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The diffraction regime of a thin grating inserted in a Fabry–Perot cavity is investigated. Our calculations show
that, at Bragg incidence, a single diffraction order can be selectively enhanced, giving rise to a very efficient
Bragg-like diffraction regime. The optimization of the device is studied as a function of the resonator thickness
and finesse and the grating position inside the Fabry–Perot cavity. The angular and wavelength selectivities
are also investigated. The device could be easily integrated and would be very useful for optical signal-
processing applications. © 2005 Optical Society of America
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. INTRODUCTION
iffraction efficiency increase is a very important issue in
ptical signal processing.1–3 The Bragg diffraction
egime,4 in which the entire diffracted energy is concen-
rated in a single diffraction order, is the most efficient re-
ime. This regime can be achieved, at Bragg incidence,
nly beyond some grating thickness threshold. It has been
hown that inserting a volume grating in a Fabry–Perot
esonator is a good means of improving its efficiency, es-
ecially if the volume grating fills the cavity entirely.5 In
hat case, the thickness threshold toward the Bragg re-
ime can be significantly lowered6 because of the multiple
aths in the nonlinear medium, but many efficient non-
inear media are available only in such small thicknesses
hat no Bragg regime can be obtained in this way.

Here, we investigate another diffraction regime occur-
ing when a thin grating is inserted in a Fabry–Perot
esonator. Most of the time, such a device is operated at
ormal incidence to avoid the walk-off of the read beam in
he Fabry–Perot cavity.7–13 In that case, only the read
eam is Fabry–Perot resonant, and the diffracted beams
re all enhanced in the same manner. To favor a unique
iffraction mode, we use Bragg incidence and tune the
esonator accordingly. Both read and first-order diffracted
eams are then Fabry–Perot resonant, whereas higher-
rder diffraction modes are not. This results in a selective
nhancement that can lead, as we will show, to a diffrac-
ion regime in which the intensity of higher diffraction or-
ers is at least 100 times smaller than that of the main
iffraction order. This can usually be obtained only with
olume gratings or Bragg gratings, and we call it a
Bragg-like” diffraction regime.

Section 2 describes the model used for the calculations.
ection 3 shows how the cavity thickness, the reflection
0740-3224/05/112289-6/$15.00 © 2
oefficient, the one-pass grating efficiency, and the posi-
ion of the grating in the cavity can be chosen in order to
btain a Bragg-like diffraction regime and to optimize the
iffraction efficiency. Finally, Section 4 deals with the an-
ular and wavelength selectivities of the device.

. MODEL
he unslanted sinusoidal refractive-index grating, of in-

ensity diffraction efficiency �g, is inserted between two
irrors with reflection coefficients R1 and R2�1, respec-

ively [see Fig. 1(a)]. The thickness of this asymmetric
abry–Perot cavity is L. The real refractive index of the
avity medium is n. When illuminated by a plane wave of
avelength �0 and incidence angle �0, the grating gives

ise to a transmitted beam (order 0) and two diffraction
rders −1 and +1.

The propagation angle �p= �z ,kp
F,B� of the pth order

orward- and backward-diffracted waves (of wave vectors
p
F and kp

B, respectively) in the intracavity medium is de-
ermined by the Raman–Nath relation: k�sin �p−sin �0�
pK, where k=2� n /�0 and K=2� /� (� is the spatial pe-
iod of the grating). The corresponding forward and back-
ard wave vectors kp

F,B are shown in Fig. 1(b).
When the read beam is set at Bragg incidence �B ��0

�B�, the diffraction order −1 is symmetrical to the read
eam with respect to the z axis [see Fig. 1(b)]. The Fabry–
erot cavity can then be tuned to both read and
iffraction-order −1 beams. Considering that order +1 is
enerally not Fabry–Perot resonant in the device, for the
ake of simplicity, the waves of order p greater than one
re neglected and only the higher order −2, resulting from
005 Optical Society of America
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he diffraction of the resonant order −1 and symmetrical
o the order +1 with respect to the z axis, is taken into
ccount.
The reflected diffracted amplitudes of orders 0, −1, +1,

nd −2 are calculated using the product of matrices de-
cribing reflection on the mirrors, propagation in the cav-
ty, and diffraction on the thin grating, using a standard
echnique used for the description of multilayered dielec-
ric media.14

ig. 1. (a) Setup of the thin grating inside the Fabry–Perot reso-
ator and (b) the wave vectors of all considered diffraction or-
ers.
A four-dimensional vector F (or B) is formed with the
our forward- (or backward-) propagating complex ampli-
udes Sp corresponding to the diffraction orders from p=
2 to p= +1.

