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The diffraction of Gaussian beams on intracavity Bragg gratings is analyzed theoretically. For reasonable
waists the associated beam divergence does not significantly influence the diffraction efficiency of such devices.
Nevertheless, the tilt angle of the incident beam, imposed by the Bragg resonance condition, strongly reduces
the diffraction efficiency at short grating periods. However, the angular selectivity can be maintained if the
Fabry—Perot cavity is tuned to the incident beam direction, which allows the use of small-volume holograms
together with a dense angular multiplex. This theoretical analysis can be applied to the optimization of the
diffraction properties of Gaussian beams on any intracavity Bragg grating, which could then be used for free-
space parallel signal processing. © 2005 Optical Society of America

OCIS codes: 090.1970, 090.7330, 190.4360.

1. INTRODUCTION

Diffraction of light on Bragg gratings has attracted much
attention, both for fundamental reasons and for applica-
tions to optical signal processing.> However, because of
the low refractive-index modulations or the small thick-
nesses of the nonlinear material used for recording these
gratings, the Bragg diffraction properties of thick grat-
ings may be insufficient for practical applications. In such
a case, as shown theoretically,3 this inconvenience can be
overcome by placing the sinusoidal grating in a Fabry—
Perot cavity. More recently, and with an eye toward the
design of practical devices, the Bragg criterion for such in-
tracavity gratings* and the influence of intracavity losses
or ampliﬁca‘cion5 have been theoretically studied. Al-
though large improvements in the diffraction properties
of intracavity Bragg gratings have been obtained,® the ex-
perimental results nevertheless remain below the theo-
retical predictions. This leads us to reconsider the plane-
wave approximation of Ref. 3.

Gaussian beams have been extensively studied™® to ac-
count for the properties of such devices as Fabry—Perot
cavities®'® or diffraction gratingsn’12 illuminated by
small diameter laser beams. In this paper we calculate
the diffraction efficiency of an intracavity Bragg grating
illuminated by a Gaussian beam. We show how reduced
diffraction efficiency is related to the limited cross section
and to the tilt angle of the incident beam, while the an-
gular selectivity can be maintained if the incident beam is
kept Fabry—Perot resonant.

Section 2 describes the model used for the intracavity
Bragg diffraction of Gaussian beams and the derivation of
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the analytical expression of the diffraction efficiency of
such beams. Section 3 discusses the profiles of the dif-
fracted beam. Sections 4 and 5 show the influence of the
waist of the Gaussian beam on the diffraction efficiency
and angular selectivity, respectively.

2. MODEL FOR THE INTRACAVITY
DIFFRACTION OF GAUSSIAN BEAMS

We use the same configuration for the Bragg device as in
Ref. 5 (see Fig. 1). The Gires—Tournoi interferometer is
composed of two mirrors with reflection coefficients R,
and Ry =1 and is filled with a medium of mean refractive
index ng. The refractive-index modulation is given by An
=Ang cos(K-r), where An is the maximum index modula-
tion and K is the thick-grating wave vector parallel to the
cavity mirrors. The z axis is normal to the mirrors and the
x axis is the direction of the grating wave vector. Figure 1
also shows the mean directions of the wave vectors of the
different waves of wavelength \ involved in the nonlinear
interaction: the incident read wave of amplitude Ri(r)
and mean wave vector Ky gives rise to intracavity forward
and backward waves of respective amplitudes Rp(r) and
Rp(r) and mean wave vectors kg)%,k% and to the output
reflected wave of amplitude Rg(r) and wave vector kg.
There is almost no transmitted wave in this Gires—
Tournois interferometer. Because of the presence of the
Bragg grating, the intracavity read waves give rise to for-
ward and backward diffracted waves of respective ampli-
tudes Sp(r) and Sp(r) and mean wave vectors kg)bl,k(s(%
and to a reflected diffracted output wave of amplitude

© 2005 Optical Society of America



1154 J. Opt. Soc. Am. B/Vol. 22, No. 6/June 2005

Transmitted

Fig. 1. Setup of the asymmetric intracavity Bragg grating of
thickness [/ and grating period A=27/K. The read wave of ampli-
tude R;(r) and mean wave vector k; is incident at the Bragg
angle, and the diffracted wave vector k(SF is therefore symmetrlc

with respect to the incident intracavity wave vector k ¢ about
the z axis.

