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Rigorous coupled-wave analysis (also called the Fourier-modal method) is an efficient tool for the numerical
analysis of grating diffraction problems. We show that, with only a few modifications, this method can
be used efficiently for the numerical analysis of aperiodic diffraction problems, including photonic crystal
waveguides, Bragg mirrors, and grating couplers. We thus extend the domain of applications of grating
theories. © 2000 Optical Society of America

OCIS codes: 050.1960, 050.1950, 130.2790, 230.7390.
Rigorous coupled-wave analysis1 (RCWA) is a versatile
tool for modeling grating diffraction problems. It is
a frequency-domain method based on computations
of the grating modes as eigenvectors and on Fourier
expansions for the permittivity and for the electro-
magnetic fields inside the grating region. With S-
or R-matrix propagation algorithms,2 RCWA can
efficiently solve almost all one-dimensional grating
diffraction problems with present desktop computers.
In this Letter we provide numerical evidence that, with
a few minor modifications, RCWA can also be used for
modeling aperiodic structures, especially waveguide
structures such as photonic crystal waveguides, Bragg
mirrors, and grating couplers. The following discus-
sion is restricted to planar waveguide geometries for
TE and TM polarizations. The reader is assumed to
be familiar with the RCWA method,1 with its enhanced
version3 for TM polarization, and with the S-matrix
propagation algorithm2 used for analyzing multilayer
structures.

Figure 1 shows one possible waveguide geometry
that will be used here to illustrate the method. This
geometry is the simplest realization of a photonic
bandgap structure; it was used recently as a third-
order mirror in a short-cavity AlGaAs semiconduc-
tor laser4 operating at 975 nm. For the following
discussion the corrugation profile is not necessarily
binary or periodic in the z direction. Both metallic
and dielectric materials can be considered. The
corrugated waveguide is assumed to be illuminated
from the input region by the fundamental TE0 or TM0
mode. The wavelength in vacuum of the incident
mode is denoted l �k0 � 2p�l�.

For analysis of such waveguide geometries with
RCWA, we introduce an artif icial periodization along
the x (vertical) coordinate, thus virtually replacing
the actual waveguide isolated in space with a periodic
waveguide structure. We denote by w the period
(or a computational box) in the x direction. With
this periodization, we can apply RCWA to solve the
diffraction problem. For the electromagnetic solution
of the periodic waveguide geometry and that of the
isolated waveguide structures to be identical, two
modif ications of RCWA have to be incorporated:

(1) Two absorbers with thicknesses Lc and Ls
near x � w�2 and 2w�2, respectively, are included, as
0146-9592/00/151092-03$15.00/0
shown in Fig. 1. To satisfy the outgoing and ingoing
wave conditions these absorbers (a) absorb the light
scattered by the corrugation, thus making electromag-
netically independent the neighboring waveguides of
the periodic waveguide structure, and (b) do not re-
f lect the scattered light, thus avoiding electromagnetic
contamination inside a single period. In this Letter
we use a simple approach, in which the absorbers
are composed of layers with complex refractive-index
distributions that vary linearly from ns 2 0i to ns 2 1i
for the substrate absorber and from nc 2 0i to nc 2 1i
for the cover absorber. With modif ication (1) of the
index distribution profile, the waveguide modes and
their effective indices in all the layers are computed as
eigenvectors and eigenvalues with the standard RCWA
algorithm. Note that the electromagnetic field is
looked for as a purely periodic function of the x
coordinate and not as a pseudo-periodic one as in
standard grating theory. We obtain this function by
setting the angle of incidence equal to zero in a stan-
dard RCWA code (u � 0 in Refs. 1 and 3). Using an
S-matrix algorithm as we did in our simulations, the
amplitudes of the modes propagating backward (in
the 2z direction) and forward (in the z direction) at
the z � 0 and z � h planes, respectively, are related
through

