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The grating thickness limit lFP between the Raman–Nath and the Bragg diffraction regimes is calculated for
an index grating placed in an asymmetric Fabry–Perot resonator with a totally reflecting back mirror and
compared with that which was obtained for the same grating with no cavity lM . Owing to the increase of the
effective interaction length inside the Fabry–Perot cavity, the stronger the front mirror reflectivity R1 of the
cavity, the smaller the thickness above which the whole diffracted intensity can be concentrated into one
unique diffracted beam: lFP 5 @(1 2 AR1)/(1 1 AR1)#lM/2. © 2002 Optical Society of America

OCIS codes: 090.1970, 090.7330, 190.4360.
1. INTRODUCTION
The diffraction of light on holograms is of interest for fun-
damental reasons and because of its applications to opti-
cal signal processing.1,2 Although Raman–Nath diffrac-
tion on thin holograms is quite useful, Bragg diffraction
on thick gratings is probably more interesting because
then diffracted light is condensed into one unique mode,
provided that the incidence angle and wavelength of the
read beam fulfill the so-called Bragg resonance condition.
The transition between Raman–Nath and Bragg diffrac-
tion regimes has been studied extensively for simple
gratings.3–8 The most commonly used thickness crite-
rion is that the grating thickness be larger than some
threshold, depending on the grating period and on the
light’s wavelength, to be in the Bragg regime where
higher diffraction orders become vanishingly small.

However, even in the Bragg regime the diffraction
properties of gratings are often limited by the small
refractive-index changes that can be induced or by the
thinness of the nonlinear materials. It has been
shown9–12 that one can overcome these limitations by put-
ting the grating into a Fabry–Perot resonator. Strong
improvement results when it is assumed that all the dif-
fracted energy is concentrated into the main diffraction
order. The diffraction regime must therefore be exam-
ined, and our aim in this paper is to derive a thickness
criterion for the intracavity model.

The intensities of the higher-order diffraction modes
are therefore calculated, and it is shown that, for intra-
cavity as well as for conventional bare gratings, there is a
minimum thickness above which these intensities are
negligible. The model used to describe intracavity Bragg
0740-3224/2002/050965-08$15.00 ©
gratings is described in Section 2; all diffracted orders,
even though the read beam is incident at the Bragg angle,
are taken into account. The Bragg criterion is discussed
in Section 3; the conventional bare grating is considered
the limit where the resonator mirror reflection coefficients
are zero. In Section 4 the situation of double resonance
is examined, for which the main and the first higher-order
diffraction modes both fulfill the Fabry–Perot resonance
condition.

2. INTRACAVITY BRAGG GRATING: THE
MODEL
A. Description of the Device
The model used for the derivation of the Bragg criterion is
a direct extension of the one developed by Menez et al.9 to
calculate the diffraction efficiency of intracavity Bragg
gratings. In such an intracavity holographic device the
lossless refractive-index grating is placed in a Fabry–
Perot resonator; the grating fringes are parallel to the z
axis, whereas the cavity mirrors are parallel to the x axis
of our coordinate system (see Fig. 1). We consider a sinu-
soidal grating characterized by its average refractive in-
dex n0 , its refractive-index modulation Dn, and its spa-
tial period L 5 2p/K such that

n 5 n0 1 Dn sin~K • r!

5 n0 1
Dn

2i
@exp~iK • r! 2 exp~2iK • r!#. (1)

The resonator has a thickness l and is composed of two
mirrors with amplitude reflectivities r1 and r2 , which
may be complex.
2002 Optical Society of America
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B. Wave Equation and Phase-Matching Conditions
An incident plane and monochromatic read wave EI with
wavelength l0 and Bragg resonant refraction angle
u 5 arcsin(l/2L) inside the cavity produces reflected and
transmitted waves (ER , ET) and reflected and transmit-
ted diffracted waves (ERDp

and ETDp
), where p is the dif-

fraction order. The amplitudes of the forward intracavity
read and pth-order diffracted waves are, respectively, RF
and SFp

. Their wave vectors are kF and kFp8 , respec-
tively. The backward waves, which are due to reflection
on the mirrors, have subscripts B instead of F (see Fig. 1).
Propagation angles up of the diffracted waves are deter-
mined by the Raman–Nath relation

k~sin up 2 sin u! 5 pK, (2)

where k 5 2p/l, with l 5 l0 /n0 , and K 5 2p/L is also
related to sin u, which yields

sin up 5 ~2p 1 1 !sin u. (3)

The highest possible diffraction order pmax is limited by

u~2pmax 1 1 !sin uu < 1. (4)

This means that diffraction orders 1 and 22 can exist
only for internal read angles smaller than umax
5 arcsin(1/3) . 19.5°, and the smaller the angle, the
more diffraction orders in the nonlinear medium.

