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Blazed-binary optical elements with only binary ridges or pillars are diffractive components that mimic stan-

dard blazed-échelette diffractive elements.

We report on the behavior of one-dimensional blazed-binary opti-

cal elements with local periods much larger than the wavelength. For this purpose, an approximate model
based on both scalar and electromagnetic theory is proposed. The model is tested against electromagnetic-

theory computational results obtained for one-dimensional blazed-binary gratings with large periods.

An ex-

cellent agreement is obtained, showing that the model is able to predict quantitatively the wavelength and the
incidence-angle dependences of the diffraction efficiency of blazed-binary structures. © 2000 Optical Society

of America [S0740-3232(00)01607-0]
OCIS codes: 050.1380, 050.1970, 050.1950.

1. INTRODUCTION

Blazed-binary optical elements are diffractive compo-
nents with binary profiles that achieve a high diffraction
efficiency in a specified order. They are composed of sub-
wavelength ridges, pillars, or other simple geometries
carefully etched in a dielectric film. The design of
blazed-binary optical elements relies strongly on the anal-
ogy between subwavelength gratings and homogeneous
thin films.! Essentially, the incident wave experiences a
local effective index that depends on the local fraction of
etched material. Consequently, when the size of the sub-
wavelength features is controlled, arbitrary refractive-
index distributions can be synthesized in a single mate-
rial, and “blazing” with binary features is achieved.

Recent experimental results,?? supported by numerical
computation,® have shown that blazed-binary optical ele-
ments composed of centrosymmetric subwavelength pil-
lars for operation with unpolarized light offer diffraction
efficiencies significantly larger than those achieved by
standard blazed-échelette diffractive elements in the
resonance domain. This enhanced performance has been
interpreted” as a pillar-waveguiding effect responsible for
a drastic reduction of the shadowing zone.

In this paper we are concerned with an approximate
model for predicting the wavelength and incidence-angle
dependences of the performance of blazed-binary struc-
tures with local periods much larger than the wavelength,
i.e., with a coded phase that is slowly varying at the scale
of the wavelength. This situation is of great practical in-
terest. For instance, slowly varying phase functions are
encountered for the central zones of diffractive lenses or
for geometrical aberration compensation and achromati-
zation of optical systems. The approximate model is de-
scribed in Section 2. The analysis is restricted to one-
dimensional (1-D) blazed-binary structures composed of
ridges operating for TM (magnetic vector parallel to the
ridges) or TE (electric vector parallel to the ridges) polar-
izations. In Section 3 the approximate model is tested
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against electromagnetic theory obtained for 1-D blazed-
binary gratings with periods up to 50 wavelengths. It is
shown that the approximate model is able to predict ac-
curately the wavelength and incidence-angle dependences
of the diffraction efficiency.

2. APPROXIMATE MODEL

Before describing the approximate model, we first briefly
outline the main steps leading to the design of blazed-
binary diffractive elements. Once an unwrapped phase
function ¢(x) is specified at a given (nominal) wavelength
N\ and at a given angle of incidence (in general, zero) [see
Fig. 1(a)], the corresponding diffractive phase function
W(x), equal to ¢(x) modulo 27, is generated [see Fig.
1(b)]. This diffractive phase function is then sampled on
a regular grid. The sampling period, or, equivalently,
the distance between two adjacent subwavelength ridges,
is denoted by A, and is shown in the enlarged window of
Fig. 1(c). A calibration curve® that relates the phase de-
lay for a given etched depth, or, equivalently, the effective
index, to the fraction of material removed is then used to
associate a specific microstructure fill factor with a spe-
cific phase shift [, in Fig. 1(c)]. The key point for the
following is that a systematic relationship exists between
the designed blazed-binary structures and the unwrapped
phase function. As illustrated in Figs. 1(b) and 1(c),
whenever the unwrapped phase shift is equal, modulo 2,
to an arbitrary value ¥, a specific subwavelength ridge
with a specific fill factor is generated locally. The model
we propose strongly exploits this relationship. It relies
on both scalar and electromagnetic theory.