Spr(r) and mean wave vector kpg which is counterpropa-
gating to Ry(r) for an incident beam set at the internal
Bragg angle 60 (see Fig. 1).

For the calculation of the diffraction of a Gaussian-
intensity-profile incident beam, each of the intracavity
and external fields is decomposed on the plane-wave ba-
sis. The amplitude at z=0 (at the first mirror) of the inci-
dent beam of peak power Pj, waist \f'2w0 (at 1/e of the
maximum), and polarized along the y axis is

Ri(rg) = FR(ro)exp (ik; - o) = FR(ro)exp(ikiy - ro),
(1)

where ry=(x,y,0), RF—k (sin 6x+cos 6z), 6 is the intrac-
avity incidence angle, and X, §, and z are the unit vectors
of the respective x, y, and z axes. The complex amplitude
of the incident beam in the plane z=0 is

** d ok,
RI(ro) —d&kyRI 5kx’ 5k 0)

X exp(- i 6k, sin Ox)expli(k,x + okyy)],  (2)

where

~ 2P1w02 1/2 w02 akxz
Ry(k,, ok,,0) = exp| ~ - + ok,

cngy

is the two-dimensional spatial Fourier transform at z=0
of the incident Gaussian beam. In Eq. (2) &k,
=(5kgzc/cos2 0)+§k§/2k’ ensures the conservation of the
modulus k’'=27mny/\ of the wave vector to first order in
Sk, and allows us to take wave-front curvature into ac-
count.

The amplitudes of the forward and backward read and
diffracted waves in the Fabry—Perot cavity are, respec-
tively

Rep(r) = §Rp p(r)exp(ki) pp - 1), (4)
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Srp(r) = §Sp p(r)exp(iki g - 1), (5)
with
k%) = &' (sin 6% + cos 62), (6)
k%) = &' (sin 6% — cos 62), (7
k) =k’ (sin 0'% + cos 0'2), (8)
k) =%'(sin 6'% — cos 0'%), 9)

where 6 and ¢’ are the internal incidence and diffraction
angles, respectively.

For the elementary plane waves considered in the de-
composition of all fields, the Floquet theorem restricts the
possible solutions in a periodic medium. Conservation of
the total wave vector along the perlodlclty direction x is
required:13’14 (k(o) SB+ él{SF SB) X= (kRF ret (Sl{RF RB) X
+pK, where p is any integer and where

5kRF = (— 5k2R sin 0+ 5kx)f( + 5ky$7

- (5sz cos 0+ 6k, tan 0)z, (10)

Slgy = — Bk, sin 0+ Ok,)X

+ Okyy + (= dk,, cos 0+ ok, tan 0)z,

11)

Okgp = (- Ok, sin 0 + ok, )X + 5k, ¥
+ (5kzS cos ' + Sk, tan 6')z, (12)

Skgp = — (5sz sin 0" + ok,)X + ok, Y
+ (= 5kzs cos 0 + 6k, tan 6')z (13)

are the deviations from the mean wave vectors of the in-
tracavity beams with &k R—[61@2/ cos? O+ 5k2]/ 2k, Ok,
—[6k2/ cos? 6 + 6k2]/ 2k’ the dephasings assomated w1th
the respective plane-wave components of the Gaussian
beam. In the case of a Bragg grating, only one space har-
monic has to be taken into account and p=1. There is nev-
ertheless a phase mismatch along the propagation direc-
tion z (see Fig. 2). In the plane-wave basis, the complex
amplitudes can be written

Fig. 2. Grating wave vector conservation and phase mismatch
Ak for the forward and backward read and diffracted waves
when 6+ 6 and therefore ¢’ # 6.
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o dsh,  _
RF(r) = f f —dﬁkyRF(ﬁkx, 5ky,2) X exp(l(?kRF . r),
21 _., cos @

(14)