In the nonlinear medium the wave equation is

Fig. 1. Intracavity Bragg grating. The nonlinear medium
where the grating is recorded is inserted into a Fabry–Perot
resonator. An incident read wave EI gives rise to reflected ER ,
transmitted ET , and diffracted ERD and ETD waves, the numbers
in whose subscripts indicate their diffraction order. The intrac-
avity wave vectors of the read and diffracted waves are, respec-
tively, k and k8. They bear the subscripts F for forward propa-
gating and B for backward propagating. For simplicity,
refraction is not taken into account in this figure.
¹RF • k̂F exp~ikF • r! 1 ¹RB • k̂B exp~ikB • r!

1 (
pÞ0 p52pmax

pmax

@¹SFp
• k̂Fp

8

3 exp~ikFp
8 • r!¹SBp

• k̂Bp
8 exp~ikBp

8 • r!]

5
2ip

l0
H n0 1

Dn

2i
@exp~iK • r! 2 exp~2iK • r!#J

3 H ¹RF • k̂F exp~ikF • r! 1 ¹RB • k̂B

3 exp~ikB • r! 1 (
pÞ0 p52pmax

pmax

@¹SFp
• k̂Fp

8

3 exp~ikFp
8 • r! 1 ¹SBp

• k̂Bp
8 exp~ikBp

8 • r!#J ,

(5)

where k̂ are unit vectors of the corresponding direction k.
Equation (5) is equivalent to a system of 2 3 (2pmax
1 1) coupled equations, each corresponding to a different
wave vector. The sinusoidal form of the grating is char-
acterized by its Fourier components K and 2K, which
means that diffraction by this grating directly couples any
p-order mode only to ( p 2 1)- and ( p 1 1)-order modes.
In these conditions, only orders 1 and 21 are coupled to
the read wave (order 0) and therefore give rise to high dif-
fraction efficiencies. The higher-order modes coupled to
diffracted waves are necessarily less important. To se-
lect the significant terms of each equation properly we
must have a clear view of the phase-matching conditions.
Figure 2 shows the various wave vectors of the Raman–
Nath diffraction orders. The circle diameter is k. The
Raman–Nath relation [Eq. (2)] imposes phase matching
along the x axis, as all the x projections of the wave vec-
tors differ from one another by an integer number of K,
and no x dependence of the amplitude is taken into ac-

Fig. 2. Phase matching. The forward and backward wave vec-
tors of the read wave, kF and kB , and grating wave vector K are
represented as well as all diffracted waves kF8 and kB8 (num-
bered by their diffraction orders), according to the Raman–Nath
relation.
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count. RF , RB and SFp
, SBp

are therefore functions of z

only. A phase mismatch along the z direction implies
rapid attenuation of the corresponding wave and can be
tolerated only in the case of a thin sample; the object of
this study is to determine how thin that is. The 21 dif-
fraction order is the only phase-matched mode to the for-
ward incident wave as u21 5 2u, whereas the u pu diffrac-
tion order is phase matched to the 2u pu 2 1 diffraction
order as u2u pu21 5 2u u pu . The phase mismatch k(cos up
2 cos up11)z increases with u pu; this is one more clue to
help us in the simplification of Eq. (5).

