952 0.395 2113 3
2.5 0.3878 0.3859 0.3952 0.395 2113 5
3 0.3942 0.3968 0.3952 0.395 2114 4
4 0.3937 0.3959 0.3952 0.395 2114 3
5 0.3931 0.3944 0.3952 0.395 2117 2
6 0.3930 0.3930 0.3952 0.395 21170
7 0.3934 0.3925 0.3953 0.395 21199
TM Mode
1 0.3584 0.3621 0.3555 0.355 480
1.5 0.3582 0.3577 0.3551 0.355 482
2 0.3520 0.3513 0.3555 0.355 484
2.5 0.3529 0.3542 0.3556 0.355 487
3 0.3526 0.3520 0.3556 0.355 490
4 0.3533 0.3532 0.3557 0.355 499
5 0.3539 0.3541 0.3557 0.355 508
6 0.3544 03549 0.3559 0.355 521
7 0.3549 0.3553 0.3560 0.355 528

provided that u?/€2% = pV/€V and £ e? = Vel
Consequently, for part A1 we choose a uniform layer with
pn =51 +j), e, = un, and &,, = /. Similarly, part
A2 is a uniform layer with u = 5(1 + j), &,, = (2.9)%u,
and &,, = (2.9%u. The (1 + j) terms in the expres-
sions of u guarantee that both evanescent and propagat-
ing waves are absorbed in the absorber.

Table 1 illustrates the efficiencies of the three absorb-
ers for the two polarizations and for a large range of win-
dow sizes. Columns 2—4 were obtained for 301 retained
Fourier harmonics. A comparative inspection of these
columns clearly shows that the computational accuracy
depends mainly on the quality of the absorbers. The best
performance is achieved for the PML case of column 4, es-
pecially for TE polarization, for which four-digit accuracy
in the computed reflectivity is achieved over the entire
range of window sizes. An even higher, six-digit accuracy
is shown in column 5 for 1001 retained orders. It is evi-
dent that the numerical solution is merely independent of
size w of the artificial periods. We believe that this inde-
pendence strongly supports the soundness of the proposed
methods, which relies on artificial periodicity for solution
of an aperiodic diffraction problem. For TM polariza-
tions the results are less accurate than for TE. However,
the accuracy remains high; the relative difference be-
tween the reflectivity computed for w/\ = 1 and w/\
= 7 in column 5 of Table 1 is 0.013%. We believe that
this lesser degree of accuracy is due only to the fact that,
despite the drastic convergence-rate improvement
achieved in the research reported in Ref. 7, the RCWA
still converges faster for TE than for TM polarization.
The method used is of no concern.

It is worth mentioning that one must not conclude from
Table 1 that nonmagnetic or magnetic absorbers offer a
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weak two-digit accuracy. Better accuracy can be ob-
tained with thicker absorbers, which reduce the transmis-
sion and the reflection. However, an increase in the ab-
sorber thickness results in an increase in the artificial
period, which is detrimental to the convergence rate.
Perhaps the prime benefit of PML absorbers is the high
accuracy achieved for small w/\ ratios.

4. NUMERICAL RESULTS FOR TWO-
DIMENSIONAL STRUCTURES

Two-dimensional periodic structures etched into planar
waveguides are important components of many optical in-
tegrated devices. Examples are Bragg gratings that act
as wavelength-selective reflectors, grating-assisted cou-
plers, and passive TE-TM mode converters. In this sec-
tion the present coupled-wave analysis method is tested
for such classic components.

We first consider the planar Bragg-grating waveguide
problem of the COST240 project (where COST240 is an
acronym of European cooperation in the field of science
and technical research). The waveguide is composed of a
2.4-ym-wide core (refractive index, 1.53) with claddings
whose refractive indices are 1 for the cover and 1.52 for
the substrate. A TE polarized guided wave (A
= 650 nm) is incident onto a weakly modulated Bragg re-
flector composed of 0.5-um-deep grooves etched into the
core. For the computation it is assumed that the grating
period is A = 213nm and that the groove width is
0.106553 um. The main difficulty lies dealing with the
large number of periods considered.

