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The diffraction of Gaussian beams on intracavity Bragg gratings is analyzed theoretically. For reasonable
waists the associated beam divergence does not significantly influence the diffraction efficiency of such devices.
Nevertheless, the tilt angle of the incident beam, imposed by the Bragg resonance condition, strongly reduces
the diffraction efficiency at short grating periods. However, the angular selectivity can be maintained if the
Fabry–Perot cavity is tuned to the incident beam direction, which allows the use of small-volume holograms
together with a dense angular multiplex. This theoretical analysis can be applied to the optimization of the
diffraction properties of Gaussian beams on any intracavity Bragg grating, which could then be used for free-
space parallel signal processing. © 2005 Optical Society of America

OCIS codes: 090.1970, 090.7330, 190.4360.
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. INTRODUCTION
iffraction of light on Bragg gratings has attracted much
ttention, both for fundamental reasons and for applica-
ions to optical signal processing.1,2 However, because of
he low refractive-index modulations or the small thick-
esses of the nonlinear material used for recording these
ratings, the Bragg diffraction properties of thick grat-
ngs may be insufficient for practical applications. In such

case, as shown theoretically,3 this inconvenience can be
vercome by placing the sinusoidal grating in a Fabry–
erot cavity. More recently, and with an eye toward the
esign of practical devices, the Bragg criterion for such in-
racavity gratings4 and the influence of intracavity losses
r amplification5 have been theoretically studied. Al-
hough large improvements in the diffraction properties
f intracavity Bragg gratings have been obtained,6 the ex-
erimental results nevertheless remain below the theo-
etical predictions. This leads us to reconsider the plane-
ave approximation of Ref. 3.
Gaussian beams have been extensively studied7,8 to ac-

ount for the properties of such devices as Fabry–Perot
avities9,10 or diffraction gratings11,12 illuminated by
mall diameter laser beams. In this paper we calculate
he diffraction efficiency of an intracavity Bragg grating
lluminated by a Gaussian beam. We show how reduced
iffraction efficiency is related to the limited cross section
nd to the tilt angle of the incident beam, while the an-
ular selectivity can be maintained if the incident beam is
ept Fabry–Perot resonant.
Section 2 describes the model used for the intracavity

ragg diffraction of Gaussian beams and the derivation of
0740-3224/05/061153-8/$15.00 © 2
he analytical expression of the diffraction efficiency of
uch beams. Section 3 discusses the profiles of the dif-
racted beam. Sections 4 and 5 show the influence of the
aist of the Gaussian beam on the diffraction efficiency
nd angular selectivity, respectively.

. MODEL FOR THE INTRACAVITY
IFFRACTION OF GAUSSIAN BEAMS
e use the same configuration for the Bragg device as in
ef. 5 (see Fig. 1). The Gires–Tournoi interferometer is
omposed of two mirrors with reflection coefficients R1
nd R2.1 and is filled with a medium of mean refractive
ndex n0. The refractive-index modulation is given by Dn
Dn0 cossK ·rd, where Dn0 is the maximum index modula-

ion and K is the thick-grating wave vector parallel to the
avity mirrors. The z axis is normal to the mirrors and the
axis is the direction of the grating wave vector. Figure 1
lso shows the mean directions of the wave vectors of the
ifferent waves of wavelength l involved in the nonlinear
nteraction: the incident read wave of amplitude RIsrd
nd mean wave vector kI gives rise to intracavity forward
nd backward waves of respective amplitudes RFsrd and
Bsrd and mean wave vectors kRF

s0d ,kRB
s0d and to the output

eflected wave of amplitude RRsrd and wave vector kR.
here is almost no transmitted wave in this Gires–
ournois interferometer. Because of the presence of the
ragg grating, the intracavity read waves give rise to for-
ard and backward diffracted waves of respective ampli-

udes SFsrd and SBsrd and mean wave vectors kSF
s0d ,kSB

s0d

nd to a reflected diffracted output wave of amplitude
005 Optical Society of America
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DRsrd and mean wave vector kDR which is counterpropa-
ating to RIsrd for an incident beam set at the internal
ragg angle uB (see Fig. 1).
For the calculation of the diffraction of a Gaussian-

ntensity-profile incident beam, each of the intracavity
nd external fields is decomposed on the plane-wave ba-
is. The amplitude at z=0 (at the first mirror) of the inci-
ent beam of peak power PI, waist Î2w0 (at 1/e of the
aximum), and polarized along the y axis is