We finally get two sets of four coupled propagation
equations, which relate the amplitudes of order 0; of the
main diffracted beam, order 21; and of the first two
higher diffraction modes, order 1 and order 22. More-
over, only the terms that have the smallest phase mis-
match Dkz 5 k(cos u 2 cos u1)z 5 k(cos u 2 cos u22)z are
kept in each equation:

cos u
dRF

dz
5

pDn

l0
@SF21

2 SF1
exp~2iDkz !#, (6)

cos u
dSF21

dz
5

pDn

l0
@2RF 1 SF22

exp~2iDkz !#,

(7)

cos u1

dSF1

dz
5

pDn

l0
@RF exp~iDkz !#, (8)

cos u1

dSF22

dz
5

pDn

l0
@2SF21

exp~iDkz !#; (9)

2cos u
dRB

dz
5

pDn

l0
@SB21

2 SB1
exp~iDkz !#,

(10)

2cos u
dSB21

dz
5

pDn

l0
@2RB 1 SB22

exp~iDkz !#,

(11)

2cos u1

dSB1

dz
5

pDn

l0
@RB exp~2iDkz !#, (12)

2cos u1

dSB22

dz
5

pDn

l0
@2SB21

exp~2iDkz !#.

(13)

The last step before solving these equations is to write the
boundary conditions on the cavity mirrors to relate the
forward-propagating waves to the backward waves on
each side of the resonator (z 5 0 and z 5 l):

SF1
~0 ! 5 r1SB1

~0 !, (14)

SF22
~0 ! 5 r1SB22

~0 !, (15)

r2SF1
~l ! 5 SB1

~l !exp~22ikl cos u1!, (16)

r2SF22
~l ! 5 SB22

~l !exp~22ikl cos u1!. (17)
C. Equation Resolution
Coupled differential equations (6)–(13) cannot be simply
solved analytically, and we have calculated the ampli-
tudes of the higher-order modes in two ways.

The first one treats the system in matrix form. The
unknown is a vector whose components are the four am-
plitudes of the relevant waves:

d

dz S SF1

RF

SF21

SF22

D 5 @u#S SF1

RF

SF21

SF22

D , (18)

where [u] is a 4 3 4 matrix. The matrix differential
equation can then be integrated by the Peano–Baker
method,13 and the four modes that are considered are cal-
culated in one step.

The second way is the method of successive approxima-
tions.14 We used the expressions of the read and 21 dif-
fraction order waves given in Ref. 9 to calculate the
higher orders added to the propagation equation at a sec-
ond stage. We have not yet found any circumstances in
which the two methods gave different results.

3. THICKNESS CRITERIA
In this section we analyze the influence of the grating
length on the intensities of the various diffracted beams.
The study of the intracavity device is based on the case of
a simple bare grating, and the usual thickness criteria
need to be reviewed before a new intracavity Bragg crite-
rion can be derived.

A. Simple Grating
In simple gratings the Bragg regime is usually associated
with thick grating diffraction, meaning that there is a
single diffracted beam,3 whereas the Raman–Nath re-
gime is understood as thin grating diffraction or the pres-
ence of multiple diffracted orders.4 The two diffraction
regimes are distinguished by use of the dimensionless pa-
rameter Q 5 2pll/L2, where Q , 1 for the Raman–
Nath regime and Q . 10 for the Bragg regime, although
it is sometimes said7 that the Bragg regime starts when
Q . 1 or that, on the contrary, even for Q . 10 the
higher-order diffracted waves can be of considerable im-
portance in gratings with large index modulation5 (Dn
; 1023 –1021). It is therefore necessary to be extremely
precise about our own definition of the Bragg diffraction
regime. We use here as a reference the criterion defined
by Mallick8: if QM 5 Q/2 5 pll/L2 is greater than 10
(or if l . lM 5 10L2/pl), the relative intensity of higher
orders is less than 0.01. His calculation uses a constant
diffracted amplitude per unit length, which cannot be ex-
tended to the intracavity case. Therefore we investigate
whether his criterion remains valid when we use our
model and consider the simple Bragg sample a particular
case of the intracavity device for which the reflection co-
efficients of the mirrors are zero. It is therefore useful to
recall his main results for comparison purposes. He ob-
tained for a relative intensity of order 1

I1 /I21 5 sinc2~Dkl ! . sinc2~QM!. (19)



968 J. Opt. Soc. Am. B/Vol. 19, No. 5 /May 2002 Menez et al.
His Bragg criterion is based on the decrease of the
maxima of the cardinal sine function, which permits defi-
nition of an absolute thickness threshold.