Fig. 1. Waveguide geometry: The GaAs (refractive in-
dex, 3.5) cap, the GaAlAs (refractive index, 2.9) undercap,
and the GaAs core are 100, 300, and 240 nm thick, respec-
tively. The groove width is 80 nm, and the Bragg grating
period is 500 nm. Lc and Ls are the absorber thicknesses,
and d is the groove depth.
© 2000 Optical Society of America
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where b�i� �f�i�� are column vectors whose elements
are the amplitudes of the modes propagating back-
ward (forward) at the plane z � 0. Similarly, f�t� is
composed of the amplitudes of the modes propagating
forward at the plane z � h. The zero vector on the
right-hand side of Eq. (1) expresses the fact that no
light is impinging on the corrugated waveguide from
the output region �b�t� � 0�. For the specific wave-
guide geometry of Fig. 1, the S-matrix computation
involves propagation through 11 layers.

(2) With RCWA and most grating theories, a
Rayleigh expansion is used to describe the electro-
magnetic f ield in the input and output homogeneous
regions. In the present case the field expansions in
the input and output regions are periodic Floquet ex-
pansions like those for all the layers of the corrugated
region. Assuming that the corrugated waveguide is
illuminated by the fundamental TE0 or TM0 mode
with a unitary amplitude, all components of vector
f�i� in Eq. (1) are zero, except the pth component f �i�

p ,
which is equal to 1, p being the eigenmatrix-column
number that corresponds to the fundamental mode.
Using Eq. (1), we then compute the amplitudes of
the backward- and forward-propagating modes. If
we define the ref lected intensity R by the amount
of light that is backref lected into the fundamental
input mode, R is simply equal to jb�i�

p j2. Similarly,
the transmitted intensity T defined by the amount
of the light transmitted into the fundamental output
mode is defined by the ratio between the time-averaged
Poynting vector z components of the fundamental out-
put mode and that of the fundamental input mode. T
is simply jf �t�

p j2 for the waveguide geometry of Fig. 1,
since the input and output regions are identical.
This second modif ication concerns only the treatment
of the first and last interfaces at z � 0 and z � h,
respectively. The modif ication is rather small, and it
even simplif ies the RCWA code, since the same field
expansions are used for all regions. For instance,
computation of matrices YI and YII in Eqs. (21) and
(24) of Ref. 1 is no longer needed. The programming
effort needed to incorporate modif ications (1) and (2)
into a grating RCWA code equipped with the S-matrix
algorithm is rather minimal.

The solid curves in Fig. 2 represent the ref lected
and the transmitted intensities for the geometry of
Fig. 1 as a function of etching depth d. The quan-
tity 1 2 R 2 T represents the amount of scattered
light. To assess the accuracy of the computation
we also implemented a well-established numerical
method in waveguide theory, the method of lines5

(MOL). The MOL numerical values are shown as
pluses in Fig. 2. They agree well with the RCWA
computation values: The maximum deviations be-
tween the MOL and the RCWA results are 0.23% for T
and 0.94% for R. The solid curves in Fig. 3 illustrate
the convergence performance of the RCWA approach,
for d � 1000 nm and for two periods, w � 3l and
w � 6l. Figures 3(a) and 3(b) correspond to TE and
TM polarization, respectively. For comparison, the
convergence rate of the MOL for a computational-
window width of 3l is shown by pluses. Our MOL
implementation uses a uniform discretization, the
absorbing boundary conditions of Ref. 6 and the
finite-difference expressions of Ref. 7, for modeling
permittivity discontinuities accurately. The RCWA
approach performs well; it converges even faster
than the MOL approach. Typical RCWA CPU times
obtained for TM polarization with a Pentium 233-MHz
processor are 4 s for N � 51 and 30 s for N � 101.
Note that the computation requires solution of only two
eigenproblems.

The Fourier approach presented in this Letter can
also be used to eff iciently study homogeneous prob-
lems8 in waveguide gratings. It is well established
that the resonance anomalies of grating waveguide
filters, the coupling lengths of grating couplers, and
the stop bands of Bragg waveguide mirrors or of

Fig. 2. Ref lected and transmitted intensities for the
mirror problem of Fig. 1 for TE polarization and for
l � 975 nm. Solid curves, RCWA results with N � 301
retained Fourier harmonics (Lc � Ls � 0.5l and w � 3l).
Pluses, MOL results with 300 discretization points and a
3l computational-window size.