+ Aok,
Sp(r) = — —d&k  Sp(k,, ok,,2)

X exp(idkgp - r)exp(— iAkz), (15)

+ Aok,
Ry(r) = — f f —dak R (Oky, 0k,,2) X expl(i kg - 1),

(16)

** d ok,
Sp(r)=— —d&k SB(b‘kx, ok,,z)
X exp(idkgp - r)exp(iAkz), (17)

where RF,B and S’F,B are the two-dimensional spatial Fou-
rier transforms of the respective amplitudes Rpp and
Sy p, and Ak=Fk’'(cos 6’ —cos 0)- 6k, (tan #'—tan #) is the
phase mismatch due to the detuning from Bragg reso-
nance. By substituting the total intracavity field &(r)
=Rp(r)+Rp(r)+Sp(r)+Sp(r) into the propagation equa-
tion

47>
A€(r) + (R +1k")E(r) = [FnoAn cos(Kx)} Er) (18)

and using the slowly varying amplitude approxima‘cion,15

one can derive the coupled propagation equations describ-

ing the behavior of the Fourier components INBRB and S’F,B
as

Ry k' 5 imAn s .
. -—38;,
g  cosf © Acos@
0§F 4 _ imAn _
-+ —iAk SF= RF’ (20)
0z cos 6’ \ cos 6
Ry k’ = imAn S 1)
- 4 = 5 2
gz cosf ° ANcos@ ©°
&S’B k"’ _ imAn _
-+ —iAk SB= RB' (22)
0z cos ¢ \ cos 0

Equations (19)—(22) are similar to those obtained for
plane waves in a lossless material, except for the term in-
volving k"= a/2, which takes into account the influence of
(assumed small) absorption losses, with « the intensity
absorption coefficient.

The resolution of this set of coupled differential equa-
tion allows us to calculate the z dependence of each one of
the intracavity plane waves, thus giving

Ry(0k,, 6k,,2) = Af exp(riz) + Ap exp(rgz),  (23)
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Ry(k,, ok,,2) = Af exp(riz) + Ap exp(rge),  (24)

_ I\ cos 0’ k"
Sy(6k,, Oky,2) =— ——| | rp+

wAn cos 0

XAy exp(ryz)

k”
+ (r;« + )A;« exp(r;«z)} , (25)
cos 6

~ i\ cos 6’ R’
SB(akm&kva)= T rE_

mTAn cos 6

XAF exp(rgz)

k!/
+ (r‘B - )A_B eXp(r‘BZ)] , (26)
cos 6

with

_ k”( 1 1 ) Y T :
rE=—rp=—— + +—=xiJA', (27
F B 2 \cos 6 cosé 2 \ (

TAn 2
A'= 12
N(cos Ocos §')

AR R 1 1 2
+| —+i— - . (28)
2 2 \cosd cost

The boundary conditions for the plane waves coupled
by the cavity mirrors with amplitude reflectivities rq, rq
located at z=0 and z=1[ enable us to determine totally the
field amplitudes in the cavity:

R, ok, (%:750) =1Rpac o (%,50) + 1R ac (%,5,0),

(29)
Srax, ok, (%,550) = 71Spac o (%,7,0), (30)
Reac, ok, (%,Y,0) = roRpac a (6,7,0), (31)
SBékxéky(xay;l) = r2SF5kX6ky(x7y7l) ) (32)

where

R, o, (¥) = YRE( Sk, S,y 2)expli (kigp + Sk) - ],
(33)
Resx, ok, () = YRp(0k,, ok, 2)exp [i(kigh + Skgp) - 7],
(34)
Skt ok, () = §SK(Sky, Ok, 2)exp(— iAkz)
x exp [i(kgy + Skgp) - r], (35)
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SBat ok, (¥) = §Sp(Sky, Ok,,2)exp(= iAk2)
x expli(kgy + okgp) - 1] (36)

are the plane-wave components of the intracavity beams.
The values of Ay and Aj, are calculated exactly by solving
the system of boundary equations [Eqs. (29)—(32)] by use
of the expressions of Rpps o, and SF,B(;kX,(gky [Egs.
(33)—(36)] where EF,B and :S"F,B have been replaced by
their expressions in Eqgs. (24)—(26). We obtain

kl/
iitl(r* + )
cos 0

Al‘i; = ~ er, (37)
2A'[1 - ryry exp(2r:L)]
k// B
Fit| rt+ ryexp(2r*l)
cos 0
A]t?) = €, (38)

2\5'Z’[1 —riryexp(2rl)]

where r*=ri=-r; with reference to Eq. (27), and ry
=rq exp[2i(k’ cos - Ok, tan H)L].