The result of our calculation is shown in Fig. 3. The
relative diffracted intensity of order 1 (I1 /I21) is plotted
versus QM for reflection coefficients equal to zero. Our
curve is also shaped approximately as a cardinal sine. It
is independent of index modulation in the range 1026

, Dn , 5 3 1023. The agreement with the result of
Mallick is good in the whole range mentioned. The high-
est value Dn 5 1022 that we have tested brings us to the
limit of the validity of Q-type criteria, as the grating
strength3 b 5 pDnlm /l cos u, sometimes called a modu-
lation parameter, must then be taken into account.5 The
practical range of interest for the intracavity device is re-
stricted to the cases when a bare grating would not give a
high diffraction efficiency, that is to say, when b ! 1.
This can mean a small index modulation or a limited
thickness of the material, as for multiple quantum wells,
which exhibit a low b in spite of a high Dn.15,16 The limi-
tation to small grating strengths therefore does not re-
duce the scope of our study, and we can use Mallick’s for-
mulation of the thickness criterion.

B. Intensity of Diffraction Order 21
The basic principle of our device is the choice of a resona-
tor length such that order 21 fulfills the Fabry–Perot
resonance condition. Given u, length lm is then a discrete
parameter that is related to Fabry–Perot interference or-
der m in the following way:

2lm cos u 5 ml. (20)

We use m as a normalized length parameter, so our re-
sults do not depend on the wavelength or the incidence
angle. When r2 5 1 the whole diffracted intensity is ex-
tracted from the cavity on reflection, propagating perpen-
dicular to the incident wave. In this way the diffracted
energy is not shared between the transmitted and the re-
flected beams, as would be the case in a symmetric
Fabry–Perot cavity. Figure 4 shows the variation of dif-
fraction efficiency (diffracted intensity normalized to inci-
dent read intensity I21 /IR) versus interference order m

Fig. 3. Bragg criterion in a bare grating. Relative diffracted
intensity I1 /I21 of order 1 normalized to order 21 is plotted ver-
sus QM 5 pll/L2. The reference level is plotted at 0.01 (dotted
line).
for two values of amplitude reflection coefficient r1 of the
front mirror. The curve exhibits a maximum that is close
to unity for which the whole intensity of the incident
wave is transferred to the reflected diffracted wave. The
corresponding optimum length

lopt 5
l0 cos u

pDn
arccosS 2r1

1 1 r1
2D

is a decreasing function of r1 and of index modulation Dn.
We are especially interested in the range of sample
lengths from 0 to lopt , where the order 21 diffracted in-
tensity increases by several orders of magnitude toward
its maximum, as there is no point in growing thicker crys-
tals to get into a range in which the diffraction efficiency
decreases.

In what follows, we examine the change caused in the
intensities of orders 1 and 22 by an asymmetric Fabry–
Perot resonator with r2 5 1, which is where the intracav-
ity device gives the best result. As the diffracted inten-
sity is then extracted only on reflection, as mentioned
above, the bare grating reference is a grating with a to-
tally reflecting rear mirror (r2 5 1), so the diffraction
properties can be directly comparable. It is interesting to
note that, as far as the intensities of the diffracted beams
are concerned, the bare grating with its rear mirror is ac-
tually equivalent to a double-length sample.

C. Intensities of Diffraction Orders 1 and 22
Order 22 is the mismatched result of diffraction of order
21 on the grating. In a bare Bragg grating it must re-
main small compared with order 1. It was therefore not
taken into account in the Bragg criterion by Mallick.
Our calculations extend this result to the intracavity
case. In Fig. 5 the relative intensity I22 /I21 of order 22
is plotted versus interference order m for the bare grating
(r1 5 0) and for an intracavity grating (r1 5 0.9). This
relative intensity is low and exhibits hardly any depen-
dence on sample length or on reflection coefficient r1 of
the front mirror. It increases with index modulation but
remains well below 1022 as long as Dn , 1022. Diffrac-

Fig. 4. Logarithmic plot of diffraction efficiency I21 /IR of order
21 versus Fabry–Perot interference order m for two reflection
coefficients values, r1 5 0.6 and r1 5 0.9.
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tion order 22 can therefore be safely ignored in the deri-
vation of the thickness threshold to the Bragg diffraction
regime.