A. Scalar Wave Approximation

Because of the slowly varying assumption, we first define
a complex-amplitude transmittance for the blazed-binary
diffractive element. As is usually done for calculating
propagation in Fourier optics, this transmittance is de-
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Fig. 1. Encoding a phase transfer function with blazed-binary
structures: (a) unwrapped phase transfer function, (b) phase
transfer function of the corresponding diffractive optical element,
and (c) corresponding blazed-binary structure.

fined as the ratio between the transmitted U, and the in-
cident U; complex scalar wave functions. These two
functions are such as the square of their modulus repre-
sent intensities. Because of the systematic relationship
we mentioned earlier, the transmittance ¢(¢) of the
blazed-binary diffractive element is a 27-periodic function
of the unwrapped phase ¢. Thus it can be expanded in a
Fourier series:

+oo

t(¢) = >, c,exp(jnd). 1)

The c,, coefficients are given by

1 2
Cp = —f t(¢)exp(—jn¢)de, (2)
27 Jo

and the nth-transmitted-order diffraction efficiency 7,
(we are generally concerned with 7;) is given by

M = leg|? 3)

The expansion in Eq. (1) describes the transmittance of
the blazed-binary structures as a coherent superposition
of scalar wave functions with a weighted intensity distri-
bution given by the »,’s. The diffraction efficiencies 7,
are computed through the numerical integration of the
right-hand side of Eq. (2). This integration requires the
knowledge of the complex-amplitude transmittance ¢(¢);
this will be explained in Subsection 2.B.

B. Zero-Order Local Grating Approximation
We assume that the blazed-binary structure is illumi-
nated by an incident plane wave A; in a medium of refrac-
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tive index n;. If we denote by 6; the angle of incidence,
this plane wave can be written as

A; = exp[ —jkon(sin 6;x + cos 6,2)], (4)

where A; denotes the y component of the magnetic field
for TM polarization or the y component of the electric field
for TE polarization. In Eq. (4) k2 (k = 27/\) denotes the
modulus of the incident wave vector in the vacuum. Note
that the wavelength A\ of the incident plane wave may be
different from the nominal wavelength \,. Locally, be-
cause the blazed-binary diffractive elements profile is
slowly varying, the incident plane wave A; sees a zero-
order lamellar grating at the scale of several wave-
lengths. By a zero-order grating, we mean a grating
whose orders are all evanescent except the zero-reflected
and zero-transmitted ones. The response of this zero-
order grating is easily computed with electromagnetic
grating theory. The only contribution in the transmitted
far field is the zero-order homogeneous plane wave A,
given by

A, = Ty(p)exp[ —jko(nysin 6;x + ngcos O3z)]. (5)

In Eq. (5) nj is the refractive-index of the emerging me-
dium and 65 is given by the Snell law, n;sin 6,
= ngsin 3. In Eq. (5) Ty(¢) is the normalized ampli-
tude of the zero-transmitted order.

We now derive the expression for the complex-
amplitude transmittance ¢(¢). The electromagnetic
quantity related to the light intensity U,U; or U;U? is
the z component S, of the time-averaged Poynting
vector.” For TE waves, S, is proportional to n; cos 6; for
the incident wave and ngcos 65T(h)Th(¢) for the zero-
order transmitted wave (the omitted proportional factor is
simply 1/2c ). Thus we can define U; and U, by U,
= (njcos 0)?A; and U, = (nscos 6;)"?4,, and the
complex-amplitude transmittance for TE waves is

ngcos 03

12
t(p) = ( ) To(9). (6)

nicos 6;

Similarly, for TM waves, S, is proportional to cos 6;/n
and (cos 03/n3)To(p)Th(¢) for the incident and the zero-
order transmitted waves, respectively. Thus U;
= (cos 6,/n)"?A;, U, = (cos 63/n3)"?A,, and the
complex-amplitude transmittance is

nqcos 63

12
tHop) = ( ) To(9). (7

nscos 64

As shown by Egs. (6) and (7), the numerical integration
of Eq. (2) requires the computation of the normalized am-
plitude T'y(¢) of the zero-transmitted order of many zero-
order gratings. The analysis of the two-dimensional
(2-D) blazed-binary structures requires electromagnetic
computations (the 7T'y’s) performed only on 1-D zero-order
gratings. Similarly, the analysis of three-dimensional
(3-D) blazed-binary structures (not investigated in this
paper), like those considered in Ref. 3, would require elec-
tromagnetic computations performed only on 2-D zero-
order gratings. Although we restricted the analysis to
the transmitted far field for the sake of conciseness, note
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that the reflected field is straightforwardly obtained
through the computation of the normalized amplitudes of
the zero-reflected order.