Figure 4(a) shows the Bragg-grating reflectivity as a
function of the number of periods. The solid curve corre-
sponds to numerical results obtained from the research
reported in Ref. 17 by the method of lines.!® The stars
are data obtained with the present method. Very good
agreement between the two approaches is achieved; the
maximum relative discrepancy for the reflectivity is less
than 1%. The CPU times (in seconds) required for com-
putation with the present method are indicated within
brackets in the Figure. We obtained these short CPU
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Fig. 4. Comparison of the method of lines (solid curves) and the
present method (stars) for a Bragg reflector. (a) Reflectivity
computed as a function of the number of periods. (b) Reflectivity
for 1024 periods computed as a function of the number of eigen-
modes retained for the computation.
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times by exploiting the periodicity of the Bragg grating in
the z direction. More explicitly, if we denote by S, the
S-matrix associated with one period of the structure, the
S-matrix SV associated with N periods is simply the
product S, * S,... * S,, N times, where the star
product is defined as in Ref. 9. For increasing the com-
putational speed, we simply expand the product

S, * S,... * S, in a series of powers of 2:
SM= > a,8?%, (13)
p=12..

where a,, is 0 or 1. With this approach, the computation
of reflection and transmission for 1024 periods, for in-

stance, requires only the computation of S = § » S e
SW = §@* g2 G512 — G256 x §(256) 5 G(1024)

= §12* g12)  Thyg only ten S-matrix products are

involved. The CPU time required for computation of the
ten products is not significant compared with the CPU
time required for solution of the two eigenmode problems
in each uniform section. Thus the total CPU time is only
weakly dependent on the number of periods of the Bragg
reflector.

The stars in Fig. 4(b) show the reflectivity of the 1024-
A-period reflector computed with the present method as a
function of the number of eigenmodes retained for the
computation. Results were obtained for a 9.3\-wide w
period and for \/2-thick PML absorbers. The solid curve
in Fig. 4(b) also shows the convergence performance re-
ported in Ref. 17 obtained with the method of lines, a
finite-difference modal method that is widely used for
waveguide computations. The present method achieves
a much better convergence rate. Similar observations
were reported in Ref. 6. A thorough comparison of con-
vergence performance between the two approaches can be
found in Ref. 14, where Fourier and finite-difference
modal methods for one-dimensional dielectric and metal-
lic gratings are compared. The conclusion is clear: Ex-
pansion techniques that rely on Fourier series offer much
better convergence performance than those that rely on
the finite difference for diffraction problems that involve
dielectric and metallic materials in the visible and the
near-infrared domains.

The second example to be considered is that of a grat-
ing coupler. The grating and waveguide parameters are
given in Fig. 5. We aim to compute the electromagnetic
field diffracted in air by the coupler. The computation is
twofold. The first step consists in computing the S ma-
trix that links the field amplitudes in the two outer media
and solving for u”” " and d'“. The second step consists
in computing the set of field amplitudes u‘?’ and d‘?’ for
every layer. It deserves some care. To prevent any nu-
merical stability problem caused by the growing exponen-
tial function, we may compute the field amplitudes in a
recursive way, starting from the input region and using
the following expressions:

d») = 1/2x(p>{(w(p)*lw(p+1) — V(p>*lv(p+1))u(p+1>
+ [WP)miw(p+h) 4 yip)-ly(p+hglp iy
u'?) = REVgP), (14)

These amplitudes are numerically stable. It should be
mentioned that all the matrices in Eqgs. (14) are already
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available from the first step. For the last step, which is
related to the computation of the electromagnetic field
quantities from their Fourier coefficients, it is advisable
to refer to the accurate method of Ref. 19. Through ap-
propriate use of the constitutive relations in both Fourier
and real space, this method avoids possible sources of ar-
tifacts that are results of permittivity discontinuities,
even in the vicinity of a wedge where field singularities
exist for TM polarization.