RIsr0d = ŷRIsr0dexp sikI · r0d = ŷRIsr0dexpsikRF
s0d · r0d,

s1d

here r0= sx ,y ,0d, kRF
s0d =k8ssin ux̂+cos uẑd, u is the intrac-

vity incidence angle, and x̂, ŷ, and ẑ are the unit vectors
f the respective x, y, and z axes. The complex amplitude
f the incident beam in the plane z=0 is

RIsr0d =
1

2p
E E

−`

+` ddkx

cos u
ddkyR̃Isdkx,dky,0d

3 exps− idkz sin uxdexpfisdkxx + dkyydg, s2d

here

R̃Isdkx,dky,0d = S2PIw0
2

cn0
D1/2

expF−
w0

2

2
S ]kx

2

cos2 u
+ dky

2DG
s3d

s the two-dimensional spatial Fourier transform at z=0
f the incident Gaussian beam. In Eq. (2) dkz
sdkx

2 /cos2 ud+dky
2 /2k8 ensures the conservation of the

odulus k8=2pn0 /l of the wave vector to first order in
kz and allows us to take wave-front curvature into ac-
ount.

The amplitudes of the forward and backward read and
iffracted waves in the Fabry–Perot cavity are, respec-
ively

R srd = ŷR srdexpsiks0d · rd, s4d

ig. 1. Setup of the asymmetric intracavity Bragg grating of
hickness l and grating period L=2p /K. The read wave of ampli-
ude RIsrd and mean wave vector kI is incident at the Bragg
ngle, and the diffracted wave vector kSF

s0d is therefore symmetric
ith respect to the incident intracavity wave vector kRF

s0d about
he z axis.
F,B F,B RF,RB
SF,Bsrd = ŷSF,BsrdexpsikSF,SB
s0d · rd, s5d

ith

kRF
s0d = k8ssin ux̂ + cos uẑd, s6d

kRB
s0d = k8ssin ux̂ − cos uẑd, s7d

kSF
s0d = k8ssin u8x̂ + cos u8ẑd, s8d

kSB
s0d = k8ssin u8x̂ − cos u8ẑd, s9d

here u and u8 are the internal incidence and diffraction
ngles, respectively.
For the elementary plane waves considered in the de-

omposition of all fields, the Floquet theorem restricts the
ossible solutions in a periodic medium. Conservation of
he total wave vector along the periodicity direction x is
equired:13,14 skSF,SB

s0d +dkSF,SBd · x̂= skRF,RB
s0d +dkRF,RBd · x̂

pK, where p is any integer and where

dkRF = s− dkzR
sin u + dkxdx̂ + dkyŷ

− sdkzR
cos u + dkx tan udẑ, s10d

dkRB = − sdkzR
sin u + dkxdx̂

+ dkyŷ + s− dkzR
cos u + dkx tan udẑ,

s11d

dkSF = s− dkzS
sin u8 + dkxdx̂ + dkyŷ

+ sdkzS
cos u8 + dkx tan u8dẑ, s12d

dkSB = − sdkzS
sin u8 + dkxdx̂ + dkyŷ

+ s− dkzS
cos u8 + dkx tan u8dẑ s13d

re the deviations from the mean wave vectors of the in-
racavity beams, with dkzR

= fdkx
2 /cos2 u+dky

2g /2k8, dkzS
fdkx

2 /cos2 u8+dky
2g /2k8 the dephasings associated with

he respective plane-wave components of the Gaussian
eam. In the case of a Bragg grating, only one space har-
onic has to be taken into account and p=1. There is nev-

rtheless a phase mismatch along the propagation direc-
ion z (see Fig. 2). In the plane-wave basis, the complex
mplitudes can be written

ig. 2. Grating wave vector conservation and phase mismatch
k for the forward and backward read and diffracted waves
hen uÞu and therefore u Þu.
B 8
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RFsrd =
1