3. TESTING THE APPROXIMATE MODEL

In this section we test the approximate model against
electromagnetic theory. In principle, the approximate
model is valid for any blazed-binary structure encoding
an unwrapped phase function that is slowly varying at
the scale of the wavelength. However, because full elec-
tromagnetic analysis of arbitrary blazed-binary struc-
tures (like lenses or spot array generators) with finite ap-
ertures is unpractical with today’s computers, the model
is tested against electromagnetic results obtained only for
blazed-binary gratings with periods up to 50 wavelengths.
These blazed-binary gratings are assumed to be composed
of grooves etched into a TiO, layer (the refractive index is
equal to 2.3) coated on a glass substrate (n; = 1.52).
They are illuminated from the glass substrate, and they
are designed for a normally incident plane wave at the
nominal wavelength of Ay = 633nm. We partly take
into account fabrication constraints by limiting the maxi-
mum encoded effective index to a value of n,, = 1.67.
This value is the one used in Ref. 3 for blazed-binary
structures composed of subwavelength pillars. The
depth of the blazed-binary gratings is No/(np. — D).
Fabrication constraints for small fill factors (small effec-
tive indices) are not considered in this theoretical study,
but they could have been easily incorporated by clipping
the function T(¢) for small ¢ values. The rigorous
coupled-wave analysis® (RCWA) and its enhanced
version’ for TM polarization are used for the computa-
tions.

A. Normal Incidence and Nominal Wavelength

In this subsection we assume that the blazed-binary grat-
ings are illuminated at normal incidence from the glass
substrate and at the nominal wavelength A\ of the design.
Let us consider first the TM polarization case. Figure 2
shows three examples of the function T'y(¢) for three dif-
ferent sampling periods A,. The solid, dashed, and dot-
ted curves correspond to Ay = N\o/2, \o/5, and \ /10, re-
spectively. We note only a small difference among these
three curves. This small difference reflects in the corre-
sponding values for 7; in Eq. (3). that are nearly identi-
cal: 7, = 97.1, 97.1, and 96.9% for A, = \y/2, \o/5, and
No/10, respectively. These three values are represented
as horizontal lines in Fig. 3. They correspond to the first-
transmitted-order diffraction efficiency of an arbitrary
blazed-binary diffractive element (lenses, kinoforms) with
an infinitely slowly varying phase function. Thus they
also correspond to the first-transmitted-order diffraction
efficiencies of blazed-binary gratings with infinitely large
periods. In addition, the first-transmitted-order diffrac-
tion efficiency of blazed-binary gratings computed with
the RCWA are plotted as a function of the period-to-
wavelength ratio. Squares, triangles, and stars are ob-
tained for A, = No/2, N¢/5, and \/10, respectively. In
Fig. 3 it is noticeable that although the sampling period
has a weak effect on the asymptotic efficiencies, it has a
strong effect on the performance of the blazed-binary
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Fig. 2. Modulus of the normalized amplitude of the zero-

transmitted order for three sampling periods [A; = \y/2 (solid
curve), A, = \o/5 (dashed curve), and A; = \(/10 (dotted curve)]
and for TM polarization. Because normal incidence from the
glass substrate at the nominal wavelength is assumed for the
computation, the argument of Ty(¢) is simply ¢ in this specific
case.
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Fig. 3. One-dimensional blazed-binary gratings for TM polar-
ization. First-transmitted-order efficiency as a function of the
period-to-wavelength ratio for a normal incidence from the glass
substrate. The horizontal lines correspond to the asymptotic
predictions for A/\, — .

gratings for moderately large period-to-wavelength ratios.
The best performance is achieved for the largest sampling
period. The reason comes from a waveguiding effect, as
explained in Ref. 4.