F�resp B� =�
S−2

S−1

S0

S+1

�
F�resp B�

. �1�

An eight-dimensional vector col�F ,B� is formed with all
mplitudes. Beam amplitudes considered before and after
he device are labeled using subscripts bd and ad, respec-
ively.

Considering the device of Fig. 1(a), the beam ampli-
udes before and after the device are related by

�Fbd

Bbd
� = M1P1DP2M2�Fad

Bad
� , �2�

here M1 and M2 describe the reflection on the front and
ack mirrors, respectively; P1 and P2 are the propagation
etween the front mirror and the grating and that be-
ween the grating and the back mirror, respectively; and

is the diffraction of the plane grating inserted in the
avity. M1, M2, P1, P2, and D are all 8�8 matrices de-
cribed hereafter as:

Mi =
1

ti
� I4 − riI4

− riI4 I4
� for i = �1,2�, �3�

here I4 is the four-dimensional identity matrix; and ri
nd ti are, respectively, the amplitude reflection and
ransmission coefficients of the considered cavity mirror.
i is related to Ri by �ri�2=Ri.

The propagation matrices are diagonal; each diagonal
erm represents the phase change �kp

F,B ·z l� for a beam of
ave vector kp

F,B propagating on a distance l. The two
ases considered here are the propagation between the
ront mirror and the grating �l1� and the propagation be-
ween the grating and the back mirror �l2�. The resonator
ength L is the sum of l1 and l2:

Pi = �Pi4
* 04

04 Pi4
� for i = �1,2�, �4�

here 04 is the four-dimensional zero matrix and Pi4 is
he propagation submatrix:
Pi4 =�
exp�jk−2 · z li� 0 0 0

0 exp�jk−1 · z li� 0 0

0 0 exp�jk0 · z li� 0

0 0 0 exp�jk+1 · z li�
� .



d

T
t
d
T
t
d
p
a
g
�
n
(
o

s

3
T
t
W
fl
r
t
n
a
=
=
e
t

t
a
o
r
=
f

t
s
c
fi
−
s
d
r
d
d
c
o
d
t

s
a
m
l
d
H
g
s
s
t
i

R
=
�
3
m
b
T
i
N
t
d
c

F
o

F
a
�

Moreau et al. Vol. 22, No. 11 /November 2005 /J. Opt. Soc. Am. B 2291
The matrix D is built from the symmetric, tridiagonal
iffraction submatrix D4:

D = �D4
−1 04

04 D4
�, with D4 =�

tg dg 0 0

dg tg dg 0

0 dg tg dg

0 0 dg tg

� . �5�

he D4 matrix relates the amplitudes before the grating
o the amplitudes after the grating. The amplitude of or-
er p after the grating is the sum of three contributions:
he first one is due to the transmission by the grating of
he amplitude of the order p, and the others are due to the
iffraction by the grating of the amplitudes of the orders
+1 and p−1. The amplitude transmission coefficient tg
nd the diffraction coefficient dg= j�g

1/2 of this sinusoidal
rating are related by the equation �tg�2+2�dg�2=1, where
g is the intensity diffraction efficiency of the grating. As
ot all the diffracted beams are considered in our analysis
we have limited our investigation to four diffraction-
rder beams only), the diffraction matrix is not unitary.

The numerical calculations are performed using a
imple MATLAB routine.

. DEVICE OPTIMIZATION
his section is devoted to the optimization of the device in
erms of diffraction efficiency and Bragg-like operation.
e define the diffraction efficiency as the ratio of the re-

ected diffracted intensity to the input intensity of the
ead beam, and we use the notation �D when we consider
he order −1 beam. The refractive index of the medium is
=2.8, and the wavelength �0 is set at 1 �m. The Bragg
ngle is related to the grating period by sin��B�
�0 / �2n��. The incidence is set at the Bragg angle (�B
5° for the 2 �m grating period � considered here as an
xample). Finally, the back mirror is almost totally reflec-
ive �R2�1�.

Figure 2 shows the variation of the diffracted intensi-
ies as a function of the resonator length, where order 0
nd order −1 are kept Fabry–Perot resonant (we consider
nly the resonator lengths for which order 0 and −1 are
esonant). The thin grating of diffraction efficiency �g
10−4 is positioned in the middle of the resonator, and the

ront-mirror reflectivity is R1=0.8.
As orders 0 and −1 are always Fabry–Perot resonant,