The electromagnetic fields are then computed on a hori-
zontal plane P in the air superstrate; see Fig. 5. For TE
polarization, which we consider in our example, the elec-
tric field E(z) in plane P can be expanded on a plane-wave
basis:

E@) = J “ley(k) + ek lexp(jk.2)dk,, (15)
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Fig. 5. Grating coupler diffraction.
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where e,,(k,) and e,(k,) correspond to plane waves
propagating in the negative and positive x directions, re-
spectively. Strictly speaking, e,,(%,), which corresponds
to plane waves propagating toward the grating, must be
null for any k£,. However, because the absorbers are not
perfect (isotropic and nonmagnetic absorbers were used
for this computation), we found a residual nonnull value
for e, (k,) with |e,,(k,)|? < |e,(k,)|?/1000 for any value of
k,.

The thin solid curve in Fig. 6 was obtained with the
RCWA approach. It shows |e,(6)|?, where 6 is equal to
a sin(k,/k,), for a grating coupler length L of 20\ illumi-
nated by the fundamental TE;, mode with normalized
power. Note that the computation does not exploit the
periodicity of the grating coupler in the z direction.
Thus, similar computations can be performed for pulse-
width-modulated gratings with outcoupling and focusing
functions, for instance. The bold curve in Fig. 6 is ob-
tained from the following formula:

le,(0)|* = A sinc®[ wL/\ cos(6y)(0 — 6p)],  (16)

where A is a normalizing factor set equal to the maximum
value of |e,(0)|? obtained with RCWA. In Eq. (16), sinc()
is the sinc function, defined by sin()/(), and 6, verifies the
first-order Bragg condition n.4 — MA = —sin(6,), where
N 18 the real part of the effective index of the Bloch wave
of the grating waveguide (n.4 = 1.5827). The value of
N is computed as explained in Ref. 6. The sinc-squared

5 10 15

20 25 30 35 40

0

Fig. 6. Angular spectrum intensity |ep(0)\2 of the light diffracted in air by the grating coupler for a 20\ grating length and for TE

polarization.

Thin, solid curve, present method; filled circles, the sinc-squared function of Eq. (16).

Inset, enlarged view near 6

= 25°; the filled circles and the thin curve are superimposed at this scale.
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function is an approximate expression that results from
the scalar diffraction pattern of a metallic slit [slit width,
L cos(6y)] illuminated by a plane wave. As shown in Fig.
6, it represents a very good approximation for 6 approxi-
mately equal to 6.

5. NUMERICAL RESULTS FOR THREE-
DIMENSIONAL STRUCTURES

In this section we consider more-up-to-date three-
dimensional problems such as the diffraction of guided
waves by integrated gratings (or photonic-crystal
waveguides) and waveguide airbridge microcavities. The
present method is tested against both numerical and ex-
perimental data.

A. Photonic-Crystal Waveguides and Integrated
Gratings

The experiment and the experimental results that we use
to test the present method are described in Ref. 20, where
the transmission through a finite-length photonic-crystal
waveguide is measured as a function of the wavelength of
the incoming guided light; see Fig. 7. We fabricated the
photonic-crystal waveguide by etching small and deep
holes into a planar monomode asymmetric waveguide.
The waveguide is composed of a GaAs (refractive index,
3.5) 250-nm-wide core with claddings whose refractive in-
dices are 3.4 for the cover and 3.0 for the substrate. The
cover thickness is 330 nm. The photonic-crystal wave-
guide consists of a triangular array of holes with a lattice
parameter A (distance between two adjacent holes). It is
assumed to be periodic in the x direction (period A,) and
to have a finite spatial extent into the z direction. The y
direction (vertical index confinement) is normal to the
semiconductor stack. The corrugated waveguide is as-
sumed to be illuminated from the input unpatterned re-
gion by the fundamental TE, or TM, mode at an incidence
angle 6. We define by f the air-fill factor (ratio of holes to
total area). The holes are assumed to have straight-
sided walls (perfect cylinders) and to have a finite depth
h. The hole depth and the fill factor are the free param-
eters used for fitting the calculations to the experimental
data.