Order 1, like order 21, is coupled to the incident wave.
The only difference between them lies in the phase-
matching condition, as order 21 is phase matched to the
incident wave and order 1 is not. Figure 6 shows the
variation of the order 1 diffraction efficiency versus m for
a bare grating (r1 5 0) and for an intracavity grating
(r1 5 0.9). The diffraction efficiency of the bare grating
is an oscillating function of l; the envelope of its maxima
remains almost constant. The diffraction efficiency of in-
tracavity order 1 seems to be flat compared with that of
the bare grating, except for sharp peaks that correspond
to the minima of the diffraction efficiency of bare grating
order 1. These peaks are double-resonance peaks, as we
show in Section 4 below. Anyway, it is obvious that the
order 1 diffraction mode is globally attenuated by the
Fabry–Perot resonator, except for its sharp maxima that
nevertheless do not exceed the maxima of order 1 for a
simple Bragg grating. We can therefore use Bragg order
1 as an overestimation of intracavity order 1 to define our
intracavity criterion.

Fig. 6. Logarithmic plot of order 1 diffraction efficiency I1 /IR
versus interference order m for a bare grating (r1 5 0) and for
an intracavity grating (r1 5 0.9).

Fig. 5. Logarithmic plot of relative intensity I22 /I21 of order 22
normalized to order 21 versus interference order m for a bare
grating (r1 5 0) and for an intracavity grating (r1 5 0.9).
This preliminary study of higher-order intensities has
restricted our field of investigation to the relative inten-
sity I1 /I21 of order 1 to find out the threshold thickness
from which higher-order intensities become negligible
relative to that of the main diffraction order.

D. Intracavity Bragg Criterion
The variation of relative intensity I1 /I21 is plotted versus
m in Fig. 7. From our study of order 1, we know that the
rapidly decreasing ratio (order 1/order 21) is due mainly
to the increasing intensity of order 21, as the maxima of
order 1 intensity do not decrease significantly. A new in-
tracavity length criterion can then be established, assum-
ing that the diffraction intensity of intracavity order 1 is
equal to the bare sample’s intensity (I1FP

. I1bare
), and if

only the variation of intracavity diffraction order 21 is
taken into account. To use Mallick’s results we need to
compare the ratio of order 1 to the order 21 diffracted in-
tensities of the intracavity grating and of the bare grat-
ing. Order 21 reflected diffracted intensity I21FP

for
Fabry–Perot resonant length values lm can be expressed
analytically as a function of the bare sample diffracted in-
tensity I21bare

in the following way:

I21FP
5 F ~1 2 r1

2!

~1 1 r1
2 2 2r1 cos 2b!

G2

I21bare
. (21)

This expression can be developed for small values of b
to give, to lowest order,

I21FP
5 F ~1 1 r1!

~1 2 r1!
G2

I21bare
. (22)

The accuracy of the development in the whole range of
length that we are interested in, that is, from 0 to lopt ,
depends on the value of r1 . For instance, the error is
less than 1% if r1 . 0.82.

From Mallick8 and taking into account that our bare
sample reference with its rear mirror is equivalent to a
double-length sample, we know that

if l .
lM

2
, then

I1bare

I21bare

, 0.01. (23)

Fig. 7. Logarithmic plot of relative intensity I1 /I21 versus in-
terference order m for a bare grating (r1 5 0) and for an intrac-
avity grating (r1 5 0.9).
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For Eq. (22) and with I1FP
replaced by its overestima-

tion I1bare
,

if l .
lM

2
, then

I1FP

I21FP

, 0.01F ~1 2 r1!

~1 1 r1!
G2

.

(24)

To find the new length threshold lFP from which the ra-
tio I1FP

/I21FP
is smaller than 1% we use the l dependence

of I21FP
. When we develop I21bare

5 sin2(2b) to lowest or-
der, the l dependence of I21FP

and hence of the ratio
I21FP

/I1FP
appear to be purely quadratic, and, using Mal-

lick’s criterion,

if l .
lM

2

~1 2 r1!

~1 1 r1!
5 lFP , then I1FP

/I21FP
, 0.01.

(25)

The lowest-order development of I21FP
can also be related

to the sample length at Fabry–Perot resonance lm and
compared to the development of the transmitted intensity
diffracted by a sample with no mirror at all, I21nomir

, to in-
troduce an effective interaction length10 that is due to the
Fabry–Perot cavity:

I21nomir
; b2 5 S pDnlm

l cos u
D 2

, (26)

I21FP
; F ~1 1 r1!