2p
E E

−`

+` ddkx

cos u
ddkyR̃Fsdkx,dky,zd 3 expsidkRF · rd,

s14d

SFsrd =
1

2p
E E

−`

+` ddkx

cos u8
ddkyS̃Fsdkx,dky,zd

3 expsidkSF · rdexps− iDkzd, s15d

Bsrd =
1

2p
E E

−`

+` ddkx

cos u
ddkyR̃Bsdkx,dky,zd 3 expsidkRB · rd,

s16d

SBsrd =
1

2p
E E

−`

+` ddkx

cos u8
ddkyS̃Bsdkx,dky,zd

3 expsidkSB · rdexpsiDkzd, s17d

here R̃F,B and S̃F,B are the two-dimensional spatial Fou-
ier transforms of the respective amplitudes RF,B and
F,B, and Dk=k8scos u8−cos ud−dkxstan u8−tan ud is the
hase mismatch due to the detuning from Bragg reso-
ance. By substituting the total intracavity field Esrd
RFsrd+RBsrd+SFsrd+SBsrd into the propagation equa-

ion

DEsrd + sk8 + ik9dEsrd = F4p2

l2 n0Dn cossKxdGEsrd s18d

nd using the slowly varying amplitude approximation,15

ne can derive the coupled propagation equations describ-
ng the behavior of the Fourier components R̃F,B and S̃F,B
s

]R̃F

]z
+

k9

cos u
R̃F =

ipDn

l cos u8
S̃F, s19d

]S̃F

]z
+ S k9

cos u8
− iDkDS̃F =

ipDn

l cos u
R̃F, s20d

−
]R̃B

]z
+

k9

cos u
R̃B =

ipDn

l cos u8
S̃B, s21d

−
]S̃B

]z
+ S k9

cos u8
− iDkDS̃B =

ipDn

l cos u
R̃B. s22d

Equations (19)–(22) are similar to those obtained for
lane waves in a lossless material, except for the term in-
olving k9=a /2, which takes into account the influence of
assumed small) absorption losses, with a the intensity
bsorption coefficient.
The resolution of this set of coupled differential equa-

ion allows us to calculate the z dependence of each one of
he intracavity plane waves, thus giving

R̃Fsdkx,dky,zd = AF
+ expsrF

+zd + AF
− expsrF

−zd, s23d
R̃Bsdkx,dky,zd = AB
+ expsrB

+zd + AB
− expsrB

−zd, s24d

S̃Fsdkx,dky,zd = −
il cos u8

pDn
FSrF

+ +
k9

cos u
D

3AF
+ expsrF

+zd

+ SrF
− +

k9

cos u
DAF

− expsrF
−zdG , s25d

S̃Bsdkx,dky,zd =
il cos u8

pDn
FSrB

+ −
k9

cos u
D

3AB
+ expsrB

+zd

+ SrB
− −

k9

cos u
DAB

− expsrB
−zdG , s26d

ith

rF
± = − rB

7 = −
k9

2
S 1

cos u
+

1

cos u8
D +

iDk

2
± iÎD8, s27d

D8 = F pDn

lscos u cos u8d1/2G2

+ FDk

2
+ i

k9

2
S 1

cos u
−

1

cos u8
DG2

. s28d

The boundary conditions for the plane waves coupled
y the cavity mirrors with amplitude reflectivities r1, r2
ocated at z=0 and z= l enable us to determine totally the
eld amplitudes in the cavity:

RFdkxdky
sx,y,0d = r1RBdkxdky

sx,y,0d + t1RIdkxdky
sx,y,0d,

s29d

SFdkxdky
sx,y,0d = r1SBdkxdky

sx,y,0d, s30d

RBdkxdky
sx,y,ld = r2RFdkxdky

sx,y,ld, s31d

SBdkxdky
sx,y,ld = r2SFdkxdky

sx,y,ld, s32d

here

RFdkx,dky
srd = ŷR̃Fsdkx,dky,zdexpfiskRF

s0d + dkRFd · rg,

s33d

RBdkx,dky
srd = ŷR̃Bsdkx,dky,zdexp fiskRB

s0d + dkRBd · rg,

s34d

SFdkx,dky
srd = ŷS̃Fsdkx,dky,zdexps− iDkzd

3 exp fiskSF
s0d + dkSFd · rg, s35d
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SBdkx,dky
srd = ŷS̃Bsdkx,dky,zdexps− iDkzd