To solve the waveguide diffraction problem, we make
the structure periodic in the y direction (period w, is
analogous to the parameter w used above for two-
dimensional problems) and insert absorbers between the

¥ X
(guided wave) S P
o =TT

_—

substrate

Fig. 7. Photonic-crystal waveguide geometry. The waveguide
structure is periodic in the x direction, has a finite arbitrary ex-
tent in the z direction, and is illuminated by the fundamental
mode of the unpatterned waveguide (incidence angle, 6).
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waveguides. The absorber layers are parallel to the
plane y = 0. We thus obtain a biperiodic diffraction
problem that is solved with the Fourier modal method of
Ref. 8. Note that the electromagnetic field is looked for
as a pseudoperiodic function of the x coordinate (natural
periodicity direction for the problem) and as a purely pe-
riodic function of the y coordinate (artificial periodization
direction). For instance, the magnetic field H may be
written as

H = 2 (lemx + Uylmy + Uzlmz)
l,m

X exp[ —j(k, + IK,)x — jmK,y], a7

where &k, = 27/ \n4sin(6), ng is the effective index of
the unpatterned waveguide, K, = 27/A,, K, = 27/w,,
and U,,, (¢ = x,y,z) are the z-dependent normalized
amplitudes of the magnetic field. We are therefore rely-
ing on a hybrid approach that mixes a natural periodicity
and an artificial periodicity along the direction of index
confinement. The approach is also applicable to the
study of the diffraction by integrated optical gratings or
arrayed-waveguide gratings that have potential applica-
tions as optical demultiplexers?! or spectrometers.??

For the numerical computations we consider that the
PC waveguide is illuminated under normal incidence (6
= 0) by the fundamental TE, mode of the waveguide
propagating along the z direction. Moreover, in line with
the experiments, seven different lattice periods, A
= 180, 200, 220, 240, 260, 280, 300 nm, with identical fill
factors are considered. Finally, two crystal orientations
are investigated such that the normally incident mode
propagates along the I'M and T'K principal crystallo-
graphic axes.? For 'M and 'K, the numbers of hole
rows in the z direction are 8 and 15, respectively.

Figure 8 shows a comparison of the experimental (noisy
curves) and the numerical (solid curves) zero-order trans-
mission results as a function of the normalized lattice
constant A/\. For the calculation the holes are approxi-
mated by six lamellar slices with piecewise-constant per-
mittivities, thus replacing the actual continuous profile
with a staircase profile. We use a fill factor of f = 18%.
This value controls the position of the band edges. Then
we assume that the hole depth varies linearly from one
sample to the other: A(A) = CA + hy. This assump-
tion (large holes are deeper than small ones) is reasonable
with respect to the well-known properties of the reactive-
ion-etching process used for the fabrication. With A,
= 180nm and C = 1.833, the depth varies linearly from
510 nm for the 180-nm-period sample to 730 nm for the
sample with the largest period. The finite depth of the
holes controls the amount of radiation loss?® (mostly in
the substrate) induced by out-of-plane diffraction. Es-
sentially, excellent agreement between the experimental
and the numerical results is obtained. The band edges
and the ripples on the sides of the gaps are correctly lo-
cated for both I'M and I'K propagation directions. The
only discrepancy between the experimental data and the
model results is observed for 'K and for the geometry
with a 0.28 normalized period. The experimental trans-
mission is ~20% smaller than the numerical prediction.
Noting that the experimental results for this normalized
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photonic-crystal diffraction as shown in Fig. 7. (a) I'K direction,
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Fig. 9. Convergence performance of the present method for the
photonic-crystal waveguide.