By use of the previous results it is straightforward to
calculate the transmission and reflection efficiencies and
transmitted and reflected diffraction efficiencies of the de-
vice; these are defined by

cn(l_Rz)fwa Ve, S, 1)|2
-— Sk, Ok,
P 27TPI _xl F( x y )‘

dﬁk"d ., (39)
6k,
cos 6 Y

cn M. —_—
7TPI |RB(5kx, 5ky’0)\1 _Rl

PR=2
~ — dok,
= Ry(Sky, Ok,,0) VR [*——d ok, (40)
cos 6
= Sk, Ok, Ok, (41
PpT 2P, _x‘ F( 'y )\ cos 6 'y (41)
= Ok, ok.,,0 ok, .
PDR 2mP, B ‘ B( 'y )| cos 6 'y

(42)

The double integrals in d ok, and d 6k, appearing in the
expressions of the efficiencies are calculated numerically
by a Gauss integration method. The boundaries of this in-
tegration are adjusted for each calculated point to fit the
domain where the function has nonnegligible values. The
validity of the numerical calculations is confirmed by
checking the energy conservation for a lossless medium
(a=0) through the relation pr+pg+ppr+ppr=1 for vari-
ous values of the parameters. All the results presented
hereafter are obtained for a read beam wavelength of
1 um. In Sections 3 and 4 we consider a Bragg grating
placed in an asymmetric cavity (R;=0.80 and Ry=1) filled
by a lossless intracavity medium. The waist w, and tilt
angle 6 of the read beam and the thickness / of the Fabry—
Perot cavity are used as parameters.
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Fig. 3. Normalized (a) y and (b) x profiles of the diffracted beam
compared with those of the incident beam at various tilt angles.
The finesse of the Fabry—Perot cavity is 28, the sample thickness
is 1 mm, and the incident beam waist is 300 um.

3. x AND y PROFILES OF THE DIFFRACTED
BEAM

To analyze qualitatively the influence of diffraction and
tilt angle of the incident beam, we first study the profiles
of the diffracted beam. The y and x profiles are shown in
Figs. 3(a) and 3(b), respectively, at the maximum of the
field amplitude for the other coordinate, namely, x and y.
They correspond to the diffraction of a moderately focused
Gaussian beam (wy=300 um) incident at the Bragg angle
for three values of this angle (#3=0.01, 0.1, and 0.2 rad)
on a 1-mm-thick intracavity Bragg grating. As all beam
directions are located in the xz plane, the diffracted beam
is centered on y=0, and only beam divergence can modify
its profile in the y direction. Actually, with the parameters
used in our calculations, the normalized y profiles remain
identical to those of the incident beam for the three values
of 6 previously mentioned [see Fig. 3(a)l. Despite the
relatively high finesse F=m\riry/(1-riry)=28 of our cav-
ity, this result is consistent with the low angular diver-
gence related to the beam waist (p~\/wy=3.3X1073) of
the incident read beam. In the case of tighter focusing of
the read beam, the widening in the y direction has been
verified through our calculations.

The x profiles of the normalized diffracted amplitudes
shown in Fig. 3(b) are strongly modified as the tilt angle
increases. For low values of the tilt angle (65<<0.01) they
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look almost identical to the y profiles. For larger values of
0g the diffracted beam exhibits a spread, increasing with
increasing 6g even though it stays centered on the inci-
dent beam. The large spread of the diffracted beam im-
plies a reduction of the effective cavity finesse of the
Fabry—Perot device. This phenomenon results in a strong
decrease in the diffraction efficiency at high values of 6y
as shown in Section 4.