The overall shapes for the curves in Fig. 3 indicates
that the predicted asymptotic values for 7; are qualita-
tively correct. To test the model more quantitatively, we
now compare the asymptotic predictions with the extrapo-
lated values obtained from the RCWA numerical results.
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For this purpose, we use a polynomial interpolation based
on the assumption that the efficiency is a polynomial
function of the wavelength-to-period ratio,

N N-1 A i
BB

A

where N is a natural number related to the number of
known (calculated by the electromagnetic theory) values.
The efficiency for infinitely large periods is simply given
by ay. To compute the a; coefficients, we use Neville’s
algorithm.®2 This algorithm is a recursive method that
has the advantage of allowing us to calculate an error es-
timation of the extrapolated values. For the extrapola-

Table 1. TE Polarization. Comparison of the
Asymptotic Values 7, of the First-Transmitted-
Order Efficiency Predicted by the Approximate
Model and the Extrapolated Values a, Obtained

from the RCWA Results of Fig. 3¢

Ay = N2 Ay = No/b Ay = N\/10
Value (%) (%) (%)
m 97.1 97.1 96.9
ag 97.2 96.7 97.0
(error estimate) (0.6) (0.6) (0.2)

¢The values given in parenthesis correspond to the estimated errors of
the coefficients a .

Table 2. Same As Table 1 Except for TE Polariza-
tion and RCWA Values Obtained from Fig. 4

Ay = N\o/2 Ag = No/5 Ay = N\y/10
Value (%) (%) (%)
m 96.2 96.7 96.7
ag 96.3 96.9 96.6
(error estimate) (0.1) (0.3) (0.1)

/
/ B—f As=2e2
J A oA Ag=hoS
se-/I/ +— = As=M/10
i
84y
!

Fig. 4. Same as Fig. 3 but for TE polarization.
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Fig. 5. First-transmitted-order diffraction efficiency versus
angle of incidence 6; in glass for TM polarization. Solid (A,
= No/2) and dashed (A; = \y/5) curves, asymptotic predictions
of the model for A/Ny — . Pluses and crosses, RCWA compu-
tational results obtained for 50\ -period blazed-binary gratings
with A, = No/2 and \y/5, respectively.

tion we considered four RCWA diffraction efficiencies ob-
tained for the four largest period-to-wavelength ratios
(A/Ny = 20, 30, 40, and 50). The results of the extrapo-
lation for N = 3 are given in Table 1. An excellent
agreement between the extrapolated efficiencies and
those predicted by the approximate model is obtained.
The maximum deviation is only 0.4%, a value that re-
mains inferior to the estimated error.

We performed the same computational tasks for TE po-
larization. The results are reported in Table 2 and in
Fig. 4. Once again, excellent agreements between RCWA
computational results and the predictions from the ap-
proximate model are obtained. Note that the vertical
scale in Figs. 3 and 4 has been expanded to visualize rela-
tively small discrepancies between the approximate
model and RCWA results.

B. Nonnormal Incidence and Nominal Wavelength
In this subsection we study the response of blazed-binary
gratings under oblique illumination. We first consider
the TM polarization case and two 50\,-period blazed-
binary gratings. Figure 5 shows the first-transmitted-
order diffraction efficiency (computed with RCWA) as a
function of the angle of incidence in glass. Pluses corre-
spond to A; = \y/2, and crosses to A, = N\y/5. The curves
represent the asymptotic values 7; of the efficiency for in-
finitely large periods. The solid and dashed curves are
obtained for A; = \y/2 and Ay/5, respectively. A good
agreement between RCWA computational results and the
predictions from the approximate model is obtained. The
discrepancy is smaller, and usually much smaller, than
4%. A similar agreement is obtained for the TE polariza-
tion case, as shown in Fig. 6.