period are not consistent with those obtained for A/\
= 0.26, 0.3, we believe that this discrepancy comes from
the measurements, namely, from a local deficiency in the
photoluminescence yield that is responsible for incorrect
normalization of the measured data.?°

Figure 9 shows the convergence performance of the
present method as a function of the number of eigen-
modes (or Fourier harmonics) retained for the computa-
tion. Results are given for the I'K case, for A/N = 0.26
(AN = 1 um) and a hole depth of 657 nm. The computed
zero-order transmission is shown for two artificial peri-
ods, w, = 2\ and w, = 3\, that are represented by
pluses and circles, respectively. For the computation, an
equal number of Fourier harmonics is retained in the x
and y directions, and we use a 0.6\-thick absorber with a
gradient-index nonmagnetic profile distribution. It is
composed of two parts, Al and A2, with identical thick-
ness. These two parts are placed an equal distance from
the center of the waveguide core. For parts Al and A2
the refractive indices vary linearly from 1 to 1 + j and
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from 3 to 3 + j, respectively. Basically, we guess from
Fig. 9 that the absolute computational accuracy for the
transmitted intensity is better than +1%.

B. Waveguide Air-Bridge Microcavities

A diagram of the waveguide structure that we consider
below is shown in Fig. 10(a). Optical waveguiding and
two-dimensional confinement are generated by an air-
bridge structure. The air-bridge structure is etched as
two sets of regularly spaced square holes that act as short
Bragg reflectors. The holes are assumed to be fully
etched through the waveguide. The two sets of holes cre-
ate a microcavity with a resonant defect state inside the
gap. The microcavity resonance peak was designed to be
near the 1.5-um optical communication wavelength. The
transmission responses of such small-volume cavities
have already been studied experimentally for telecommu-
nication wavelengths.?*
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Fig. 10. Air-bridge microcavity: (a) Dimensions of the photonic
bandgap air-bridge microcavity. Each square hole has a 250-nm
side. (b) Computational box and absorbers. (c) Theoretical
transmission of the photonic bandgap air-bridge microcavity.
Thicker curve, the present method; thin curve, the finite-element
modal method with perfectly conducting walls.
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For the computation we assume that the center-to-
center defect length is 600 nm and the center-to-center
distance between two adjacent holes is 450 nm. The
relative permittivity of the air-bridge waveguide is 12.1.
The waveguide is 200 nm thick and 500 nm wide, and
therefore it supports only a single TE-like mode in the
wavelength ranges of interest.

To solve the electromagnetic problem we make the air-
bridge cavity periodic in the x and y directions (periods w,
and w,) and insert absorbers between the waveguides;
see Fig. 10(b). The absorber layers are parallel to the xz
and yz planes and delimit a rectangular computational
box. As above, we again obtain a biperiodic diffraction
problem. However, instead of through the approach of
Subsection 5.A, biperiodicity is achieved through a double
artificial periodicity process. Thus the electromagnetic
field is looked for as a purely periodic function of the x and
y coordinates. For instance, magnetic field H is written
as

H = ZE (lemx + Uylmy + Uzlmz)
,m

X exp[ —jlK,x — jmK,y], (18)
with K, = 27/w, and K, = 27/w,, .