~1 2 r1!
G2

~2b!2

5 F ~1 1 r1!

~1 2 r1!
G2S 2

pDnlm

l cos u
D 2

5 S pDnleff

l cos u
D 2

,

leff 5
2~1 1 r1!

~1 2 r1!
lm . (27)

To compare the intracavity Bragg criterion [inequality
(25)] to the bare grating criterion [inequality (23)], we plot
in Fig. 8 the relative intensity of order 1 versus the modi-
fied Q parameter: QFP 5 @(1 1 r1)/(1 2 r1)#2QM for
three values of the front mirror’s reflectivity. It can be
seen that the validity of our criterion is independent of r1
and thus is quite general.

The Fabry–Perot resonator permits sharp attenuation
of diffraction order 1 relative to length. As expected, ow-
ing to the increase of the effective interaction length, the
critical length from which all diffracted energy can be
considered to be concentrated in one diffracted beam is re-
duced further by the presence of the cavity when the re-
flection coefficient is large.

A numerical example of a specific sample is now given
to illustrate this new criterion. We consider a grating in
semi-insulating multiple quantum wells.15 The grating’s
thickness of 1 mm, grating period L 5 2.4 mm, read wave-
length l0 5 840 nm, and refractive index n0 5 3.6 give
QM 5 0.12, clearly corresponding to a Raman–Nath dif-
fraction regime. The threshold thickness for the bare
sample is lM . 78 mm. Although the index modulation
is very large (1023), the diffraction efficiency is only of the
order of 1025 because the sample is thin and because
there are multiple diffraction beams. In an asymmetric
Fabry–Perot cavity with r1 5 0.9 and r2 5 1 we get, us-
ing inequality (25), lFP . 2 mm, which brings the thresh-
old down to a realistic value, even for multiple quantum
wells. For the 1-mm-thick sample of Ref. 12 we get QFP
5 4.8, and we can see from Fig. 8 that the order 1 rela-
tive intensity has decreased to 5 3 1022. The diffraction
efficiency can be calculated from Eq. (22), and we obtain
14%. Absorption has not been taken into account in this
derivation, although we know it can be quite large in
quantum wells and would certainly reduce the diffraction
efficiency of the main order. An adequate Fabry–Perot
resonator nevertheless contributes to a substantial reduc-
tion of high-order diffraction and can bring thin samples
into a Bragg diffraction regime.

4. DOUBLE RESONANCE
A reasonable idea about the effect of the Fabry–Perot cav-
ity on orders 1 and 22 diffracted intensities is that they
should be attenuated, except when they are in resonance
with the Fabry–Perot cavity modes. The curves plotted
in Figs. 5 and 6 confirm this guess. The attenuation of
order 1 intensity increases with the resonator length, ex-
cept for sharp peaks, which coincide with the minima of a
simple Bragg grating that must be interpreted. It is
therefore important to investigate whether orders 1 and
22 can be Fabry–Perot resonant simultaneously with or-
der 21. We refer to this situation as double resonance,
although it is actually quadruple resonance, as it con-
cerns the read beam, order 21, order 1, and order 22
(cos u 5 cos u21 and cos u22 5 cos u1). We show in this
section how double resonance can give rise to quenching
or enhancement of the diffraction efficiency of order 1, de-
pending on the sample length.

Three relations must be fulfilled simultaneously for
double resonance to take place at a given length:

sin u1 5 3 sin u (28)

from the Raman–Nath relation,

Fig. 8. Logarithmic plot of relative intensity I1 /I21 versus
modified Q parameter QFP 5 @2(1 1 r1)/(1 2 r1)#QM for three
reflection coefficient values (r1 5 0.9, r1 5 0.5 and r1 5 0, the
bare grating).
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2lDR cos u 5 ml ~m an integer! (29)

for the Fabry–Perot resonance condition for the read and
21 diffraction order beams, and

2lDR cos u1 5 ~m 2 Dm !l

~Dm an integer and Dm , m ! (30)

for the Fabry–Perot resonance condition for the 1 and 22
diffraction order beams.