In Fig. 5 we note that the blazed-binary grating with a
sampling period of \ (/2 is much more sensitive to the ob-
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lique illumination than the blazed-binary grating with a
smaller sampling period A; = \¢/5. There are two rea-
sons for that. First, for 15° < 6; < 25°, guided-mode
resonances are excited for the A, = \/2 case and for fill
factors larger than 0.4. These guided-mode resonances
result in a drastic decrease of the grating transmission.
Of course, they do not exist in the A; = A\/5 case. Sec-
ond, the subwavelength gratings seen locally by the inci-
dent plane wave for A; = \y/2 do not behave as zero-
order gratings at any angle of incidence. More
specifically, for | §;| > 18°, the reflected negative first dif-
fracted order of these subwavelength gratings becomes
nonevanescent in glass. This order is significantly ex-
cited, especially for |6;| > 25°. For A, = \y/5, the non-

100

80
70+
60

50

Efficiency (%)

6, (°)
Fig. 6. Same as Fig. 5 but for TE polarization.

Efficiency (%)

AN
0

Fig. 7. First-transmitted-order diffraction efficiency versus nor-
malized wavelength N\, for TM polarization. Solid (A,
= \o/2) and dashed (A; = \y/5) curves, asymptotic predictions
of the model for A/Ny — %. Pluses and crosses, RCWA compu-
tational results obtained for 50\,-period blazed-binary gratings
with A, = No/2 and /5, respectively.
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Efficiency (%)

Fig. 8. Same as Fig. 7 but for TE polarization.

zero diffracted orders of the subwavelength gratings are
all evanescent. A similar interpretation holds for the TE
polarization case in Fig. 6, except that no waveguide reso-
nance is observed in this case.

C. Normal Incidence and Nonnominal Wavelength

In this subsection we test the wavelength-dependence of
blazed-binary gratings as a function of the normalized
wavelength (N/\y) for TM polarization. We have com-
puted with electromagnetic theory the efficiency of the
first-transmitted order of diffraction for a period equal to
50\, represented by the crosses and the pluses in Fig. 7
for A, = \o/2 and \ /5, respectively. The asymptotic val-
ues of the efficiency for infinitely large periods have also
been predicted with the approximate model. The results
are represented by the curves. The solid and dashed
curves hold for A, = N\y/2 and \,/5, respectively. The
same computational tasks for TE polarization have been
done. The results are reported in Fig. 8. It is clear from
these graphs that there is a good agreement of the
asymptotic values and the electromagnetic computation
for period of 50 wavelengths.

In Fig. 7 we note that the blazed-binary grating with a
sampling period of \y/2 is much more sensitive to the
wavelength than the blazed-binary grating with a smaller
sampling period A; = \y/5. This higher sensitivity is ex-
plained by the fact that the effective index of subwave-
length gratings is highly wavelength-dependent for large
sampling periods. In general, the effective index 7.
of subwavelength lamellar gratings can be expanded in
a power series of Ay/Ng, Neg = Negro + Negra(As/Ng)?
+ -+, where n.4y and n .9 depend only on the angle of
incidence and on the permittivity contrast; see, for in-
stance, Ref. 9. A similar interpretation holds for the TE
polarization case in Fig. 8.

4. CONCLUSION

In this work we proposed an approximate model to predict
the behavior of one-dimensional blazed-binary structures
with local periods much larger than the wavelength. The
model is based on both scalar and electromagnetic theory.
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It is rather simple and requires only electromagnetic com-
putations performed on zero-order gratings. The accu-
racy of the model was tested against RCWA computa-
tional results obtained for blazed-binary gratings with
large periods. First, the model has been tested for a nor-
mal incidence and for nominal design wavelength against
asymptotic values extrapolated from RCWA numerical re-
sults obtained for blazed-binary gratings with periods in-
creasing up to 50 wavelengths. An excellent agreement
between these extrapolated values and the model predic-
tions was obtained. Second, it was shown that the model
is able to predict quantitatively the wavelength and
incidence-angle dependences of the diffraction efficiency
of blazed-binary structures.

This simple model appears to be an efficient tool to pre-
dict and optimize the performance of blazed-binary struc-
tures dedicated to geometrical aberration correction or
achromatization. The model can be applied to many
other different diffractive structures, like standard
blazed-échelette diffractive elements with coatings, for in-
stance.
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