he diffraction efficiency is constantly equal to �D=10−1,
howing a very large enhancement (by a factor of 1000) as
ompared with that of the bare grating. The diffraction ef-
ciencies of orders +1 and −2 are lower than that of order
1 by more than 20 dB, except for cavity lengths corre-
ponding to quasi-resonance of these orders (i.e., when or-
ers +1 and −2 are also close to another Fabry–Perot
esonance) in the cavity. The closer that the +1 and −2 or-
ers are to the Fabry–Perot resonance, the greater their
iffraction efficiencies are. When the cavity is tuned to all
onsidered diffraction orders, the diffraction efficiency of
rder +1 is almost as large as that of order −1 so that the
iffraction efficiency of order −1 slightly decreases owing
o the read-beam depletion by the order +1 beam. As
hown in Fig. 2, this unfavorable situation can be easily
voided if the proper the resonator length is chosen. It
ust also be stressed that what we have called the Bragg-

ike operation of plane gratings is possible with very thin
evices that could be processed using nanotechnologies.
owever, for micrometer devices, the thickness of the

rating must be taken into account, and the results pre-
ented here are no longer valid. Finally, although this re-
ult has almost no practical consequences, let us note that
he decrease of orders +1 and −2 is an antiresonance ow-
ng to the sign change of the transmitted order 0 phase.

Figure 3 shows the influence of the reflection coefficient
1 on the diffracted intensities for a cavity thickness L
3.55 �m, with the thin grating of diffraction efficiency
g=10−4 again set in the middle of the resonator. In Fig.
(a), the diffraction efficiency of order −1 exhibits a maxi-
um at R1=0.96, which means that almost all the read-

eam energy is transferred to the main diffraction order.
his demonstrates the very high (10 000 in this case, for

nstance) increase in diffraction efficiency of the device.
aturally, the front-mirror reflectivity corresponding to

he maximum diffraction efficiency increases when �g is
ecreased. Beyond this optimal value, the diffraction effi-
iency steeply decreases, owing to the fact that the energy

ig. 2. Logarithmic plot of diffraction efficiencies as a function
f resonator length with �g=10−4 and R1=0.8.

ig. 3. (a) Diffraction efficiency of order −1 and (b) Bragg ratios
s a function of the reflection coefficient of the first mirror, with
=10−4 and L=3.55 �m.
g
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s diffracted back into order 0. The Bragg ratios shown in
ig. 3(b) represent the intensity ratio of the higher dif-

raction orders +1 and −2 to the Fabry–Perot resonant −1
iffraction order. For R1�0.51 the Bragg ratio of order +1
s less than −20 dB, showing again that the actual Bragg-
ike regime is easily obtained by inserting the plane grat-
ng in the Fabry–Perot cavity. Moreover, a very steep de-
rease of the Bragg ratio of this order with increasing
abry–Perot finesse can be seen, owing to the good dif-

raction efficiency of order −1. This decrease continues be-
ond R1=0.96 because of the phase change of the laser re-
ected beam. Finally, the Bragg ratio of order −2 keeps
lmost constant at a very low value ��−45 dB�, as the in-
ensity of this mode is proportional to that of order −1.

Figure 4 shows the variation of diffracted intensities as
function of the one-pass efficiency of the grating. The

hin grating of diffraction efficiency �g is set in the middle
f the 3.55 �m long resonator, and the front-mirror reflec-
ivity is R1=0.8. The diffraction efficiency of the order −1
eam, shown in Fig. 4(a), exhibits a maximum at �g
3.10−3, where all the read-beam energy is transferred to

he main diffraction order as occurs when the resonator
nesse is optimized [see Fig. 3(a)]. The Bragg ratios are

ig. 4. (a) Order −1 diffraction efficiency and (b) Bragg ratios as
function of the one-pass efficiency of the grating with L

3.55 �m and R1=0.8.

ig. 5. Logarithmic plot of diffraction efficiencies as a function
f the position of the grating inside the cavity with �g=10−4, L
3.55 �m, and R1=0.8.
epresented in Fig. 4(b). The Bragg ratio of order +1
eeps almost constant on this logarithmic scale, owing to
he fact that the energy of the 0 order beam is transferred
n the same way to the order −1 beam and to the order +1
eam by the grating so that only the Fabry–Perot reso-
ance makes the difference. The Bragg ratio of order −2
cales like �g, because the order −2 originates only from
he diffraction of order −1. For the chosen values of R1
nd R2, Bragg ratios are well below −20 dB, which means
hat a Bragg-like diffraction regime is easily obtained,
hatever the one-pass efficiency of the thin grating.
Results shown in Figs. 2–4 correspond to a plane dif-

raction grating set in the middle of the cavity. Figure 5
hows the dependence of diffracted intensities as a func-
ion of the position of the grating in the cavity for a cavity
hickness L=3.55 �m, a reflection coefficient R1=0.8, and
one-pass diffraction efficiency �g=10−4. As expected, the

ntensity of order −1 beam is constant. The sharp mini-
um of the higher orders is due to an antiresonance of

hese orders, owing to a phase discontinuity. The results
hown in Fig. 5 demonstrate that at Bragg incidence, the
osition of the grating has almost no influence on the dif-
raction efficiency of order −1 or on the diffraction regime.
his will simplify the fabrication of such devices. Let us
ention only that, if necessary, the choice of the position

f the grating could allow a much higher Bragg selectivity
or the device. It must also be stressed that, owing to the
ow cavity thickness, the results presented here are valid
nly for very thin gratings (smaller than 100 nm, ob-
ained using quantum wells, for instance). However, the
ame results are obtained for thicker gratings, provided
he cavity thickness is increased.

