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We derive closed-form expressions for the effective index of subwavelength gratings up to the fourth and the
second order for TE and TM polarization, respectively. These expressions are valid for arbitrary grating
structures and are a generalization of previous results obtained for lamellar gratings with one groove per pe-
riod (a structure often called a two-component layered medium). The effective-medium-theory predictions are
carefully validated with exact electromagnetic theories for slanted and unslanted sinusoidally modulated vol-
ume gratings and for classical mounting. It is shown that, even for large period-to-wavelength ratios near the
cutoff value, the form birefringence is accurately predicted at any angle of incidence. © 1998 Optical Society
of America [S0740-3232(98)01107-7]

OCIS codes: 050.1970, 050.7330, 260.1440.
1. INTRODUCTION
Homogenization theories have been applied to a large va-
riety of fields, covering mechanics, acoustics, physics,
mathematics, and chemistry, for example. The objective
of homogenization is to provide a simplified model of com-
posite materials whose rigorous analysis is computation-
ally difficult and sometimes even impossible. In general,
homogenization theories exploit the fact that two differ-
ent scales are relevant for studying the material proper-
ties. On a microscopic scale, the main characteristic of
the composite material is heterogeneity. Conversely, on
the scale of the observation, the microscopic structure is
indistinguishable, and the material appears homoge-
neous. Homogenization theory or effective-medium
theory (EMT) exploits this dual scale by introducing a
small parameter x that is defined by the ratio of two char-
acteristic lengths associated with the two scales. When x
tends to zero (asymptotic limit or static limit), the prop-
erties of the material and of its homogenized version are
identical. Interesting results for engineers are obtained
when simple approximate expressions are available for
the nonasymptotic case.

Hereafter we focus on the homogenization of one-
dimensional (1-D) subwavelength gratings. A subwave-
length grating is defined as a periodic structure, incorpo-
rated between two semi-infinite media, that does not
diffract light in the far field (only the zeroth reflected and
transmitted orders are propagating for a given incident
plane wave). Recent experimental and theoretical inves-
tigations have shown that periodic subwavelength-
structured surfaces with periods that are small compared
with the illumination wavelength behave as homogeneous
media. The investigations have also suggested interest-
ing applications, such as fabrication of antireflection
coatings,1–6 quarter-wave plates,7,8 polarizers,9 and
graded-phase diffractive elements,10,11 for example. The
0740-3232/98/071843-09$15.00 ©
small parameter x used for the homogenization problem
is the period-to-wavelength ratio (L/l), and the effective
index neff is seen as a power series of L/l:

neff 5 n0 1 n1L/l 1 n2~L/l!2 1 .... (1)

Recently it was shown12 that the power series of Eq. (1)
does not provide a complete description of the homogeni-
zation problem; for an adequate homogenized model, an-
other parameter x equal to the depth-to-wavelength ratio
must also be considered, in addition to L/l, to take into
account evanescent modes. The impact of evanescent
modes on the effective properties of the grating is espe-
cially stringent for grating depths smaller than a quarter
wave (the birefringence Dn of 1-D and two-dimensional
gratings vanish for small depth-to-wavelength ratios).
In the following we assume that the grating depth is large
enough so that evanescent modes can be neglected. This
amounts to considering that the effective index of the
grating in Eq. (1) is given by the effective index of the fun-
damental propagating mode supported by the periodic
structure.

The properties of 1-D periodic structures have been
analyzed in great detail. Two different kinds of work can
be distinguished. On the one hand, theoreticians have
made drastic efforts to prove the equivalence of 1-D grat-
ings and homogeneous uniaxial thin films in the static
limit (see, for instance, Refs. 13 and 14). On the other
hand, other studies have focused on the derivation of
closed-form expressions for the effective index in the non-
static limit. Closed-form expressions up to order 4 for TE
and TM polarizations are available for 1-D periodic lamel-
lar gratings composed of two homogeneous materials (a
structure often called two-layered media); see, for in-
stance, Refs. 6, 15, and 16. The homogenization of two-
component layered media is made easy by the fact that
the permittivity is piecewise constant and thus by the fact
1998 Optical Society of America
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that the modes supported by the structure are analyti-
cally known. By using a Fourier expansion of the field
inside the periodic structure, Bell et al.17 derived closed-
form expressions for the second-order effective index of
1-D symmetric gratings and for TE polarization. More
recently, Lalanne and Lemercier-Lalanne18 obtained
closed-form expressions up to order 2 for TE and TM po-
larizations of arbitrary (symmetric or not) 1-D gratings
but restricted their analysis to gratings illuminated un-
der normal incidence.