4. DIFFRACTION EFFICIENCY

We also investigated the effect of various parameters on
the diffraction efficiency of the Gaussian beam on the in-
tracavity Bragg device. The influence of tilt angle 6g, av-
erage thickness [, of the cavity, and incident beam waist
w are presented in Figs. 4(a)-4(c). On all these curves ev-
ery data point corresponds to a resonance length for the
Fabry—Perot device and to an adjusted index modulation
to maximize diffraction efficiency when calculated in the
plane-wave approximation. Figure 4(a) shows the maxi-
mum diffraction efficiency plotted as a function of the
thickness of the intracavity material for two tilt angles (
#p=0.01 and 0.1) with an incident beam waist of w,
=300 um. A threshold thickness appears from which the

1.0

08

06 -

04

02

Diffraction Efficiency

o.o L L L A n n o
1E-5 1E-4 1E-3 001 1E§ 1E-4 1E3 0.01

Thickness (m) Thickness (m)

1(d)
06t
04t

02

Diffraction Efficiency

o'01E-5 1E-4 1E-3 0.01 1ES5 1E4 1E3 0.01

Beam radius (m) Thickness (m)

Fig. 4. Diffraction efficiency of the Bragg device under Gaussian
illumination (a) versus cavity thickness for various tilt angles
(solid curve for #5=0.1 and dashed curve for 63=0.01), (b) versus
cavity thickness for various beam waists (solid curve for w,
=300 um and dashed curve for wy=30 um), (c) versus beam
waist for various tilt angles (solid curve for 3=0.1 and dashed
curve for 63=0.01), (d) versus cavity thickness (dotted-dashed
curve for a plane wave at 63=0.1, solid curve for a beam waist of
wy=300 um at #g=0.01 and dotted curve for a beam waist of
wy=300 um at #g=0.1. In (a)—(c) the refractive-index modulation
is adjusted at every data point for maximum diffraction efficiency
in the plane-wave approximation (p=1), whereas in (d) the
refractive-index modulation is fixed for a maximum value at [,
=300 pum in the plane-wave case.
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diffraction efficiency starts decreasing (!>1 mm for 6y
=0.01 and [>100 um for #z=0.1). This reduction is evi-
dently related to the diffracted beam spread [see Fig. 3(b)]
due to the multiple reflections inside the cavity. It must
also be stressed that, at least for the small tilt angles con-
sidered here, the length threshold of the decrease of the
diffraction efficiency is inversely proportional to g, which
confirms the geometrical nature of the reduction. The
value of this threshold can be related to the finesse of the
Fabry—Perot device as follows. If the walk-off (=F6gl) of
the incident beam due to its multiple reflections in the
cavity is greater than the beam diameter, then the cavity
is no longer efficient. Figure 4(b) shows the diffraction ef-
ficiency of the intracavity grating as a function of the
thickness [ for two waists of the incident beam (w,
=300 um and wy=30 um) and for a tilt angle #g=0.1. The
curves are very similar to that shown in Fig. 4(a) with a
strong decrease of the diffraction efficiency when [
=w,y/ FOg. The knowledge of this threshold is useful in
the design of efficient intracavity Bragg devices. The
same behavior can be seen in Fig. 4(c) showing the evolu-
tion of the diffraction efficiency of the device as a function
of wq for two different tilt angles (#g=0.01 and 0.1) for a
cavity thickness /=500 um.