Fig. 3. Convergence performance for d � 1000 nm.
(a) Ref lected intensity for TE polarization. (b) Transmit-
ted intensity for TM polarization. Solid curves, RCWA
results for w � 3l, 6l. Pluses, MOL results for a 3l
computational-window size.
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Table 1. neff Values Obtained with Lc � Ls � 1la

N
CPU

Time (s) w � 6l w � 8l

TE mode
21 0.7 0.015i 1 1.577 0.006i 1 1.571
41 3.3 0.015i 1 1.582 0.014i 1 1.581
61 10 0.015i 1 1.582 0.014i 1 1.582
81 24 0.015i 1 1.582 0.014i 1 1.582

TM mode
21 0.8 0.0045i 1 1.605 0.0026i 1 1.595
41 3.9 0.0044i 1 1.608 0.0142i 1 1.608
61 12 0.0044i 1 1.609 0.0043i 1 1.609
81 28 0.0044i 1 1.609 0.0044i 1 1.609

aThe TE and TM modes obtained in Ref. 9 are 0.014i 1 1.583
and 0.0047i 1 1.609, respectively.

surface-wave plasmons can be studied through the
complex poles of the determinant of a scattering matrix
that relates the diffracted and incidence waves; see,
e.g., Ref. 9, and references therein. In general, the
computation of the poles (or, equivalently, the effective
index neff of the leaky wave) requires that we find
the complex root of the determinant. The amount
of computation that one needs to evaluate the deter-
minant is approximately that required for solution
of the inhomogeneous grating problem.9 However,
the root search involves many iterative calculations
of the determinant. With the present approach, the
computation of neff does not require any iteration.
This computation consists of solving an eigenproblem.
Let us consider an arbitrary one-dimensional grating
waveguide with a period L along the z direction. The
waveguide mirror of Fig. 1, with an infinite extent
along the z direction, is one possible example. Let
us also consider two arbitrary planes, H1 and H2, as
shown in Fig. 1, located at coordinates z � z1 and
z � z2, respectively. We assume that z2 2 z1 � L.
With straightforward notation, the amplitudes of the
backward- and forward-propagating modes at planes
H1 and H2 are related by

∑
b�2�

f�2�

∏
� T

∑
b�1�

f�1�

∏
, (2)

where the T matrix is simply the so-called trans-
mission matrix.2 For binary lamellar gratings, the
T -matrix computation requires that we solve two
eigenproblems and invert two eigenvector matrices.
The effective index neff is related to the eigenvalue m

of matrix T by m � exp�2jk0neffL�. The leaky mode
is the corresponding eigenvector.

To test the efficiency of the approach we consider the
lamellar grating waveguide problem studied by Chang
et al.9 Table 1 shows the neff values obtained with
Lc � Ls � 1l for several values of w and N and for a 1l
groove depth (tg � l in Table III of Ref. 9). Basically,
excellent agreement with the values obtained by Chang
et al. is found, the largest difference between the two
sets of results being less than 0.001. CPU times ob-
tained with a personal computer equipped with a Pen-
tium 166-MHz processor are given in Table 1.

The numerical results reported here are encourag-
ing. However, the artificial periodization used in this
Letter (equivalently, the use of Fourier series in wave-
guide theory) is far from being on solid mathematical
ground, and much work is required for the present ap-
proach to be validated. For that purpose, better ab-
sorbers have to be designed. From the point of view of
waveguide theory, the present Fourier method belongs
to the general class of mode-matching methods; it im-
proves on previous work,10,11 which relied on the use
of Fourier analysis. From the point of view of grat-
ing theory, the present method extends the domain of
applicability of RCWA. A similar approach has been
used for electromagnetic analysis of distributed Bragg
ref lectors.12 We believe that other grating theories
may benefit from this work.

The authors thank J. P. Hugonin and P. Chavel for
fruitful discussions. This work was supported under
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dress is philippe.lalanne@iota.u-psud.fr.
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