3 expfiskSB
s0d + dkSBd · rg s36d

re the plane-wave components of the intracavity beams.
he values of AF

± and AB
± are calculated exactly by solving

he system of boundary equations [Eqs. (29)–(32)] by use
f the expressions of RF,Bdkx,dky

and SF,Bdkx,dky
[Eqs.

33)–(36)] where R̃F,B and S̃F,B have been replaced by
heir expressions in Eqs. (24)–(26). We obtain

AF
± =

±it1Sr7 +
k9

cos u
D

2ÎD8f1 − r1r28 exps2r±Ldg
eI, s37d

AB
± =

7it1Sr± +
k9

cos u
Dr28 exps2r7ld

2ÎD8f1 − r1r28 exps2r7ldg
eI, s38d

here r±=rF
± =−rB

7 with reference to Eq. (27), and r28
r2 expf2isk8 cos u−dkx tan udLg.
By use of the previous results it is straightforward to

alculate the transmission and reflection efficiencies and
ransmitted and reflected diffraction efficiencies of the de-
ice; these are defined by

rT =
cns1 − R2d

2pPI
E E

−`

+`

uR̃Fsdkx,dky,ldu2
ddkx

cos u
ddky, s39d

rR =
cn

2pPI
E E

−`

+`

uR̃Bsdkx,dky,0dÎ1 − R1

− R̃Isdkx,dky,0dÎR1u2
ddkx

cos u
ddky, s40d

rDT =
cns1 − R2d

2pPI
E E

−`

+`

uS̃Fsdkx,dky,ldu2
ddkx

cos u
ddky, s41d

rDR =
cns1 − R1d

2pPI
E E

−`

+`

uS̃Bsdkx,dky,0du2
ddkx

cos u
ddky.

s42d

The double integrals in ddkx and ddky appearing in the
xpressions of the efficiencies are calculated numerically
y a Gauss integration method. The boundaries of this in-
egration are adjusted for each calculated point to fit the
omain where the function has nonnegligible values. The
alidity of the numerical calculations is confirmed by
hecking the energy conservation for a lossless medium
a=0d through the relation rT+rR+rDT+rDR=1 for vari-
us values of the parameters. All the results presented
ereafter are obtained for a read beam wavelength of
mm. In Sections 3 and 4 we consider a Bragg grating

laced in an asymmetric cavity (R1=0.80 and R2=1) filled
y a lossless intracavity medium. The waist w0 and tilt
ngle u of the read beam and the thickness l of the Fabry–
erot cavity are used as parameters.
. x AND y PROFILES OF THE DIFFRACTED
EAM
o analyze qualitatively the influence of diffraction and
ilt angle of the incident beam, we first study the profiles
f the diffracted beam. The y and x profiles are shown in
igs. 3(a) and 3(b), respectively, at the maximum of the
eld amplitude for the other coordinate, namely, x and y.
hey correspond to the diffraction of a moderately focused
aussian beam sw0=300 mmd incident at the Bragg angle

or three values of this angle (uB=0.01, 0.1, and 0.2 rad)
n a 1-mm-thick intracavity Bragg grating. As all beam
irections are located in the xz plane, the diffracted beam
s centered on y=0, and only beam divergence can modify
ts profile in the y direction. Actually, with the parameters
sed in our calculations, the normalized y profiles remain

dentical to those of the incident beam for the three values
f uB previously mentioned [see Fig. 3(a)]. Despite the
elatively high finesse F=pÎr1r2 / s1−r1r2d=28 of our cav-
ty, this result is consistent with the low angular diver-
ence related to the beam waist suD,l /w0=3.3310−3d of
he incident read beam. In the case of tighter focusing of
he read beam, the widening in the y direction has been
erified through our calculations.