. SELECTIVITY
n this section, we investigate angular and wavelength
electivities, which are important parameters for the ap-
lication of any diffraction device. The thin grating (2 �m
rating period) of diffraction efficiency �g=10−4 is set in
he middle of the 3.55 �m long resonator. The front-
irror reflectivity is R1=0.8 and the back mirror is al-
ost totally reflective.

ig. 6. Logarithmic plot of diffraction efficiencies as a function
f incidence angle (inside the cavity) with �g=10−4, L=3.55 �m,
nd R =0.8.
1
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The angular selectivity of the device was evaluated by
alculating the diffracted intensities of orders −1, +1, and
2 as a function of the incidence angle of a laser beam of
avelength �0=1 �m inside the cavity (see Fig. 6). The

ncidence angle of the laser beam outside the cavity is
aried from 0 to � /2. Maxima correspond to resonances of
he different beams. The Fabry–Perot is tuned to both
ead and diffraction order −1 beams only for �0=5° (Bragg
ncidence for the 2 �m grating period chosen here). As a
onsequence, the diffraction efficiency of the Bragg order
1 is maximum for this angle and decreases on both
ides. The 3 dB width is 0.76°, which means that applica-
ion to optical processing of complex signals such as cor-
elation could be performed using such devices. Moreover,
here is a 30 dB ratio between the order −1 beam and the
igher orders at �0=5°. The maximum diffraction effi-
iency of order −1 beam exceeds that of higher diffraction
rders at any angle by 20 or 30 dB, which again demon-
trates the Bragg-like regime of the device.

The wavelength selectivity of the device was evaluated
y calculating the diffracted intensities as a function of
he wavelength of the read beam for �0=5° (see Fig. 7).

hen the read wavelength fulfills the Fabry–Perot reso-
ance condition, the diffraction order −1 is also resonant,
ence exhibiting periodic maxima of its intensity. In Fig.
(a) where the diffraction efficiency of order −1 is plotted
n a linear scale, we can see a variation of the amplitude
f the peaks due to the fact that the incidence angle is set
t Bragg only for �0=1 �m. In Fig. 7(b) a logarithmic
cale has been chosen so that higher orders can be com-
ared with the main diffraction order. Maxima of the
igher-diffraction-order intensities are obtained on the
ne hand when the cavity is tuned to the read beam and
n the other hand when it is tuned to the diffraction order
1 beam. The diffraction order −2 and +1 beams fulfill the
ame resonance condition because they have opposite
ngles. Because resonances for orders −1 and +1 never oc-
ur at the same wavelength, there is a 30 dB ratio be-
ween maxima of diffraction order −1 intensity and
axima of the higher-diffraction-order intensities. Multi-
avelength efficient operation of the device is possible in

ig. 7. (a) Order −1 diffraction efficiency and (b) Diffraction ef-
ciencies plotted as a function of wavelength with �g=10−4, L
3.55 �m, and R1=0.8.
he Bragg regime, which indicates that wavelength-
ultiplexed Bragg-like plane gratings could also be used
ith this device.

. CONCLUSION
ur calculations show that a Bragg-like diffraction re-
ime can be obtained with a thin intracavity diffraction
rating; the wavelength, incidence angle, and length
ust be chosen such that order 0 is simultaneously
abry–Perot resonant and at Bragg incidence, so that dif-

raction order −1 is symmetrical to order 0 and is also
abry–Perot resonant. We can notice that Bragg-like op-
ration of plane gratings can be performed with microme-
er cavities if the cavity length is not tuned to quasi-
esonance of higher orders. For a given �g, the reflection
oefficient of the front mirror can be chosen in order to
aximize the diffraction efficiency of the device, and
ragg-like operation can be achieved, even with small dif-

raction efficiency of the grating. The grating position has
o influence on the device performance, which makes the
evice easy to fabricate. Good angular selectivity has been
emonstrated that could be useful for information pro-
essing. Multiwavelength efficient operation is possible as
ong as Fabry–Perot resonances are taken into account
or the choice of the wavelengths. This device is a very
romising one, as it combines very good performance and
ase of integration using the state of the art photonics
anotechnologies.

A. Moreau’s e-mail address is Aurelie.Moreau@enst.fr.
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