It is clear that not all integer values of m can be com-
patible with Eqs. (28)–(30), and we finally obtain

cos uDR 5 S 1 1
Dm

4m
2

Dm2

8m2 D 2 1/2

. (31)

In Fig. 9, angle uDR is plotted as a function of the ratio-
nal number q 5 Dm/m with 0 , q , 1. The angle in-
creases steadily with q, showing a correspondence be-
tween the two parameters in the whole range of angles u
where order 1 exists: for every angle, one ratio (Dm/m)
and hence at least one couple (m, Dm) can be found.
Double resonance of order 1 and order 21 is then possible
for at least one Fabry–Perot length and all its multiples.

It is important to note that the condition for double
Fabry–Perot resonance implies that the phase mismatch
between the read beam and the order 1 diffraction beam
is an integer number of p: DklDR 5 Dmp. We find
therefore that intracavity enhancement of order 1 is neu-
tralized because the diffracted intensity that corresponds
to this length is weak. The amazing fact that we need to
explain is that the double-resonance peaks of the order 1
diffraction efficiency become maxima for the higher val-
ues of m. Figure 10(a) is a linear plot of the order 1 dif-
fraction efficiency, and Fig. 10(b) is a linear plot of the or-
der 21 diffraction efficiency, both relative to interference
order m. The juxtaposition of the two curves shows that
the double resonance gives rise to minima of order 1 in-
tensity in the range of resonator length where order 21 is
increasing and to maxima in the range where order 21 is
decreasing. We can compare the analytical expression
obtained for the amplitude of order 1 by the successive ap-

Fig. 9. Double-resonance intracavity refraction angle uDR ver-
sus relative difference Dm/m between the Fabry–Perot interfer-
ence orders of diffraction orders 1 and 21.
proximation method (see Subsection 2.C) with that of the
amplitude of the main diffraction order and its derivative
relative to b 5 pDnl/l0 :

SB1
~0 ! } H 2rF1

sin~2b! 1 Dk@cos~2b! 2 r1#

~1 1 r1
2 2 2r1 cos 2b!

2
Dk exp~2ikl cos u1!

1 2 r1 exp~2ikl cos u1!
J , (32)

where rF1
5 ipDn/l0 cos u and

SB21
~0 ! }

sin~2b!

~1 1 r1
2 2 2r1 cos 2b!

, (33)

dSB21~0 !

db
}

cos~2b!~1 1 r1
2!/2 2 r1

~1 1 r1
2 2 2r1 cos 2b!2 . (34)

The order 1 amplitude [relation (32)] is the sum of two
terms. For the small values of b considered in intracav-
ity Bragg diffraction the first term is close to the deriva-
tive of order 21 amplitude versus l, especially when r1 in-
creases [relation (34)]. It should therefore change sign at
lopt . The second term gives rise to the double-resonance
peaks when Eq. (30) is fulfilled. Its resonant value is a
decreasing function of lDR :

Dmp

~1 2 r1!lDR
. (35)

Fig. 10. Linear plots of (a) order 1 diffraction efficiency I1 /IR
versus the interference order m and (b) order 21 diffraction effi-
ciency I21 /IR versus interference order m.
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The minima or maxima of the double resonance come
from destructive or constructive interference between
these two amplitude terms. A specific double-resonance
length can hence be chosen to produce an extinction of or-
der 1. A relative enhancement can also be obtained in
the range of lengths where the main diffraction order is
decreasing.

5. CONCLUSIONS
We have calculated the intensities of diffraction orders 1
and 22 of an intracavity grating. The intensity of order
22 is negligible, and the intensity maximum of order 1
never exceeds those of the bare grating. We have there-
fore been able to use Mallick’s criterion to calculate a new
intracavity thickness threshold, lFP . When the effective
interaction length is increased, the intracavity setup of a
diffraction grating can significantly reduce the thickness
limit for the Bragg regime, where only one diffraction or-
der is present. The reduction factor is an increasing
function of r1 for an asymmetric Fabry-Perot cavity:
2(1 1 r1)/(1 2 r1). The Fabry–Perot resonance of the
diffraction order 1 gives rise to minima in the whole range
of length from 0 to lopt where the main diffraction order is
increasing, which definitely ensures that the Fabry–Perot
grating device will widen the range of the Bragg diffrac-
tion regime. The results of this study should prove use-
ful in the design of intracavity Bragg devices by use of
thin nonlinear media such as multiple quantum wells.

I. Zaquine’s e-mail address is Isabelle.Zaquine@enst.fr.
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