The x profiles of the normalized diffracted amplitudes
hown in Fig. 3(b) are strongly modified as the tilt angle
ncreases. For low values of the tilt angle su ,0.01d they

ig. 3. Normalized (a) y and (b) x profiles of the diffracted beam
ompared with those of the incident beam at various tilt angles.
he finesse of the Fabry–Perot cavity is 28, the sample thickness

s 1 mm, and the incident beam waist is 300 mm.
B
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ook almost identical to the y profiles. For larger values of
B the diffracted beam exhibits a spread, increasing with
ncreasing uB even though it stays centered on the inci-
ent beam. The large spread of the diffracted beam im-
lies a reduction of the effective cavity finesse of the
abry–Perot device. This phenomenon results in a strong
ecrease in the diffraction efficiency at high values of uB
s shown in Section 4.

. DIFFRACTION EFFICIENCY
e also investigated the effect of various parameters on

he diffraction efficiency of the Gaussian beam on the in-
racavity Bragg device. The influence of tilt angle uB, av-
rage thickness l0 of the cavity, and incident beam waist
0 are presented in Figs. 4(a)–4(c). On all these curves ev-

ry data point corresponds to a resonance length for the
abry–Perot device and to an adjusted index modulation
o maximize diffraction efficiency when calculated in the
lane-wave approximation. Figure 4(a) shows the maxi-
um diffraction efficiency plotted as a function of the

hickness of the intracavity material for two tilt angles (
B=0.01 and 0.1) with an incident beam waist of w0
300 mm. A threshold thickness appears from which the

ig. 4. Diffraction efficiency of the Bragg device under Gaussian
llumination (a) versus cavity thickness for various tilt angles
solid curve for uB=0.1 and dashed curve for uB=0.01), (b) versus
avity thickness for various beam waists (solid curve for w0
300 mm and dashed curve for w0=30 mm), (c) versus beam
aist for various tilt angles (solid curve for uB=0.1 and dashed

urve for uB=0.01), (d) versus cavity thickness (dotted-dashed
urve for a plane wave at uB=0.1, solid curve for a beam waist of
0=300 mm at uB=0.01 and dotted curve for a beam waist of
0=300 mm at uB=0.1. In (a)–(c) the refractive-index modulation

s adjusted at every data point for maximum diffraction efficiency
n the plane-wave approximation sr=1d, whereas in (d) the
efractive-index modulation is fixed for a maximum value at l0
300 mm in the plane-wave case.
iffraction efficiency starts decreasing (l.1 mm for uB
0.01 and l.100 mm for uB=0.1). This reduction is evi-
ently related to the diffracted beam spread [see Fig. 3(b)]
ue to the multiple reflections inside the cavity. It must
lso be stressed that, at least for the small tilt angles con-
idered here, the length threshold of the decrease of the
iffraction efficiency is inversely proportional to uB, which
onfirms the geometrical nature of the reduction. The
alue of this threshold can be related to the finesse of the
abry–Perot device as follows. If the walk-off s.FuBld of
he incident beam due to its multiple reflections in the
avity is greater than the beam diameter, then the cavity
s no longer efficient. Figure 4(b) shows the diffraction ef-
ciency of the intracavity grating as a function of the
hickness l for two waists of the incident beam (w0
300 mm and w0=30 mm) and for a tilt angle uB=0.1. The
urves are very similar to that shown in Fig. 4(a) with a
trong decrease of the diffraction efficiency when l
w0 /FuB. The knowledge of this threshold is useful in

he design of efficient intracavity Bragg devices. The
ame behavior can be seen in Fig. 4(c) showing the evolu-
ion of the diffraction efficiency of the device as a function
f w0 for two different tilt angles (uB=0.01 and 0.1) for a
avity thickness l0=500 mm.