The results shown in Figs. 4(a)—4(c) correspond to cal-
culations performed for a refractive-index modulation An
optimized at every data point for a maximum diffraction
efficiency in the plane-wave approximation (p=1 for a
lossless intracavity material). However, in a practical de-
vice, An is generally fixed. It is then interesting to exam-
ine the behavior of the diffraction efficiency of the device
as a function of the various parameters in this case. This
is illustrated in Fig. 4(d) showing the diffraction efficiency
of the device as a function of the Fabry—Perot thickness in
the plane-wave approximation and for a Gaussian inci-
dent beam of waist wy=300 um at two tilt angles (6g
=0.01 and 0.1). The index modulation Arn is chosen to
maximize the diffraction efficiency for a 300-um-thick
cavity in the plane-wave approximation. For a small tilt
angle (#g=0.01) the results are practically identical for
the Gaussian beam and for the plane-wave approxima-
tion, even for high thicknesses of the Fabry—Perot cavity
for which a decrease of the maximum possible diffraction
efficiency was shown [see Fig. 4(a)]. In the case of larger
tilt angles (#g=0.1) the diffraction efficiency at large
thicknesses of the Fabry—Perot cavity is smaller than in
the case of the plane-wave approximation. Moreover, be-
cause of a competition between the Bragg efficiency and
the decreasing Fabry—Perot efficiency due to the beam
spread, the maximum diffraction efficiency is obtained for
a cavity thickness that is slightly smaller than in the
plane-wave approximation. This result should be kept in
mind when designing an intracavity Bragg device.

5. ANGULAR SELECTIVITY

In addition to the decrease in diffraction efficiency, and
probably more important, is the weakening of the angular
selectivity of intracavity Bragg gratings as a result of the
use of small-waist Gaussian beams. Figures 5(a) and 5(b)
show the normalized transmission and reflected diffrac-
tion efficiency of the device, respectively, plotted as a func-
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0
A6 (mrad)

Fig. 5. (a) Normalized transmission py of the empty Fabry—
Perot cavity and (b) diffraction efficiency ppr of the intracavity
Bragg grating plotted as a function of the Bragg detuning for
various beam waists (solid, dashed, dotted-dashed and dotted
curves for plane waves, wy=1000, 300, and 100 um, respec-
tively). The Fabry—Perot cavity is tuned to the Bragg angle of the
grating 6g.

tion of the Bragg detuning A6. The calculation is per-
formed for plane waves and beam waists of 1000, 300, and
100 um with a nearly totally reflecting (R1=0.8 and R,
=0.999) 1-mm-thick cavity. A 3.8-um-period grating (6
=0.1rad) is impressed in a lossless medium (k”"=0) of
mean refractive index ny=1.3. The cavity is tuned to a
read beam of mean direction 65, and the value of the
refractive-index modulation is chosen to obtain a maxi-
mum reflected diffraction efficiency for plane waves.

As expected the transmission curves plotted in Fig. 5(a)
widen as the beam waist decreases. This is because at
small detuning values, some plane-wave components of
the Gaussian beam are still resonant, even though the
mean direction is not. The maximum values of the trans-
mission and diffraction efficiencies and the corresponding
angular FWHM are plotted in Figs. 6(a) and 6(b). Above
the beam radius threshold previously mentioned, the be-
havior tends asymptotically toward that of the plane
wave, but the transmission and the diffraction efficiency
decrease drastically for decreasing beam waist. For w,
=300 um the FWHM of the reflected diffracted beam
(=1 mrad) is increased by a factor of 6 compared to that
of the plane wave (=0.17 mrad). Such results, which dem-
onstrate a low angular selectivity together with a reduced
diffraction efficiency, seem to preclude the use of intrac-
avity Bragg gratings for Gaussian read beams of very
small waist, at least for thick Fabry—Perot cavities.

This inconvenience can nevertheless be circumvented if
the cavity is tuned to the mean incidence angle 6=6g
+A¢@ instead of 6g. This could be done for example by
maximizing the transmission of the device. The results of
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the calculations performed with the same parameters as
in Figs. 5 and 6, except for the tuning of the cavity, are
presented in Figs. 7 and 8. The transmission is not
shown, since the tuning keeps it constant at its maximum
value for this cavity. Figure 7 shows the normalized dif-
fraction efficiency ppr/pmax plotted as a function of the
Bragg detuning A6 for plane waves and for Gaussian
beams with wy=1000, 300, and 100 um. It appears that
the angular selectivity is not as drastically reduced as in
the case of the fixed Fabry—Perot cavity. This is quantita-
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Fig. 6. (a) Maximum transmission pp and angular width