For the computation, the PML absorbers are defined as
in Fig. 10(b). For type 2 absorbers, p,, = p,, = €.,
= &, =a and u,, = &,, = Vo, where a = 3(1 + ).
For type 1 absorbers, u,, = u,, = €,, = &,, = @ and
My = €xx = Va. For the four corner absorbers of Fig.
10(b), pyy = pyy = &4 = &8yy =1 and u,, = ¢,, = a?.
It is easily verified that, for this set of parameters, the ab-
sorbers are reflectionless and the (1 + j) factor in the ex-
pression of a absorbs both evanescent and propagating
waves. Every absorber in Fig. 10(b) is 0.2 wum thick.
The computation is performed with w, = 0.8 um and w,
= 1.1 um, and for a square truncation with M = =10
Fourier harmonics retained in each direction. It is worth
mentioning that retaining 961 orders in a three-
dimensional Fourier modal method represents a large
amount of computation. We exploited symmetry consid-
erations similar to those reported in Ref. 25 in the code
for the eigenproblem and the S-matrix computations to
take advantage of the diffraction-problem degeneracy and
to reduce memory requirements. With this approach,
CPU times to compute the transmission for one frequency
on a PC equipped with a 450-MHz Pentium IIT processor
are 4, 15, 39, 86, 166, 294, and 487 min for +5, 7, 9, 11,
13, 15, and 17 retained orders in each direction (see Table
2). For comparison, CPU times without exploitation of
symmetry for =5, 7, 9, and 11 retained orders in each di-
rection are 5, 22, 68, and 179 min. We are not able to
provide computational times for =13 retained orders
without exploiting any symmetry because of computer
memory requirements.

The darker, thicker curve in Fig. 10(c) shows the trans-
mission spectra of the air-bridge cavity computed with the
present method. At the resonance wavelength (\
~ 1.51 um), the peak transmission is ~60% and the
quality factor is ~800. The thinner curve in Fig. 10(c)
represents the computed transmission with a finite-
element modal method often used for microwave
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Table 2. Convergence Performance for the
Air-Bridge Problem

Harmonic (M) R T
2 0.5220 0.0075
3 0.0056 0.4262
4 0.6553 0.3328
5 0.6676 0.2384
6 0.8874 0.1517
7 0.7358 0.0897
8 0.7636 0.0919
9 0.7092 0.0835
10 0.7342 0.0872
11 0.7298 0.0860
12 0.7324 0.0853
13 0.7352 0.0854
14 0.7281 0.0843
15 0.7319 0.0847

engineering.?® The results are obtained with perfectly
conducting walls surrounding the microcavity. As a con-
sequence, the approach does not consider any loss by scat-
tering, and this is why the transmission reaches unity for
several frequencies. Although the two numerical meth-
ods do not deal with exactly the same diffraction problem,
the comparison provides a qualitative validation of the
present method. It is found that the peak transmission
and the short-wavelength band edge (the one for which
the losses are small) are accurately located. For the
long-wavelength band edge and the ripples on the two
sides of the gap, qualitative agreement is obtained.

6. CONCLUSION

A simple, efficient, and stable method for analyzing wave-
guide and grating diffraction problems is proposed. We
formulated this method by extending the domain of appli-
cability of grating theories to aperiodic structures, espe-
cially to the diffraction structures encountered in inte-
grated optics. The method relies on an artificial
periodicity of the aperiodic structures and on incorporat-
ing artificial absorbers to satisfy the ingoing wave condi-
tion. We tested the approach for several waveguide dif-
fraction problems. These problems include two-
dimensional classic problems such as those associated
with Bragg mirrors or grating couplers and more-
sophisticated three-dimensional problems such as those
associated with integrated diffraction gratings (photonic
crystal waveguides) and waveguide air-bridge microcavi-
ties. Both available numerical data from finite-
difference and finite-element techniques and experimen-
tal data for three-dimensional problems were used for
validating the approach. Excellent agreement was
achieved in all cases. Rigorous coupled-wave analysis
was used here to support the analysis, but we believe that
the approach is applicable to other grating theories.

The results are clearly encouraging. Improvements
can be expected with use of better absorbers or of coordi-
nate transforms to rescale the direction of the artificial
periodicity. From the point of view of waveguide theory,
the present Fourier method belongs to the general class of
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modal spectral methods; it improves and generalizes pre-
vious studies®2772? that relied on the use of Fourier series
in waveguide theories, and it provides solutions to prob-
lems that were not investigated previously. From the
point of view of grating theory, it extends the domain of
applicability of RCWA.
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