The results shown in Figs. 4(a)–4(c) correspond to cal-
ulations performed for a refractive-index modulation Dn
ptimized at every data point for a maximum diffraction
fficiency in the plane-wave approximation (r=1 for a
ossless intracavity material). However, in a practical de-
ice, Dn is generally fixed. It is then interesting to exam-
ne the behavior of the diffraction efficiency of the device
s a function of the various parameters in this case. This
s illustrated in Fig. 4(d) showing the diffraction efficiency
f the device as a function of the Fabry–Perot thickness in
he plane-wave approximation and for a Gaussian inci-
ent beam of waist w0=300 mm at two tilt angles (uB
0.01 and 0.1). The index modulation Dn is chosen to
aximize the diffraction efficiency for a 300-mm-thick

avity in the plane-wave approximation. For a small tilt
ngle suB=0.01d the results are practically identical for
he Gaussian beam and for the plane-wave approxima-
ion, even for high thicknesses of the Fabry–Perot cavity
or which a decrease of the maximum possible diffraction
fficiency was shown [see Fig. 4(a)]. In the case of larger
ilt angles suB=0.1d the diffraction efficiency at large
hicknesses of the Fabry–Perot cavity is smaller than in
he case of the plane-wave approximation. Moreover, be-
ause of a competition between the Bragg efficiency and
he decreasing Fabry–Perot efficiency due to the beam
pread, the maximum diffraction efficiency is obtained for

cavity thickness that is slightly smaller than in the
lane-wave approximation. This result should be kept in
ind when designing an intracavity Bragg device.

. ANGULAR SELECTIVITY
n addition to the decrease in diffraction efficiency, and
robably more important, is the weakening of the angular
electivity of intracavity Bragg gratings as a result of the
se of small-waist Gaussian beams. Figures 5(a) and 5(b)
how the normalized transmission and reflected diffrac-
ion efficiency of the device, respectively, plotted as a func-
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ion of the Bragg detuning Du. The calculation is per-
ormed for plane waves and beam waists of 1000, 300, and
00 mm with a nearly totally reflecting (R1=0.8 and R2
0.999) 1-mm-thick cavity. A 3.8-mm-period grating suB
0.1 radd is impressed in a lossless medium sk9=0d of
ean refractive index n0=1.3. The cavity is tuned to a

ead beam of mean direction uB, and the value of the
efractive-index modulation is chosen to obtain a maxi-
um reflected diffraction efficiency for plane waves.
As expected the transmission curves plotted in Fig. 5(a)

iden as the beam waist decreases. This is because at
mall detuning values, some plane-wave components of
he Gaussian beam are still resonant, even though the
ean direction is not. The maximum values of the trans-
ission and diffraction efficiencies and the corresponding

ngular FWHM are plotted in Figs. 6(a) and 6(b). Above
he beam radius threshold previously mentioned, the be-
avior tends asymptotically toward that of the plane
ave, but the transmission and the diffraction efficiency
ecrease drastically for decreasing beam waist. For w0
300 mm the FWHM of the reflected diffracted beam

<1 mradd is increased by a factor of 6 compared to that
f the plane wave s<0.17 mradd. Such results, which dem-
nstrate a low angular selectivity together with a reduced
iffraction efficiency, seem to preclude the use of intrac-
vity Bragg gratings for Gaussian read beams of very
mall waist, at least for thick Fabry–Perot cavities.

This inconvenience can nevertheless be circumvented if
he cavity is tuned to the mean incidence angle u=uB
Du instead of uB. This could be done for example by
aximizing the transmission of the device. The results of

ig. 5. (a) Normalized transmission rT of the empty Fabry–
erot cavity and (b) diffraction efficiency rDR of the intracavity
ragg grating plotted as a function of the Bragg detuning for
arious beam waists (solid, dashed, dotted-dashed and dotted
urves for plane waves, w0=1000, 300, and 100 mm, respec-
ively). The Fabry–Perot cavity is tuned to the Bragg angle of the
rating uB.
he calculations performed with the same parameters as
n Figs. 5 and 6, except for the tuning of the cavity, are
resented in Figs. 7 and 8. The transmission is not
hown, since the tuning keeps it constant at its maximum
alue for this cavity. Figure 7 shows the normalized dif-
raction efficiency rDR/rmax plotted as a function of the
ragg detuning Du for plane waves and for Gaussian
eams with w0=1000, 300, and 100 mm. It appears that
he angular selectivity is not as drastically reduced as in
he case of the fixed Fabry–Perot cavity. This is quantita-

ig. 6. (a) Maximum transmission rT and angular width
WHMT of the empty Fabry–Perot cavity and (b) maximum dif-

raction efficiency rDR and angular width FWHMDR of the intra-
avity Bragg device plotted as a function of the read beam waist;
he Fabry–Perot cavity is tuned to the Bragg angle of the grating
B.