FWHM; of the empty Fabry—Perot cavity and (b) maximum dif-
fraction efficiency ppr and angular width FWHMpR of the intra-
cavity Bragg device plotted as a function of the read beam waist;
the Fabry—Perot cavity is tuned to the Bragg angle of the grating
HB'

05 1

0
-1 -0.5

0
A6(mrad)

Fig. 7. Normalized diffraction efficiency ppr of the intracavity
Bragg grating plotted as a function of the Bragg detuning for
various beam waists (solid, dashed, dotted-dashed and dotted
curves for plane waves, wy=1000, 300, and 100 um, respec-
tively); the Fabry—Perot cavity is tuned to the incident beam di-
rection 6=60g+A6.
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Fig. 8. Maximum diffraction efficiency ppr and angular width
FWHDMpp, for the intracavity Bragg device plotted as a function of
the read beam waist; the Fabry—Perot cavity is tuned to the in-
cident beam direction 6=6g+A6.
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Fig. 9. Normalized transmission py of the empty Fabry—Perot
cavity tuned (a) to the Bragg angle 65 and (b) to the read beam
direction fg+A6. The coupling to the Fabry—Perot cavity of the
diffracted beam at g—A# is much less in the latter case.

tively confirmed by Fig. 8, which shows the angular
FWHM of the reflected diffracted beam plotted as a func-
tion of w,. Compared with the case of the plane wave (the
asymptote), it is multiplied only by 2 for w;=300 um,
which demonstrates that intracavity Bragg gratings could
be useful for applications to free-space optical parallel
processing with reasonable efficiencies (20%, as also
shown in Fig. 8).

It must be stressed that the same performance can be
obtained with smaller beam waists and thinner Fabry—
Perot _cavities fulfilling the Bragg criterion* {211
—R{)VRy/(1-\R1R5)12>10A2/m\} as verified for w,
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=10 um and [=30 wm, which implies that free-space
dense parallel optical processing could also be possible.
Concerning applications, the issue of the time response of
the device is an important one. The only intrinsic limita-
tion of the intracavity Bragg grating with respect to that
parameter is related to the Fabry—Perot lifetime r
=F2nl/c. For [=30 um and F=28 this lifetime is smaller
than 8 ps.

The difference between the results shown in Fig. 6 and
those in Fig. 8 can be easily understood if we remember
that the beam is diffracted in the direction —0g+A@ for a
read beam sent in the fg+A#@ direction. Indeed, for a cav-
ity tuned to 65 and consequently also to —6g, the read and
diffracted beams are equally coupled to the cavity when
A#@ increases [see Fig. 9(a)]. On the other hand, when the
cavity is tuned to the read angle #g+A# the coupling is
drastically reduced for the diffracted beam in the direc-
tion —fg+A0 [see Fig. 9(b)], thus reducing the diffraction
efficiency for this incident read beam.

6. CONCLUSION

The diffraction of Gaussian beams on intracavity Bragg
gratings has been analyzed and compared with that of
plane waves. Diffraction efficiency is not significantly al-
tered by the divergence associated with small beam
waists. At small Bragg incidence angles it is not affected
as long as the walk-off of the incident beam does not ex-
ceed the beam diameter and as long as efficient interfer-
ence can take place in the cavity. The thickness threshold
for the decrease of diffraction efficiency is proportional to
the tilt angle and inversely proportional to the read beam
waist. The angular selectivity of the device is also drasti-
cally reduced for a cavity tuned to the Bragg angle of the
refractive-index grating. The loss in angular selectivity is
nevertheless very small for a Fabry—Perot cavity tuned to
the incident beam direction because of the very bad cou-
pling associated with the detuning of the diffracted beam
in this case.

This theoretical analysis shows that efficient and free-
space dense parallel optical processing can be considered
with intracavity Bragg gratings. It should also be stressed
that, because of its generality, this calculation can be used
to optimize the diffraction properties of any intracavity
Bragg grating illuminated by Gaussian beams, which
could be useful for any Bragg-diffraction-based optical de-
vice.

Corresponding author I. Zaquine’s e-mail address is
Isabelle.Zaquine@enst.fr.
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