ig. 7. Normalized diffraction efficiency rDR of the intracavity
ragg grating plotted as a function of the Bragg detuning for
arious beam waists (solid, dashed, dotted-dashed and dotted
urves for plane waves, w0=1000, 300, and 100 mm, respec-
ively); the Fabry–Perot cavity is tuned to the incident beam di-
ection u=u +Du.
B
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ively confirmed by Fig. 8, which shows the angular
WHM of the reflected diffracted beam plotted as a func-
ion of w0. Compared with the case of the plane wave (the
symptote), it is multiplied only by 2 for w0=300 mm,
hich demonstrates that intracavity Bragg gratings could
e useful for applications to free-space optical parallel
rocessing with reasonable efficiencies (20%, as also
hown in Fig. 8).

It must be stressed that the same performance can be
btained with smaller beam waists and thinner Fabry–
erot cavities fulfilling the Bragg criterion4 h2lf1
R dÎR / s1−ÎR R dg2.10L2 /plj as verified for w

ig. 9. Normalized transmission rT of the empty Fabry–Perot
avity tuned (a) to the Bragg angle uB and (b) to the read beam
irection uB+Du. The coupling to the Fabry–Perot cavity of the
iffracted beam at uB−Du is much less in the latter case.

ig. 8. Maximum diffraction efficiency rDR and angular width
WHMDR for the intracavity Bragg device plotted as a function of

he read beam waist; the Fabry–Perot cavity is tuned to the in-
ident beam direction u=uB+Du.
1 2 1 2 0
10 mm and l=30 mm, which implies that free-space
ense parallel optical processing could also be possible.
oncerning applications, the issue of the time response of

he device is an important one. The only intrinsic limita-
ion of the intracavity Bragg grating with respect to that
arameter is related to the Fabry–Perot lifetime t
F2nl /c. For l=30 mm and F=28 this lifetime is smaller

han 8 ps.
The difference between the results shown in Fig. 6 and

hose in Fig. 8 can be easily understood if we remember
hat the beam is diffracted in the direction −uB+Du for a
ead beam sent in the uB+Du direction. Indeed, for a cav-
ty tuned to uB and consequently also to −uB, the read and
iffracted beams are equally coupled to the cavity when
u increases [see Fig. 9(a)]. On the other hand, when the
avity is tuned to the read angle uB+Du the coupling is
rastically reduced for the diffracted beam in the direc-
ion −uB+Du [see Fig. 9(b)], thus reducing the diffraction
fficiency for this incident read beam.

. CONCLUSION
he diffraction of Gaussian beams on intracavity Bragg
ratings has been analyzed and compared with that of
lane waves. Diffraction efficiency is not significantly al-
ered by the divergence associated with small beam
aists. At small Bragg incidence angles it is not affected
s long as the walk-off of the incident beam does not ex-
eed the beam diameter and as long as efficient interfer-
nce can take place in the cavity. The thickness threshold
or the decrease of diffraction efficiency is proportional to
he tilt angle and inversely proportional to the read beam
aist. The angular selectivity of the device is also drasti-

ally reduced for a cavity tuned to the Bragg angle of the
efractive-index grating. The loss in angular selectivity is
evertheless very small for a Fabry–Perot cavity tuned to
he incident beam direction because of the very bad cou-
ling associated with the detuning of the diffracted beam
n this case.

This theoretical analysis shows that efficient and free-
pace dense parallel optical processing can be considered
ith intracavity Bragg gratings. It should also be stressed

hat, because of its generality, this calculation can be used
o optimize the diffraction properties of any intracavity
ragg grating illuminated by Gaussian beams, which
ould be useful for any Bragg-diffraction-based optical de-
ice.

Corresponding author I. Zaquine’s e-mail address is
sabelle.Zaquine@enst.fr.
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