In this paper we derive closed-form expressions for the
effective index of arbitrary gratings in classical mounting.
For TE polarization, the expression includes terms up to
order 4. For TM polarization, it includes terms up to or-
der 2. The methodology used for the derivation is pre-
sented in Subsection 2.A, and the main formulas are sum-
marized in Subsection 2.B. The case of practical interest
of volume gratings is considered in Sections 3 and 4 for
unslanted and slanted gratings, respectively. By com-
parison with exact electromagnetic theories, it is found
that the birefringence is accurately predicted by EMT up
to period-to-wavelength ratios equal to 0.7 times the cut-
off value.

2. EFFECTIVE-MEDIUM THEORY
The 1-D grating diffraction problem considered in the fol-
lowing analysis is depicted in Fig. 1. A linearly polarized
electromagnetic plane wave is obliquely incident at an ar-

Fig. 1. (a) Geometry for the nonconical grating diffraction prob-
lem analyzed in the paper. The relative permittivity is assumed
to be independent of the z direction, and an unslanted grating is
considered in the figure (e depends only on the x coordinate). (b)
Corresponding periodic structure with an infinite spatial extent
in the z direction. b and g are the normalized x and z compo-
nents of the wave vector along the x and the z direction, respec-
tively.
bitrary angle of incidence u on a dielectric or a lossy grat-
ing in a classical mounting (the plane of incidence is per-
pendicular to the y direction). The wavelength in the
vacuum of the incident wave is denoted by l, and the cor-
responding wave-vector length k is equal to 2p/l. The
grating region is composed of a 1-D periodic structure
along the x axis. The grating period is denoted by L and
the relative permittivity by e (x/L). The grating is sur-
rounded by two different media with refractive indices n1
and n3 . The z axis is perpendicular to the grating
boundaries, and the diffraction problem is invariant in
the y direction. A temporal dependence of exp(2jv t) of
the incident wave is assumed ( j2 5 21) throughout the
paper. Magnetic effects are not considered. We denote
by en and an the nth Fourier coefficients of e and e21, re-
spectively.

A. Methodology
As is mentioned in Section 1, we consider a periodic struc-
ture with a relative permittivity identical to that of the
grating but with an infinite spatial extent in the z direc-
tion [see Fig. 1(b)]. This amounts to neglecting the effect
of evanescent waves in the diffraction problem of Fig. 1(a)
and considering only the fundamental mode supported by
the periodic structure. For TE polarization the interest-
ing field quantity is the y component of the electric field.
The Helmoltz equation is

]2Ey

]z2 1
]2Ey

]x2 1 ek2Ey 5 0. (2)

Similarly, for TM polarization, we have

]2Hy

]z2 1 e
]

]x S 1

e

]Hy

]x D 1 ek2Hy 5 0, (3)

where Hy is the y component of the magnetic field. With
a dimensionless parameter a (a 5 0 and 1 for TE and TM
polarizations, respectively), Eqs. (1) and (2) can be rewrit-
ten as

]2U

]z2 1 ea
]

]x S 1

ea

]U

]x D 1 ek2U 5 0, (4)

where U is a function of x and z. Because e does not de-
pend on z, we look for a solution of the form

U~x, z ! 5 exp~ jkgz !V1~x/L!. (5)

Incorporating the expression of U into Eq. (4) and denot-
ing by V2 the quantity

1
ea

l

2pL

dV1

dx8
,

where x8 5 x/L, we obtain

ea
dV2

dx8
1

2pL

l
~e 2 g 2!V1 5 0. (6)

Equation (6) can be written as

d
dx8

S V1

V2
D 5

2pL

l F 0 a~x8!

b~x8! 0 G S V1

V2
D (7)

or, equivalently, as
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d
dx8

V 5
2pL

l
MV. (8)

In Eq. (8), V denotes the vector formed by coefficients V1
and V2 , and M is the 2 3 2 matrix on the right-hand side
of Eq. (7). The functions a(x8) and b(x8) are defined by
a(x8) 5 ea and b(x8) 5 (g 2 2 e)/ea. Equation (8) is a
first-order linear differential equation with nonconstant
coefficients. For a given value of b we can look for a so-
lution of the form V 5 exp( jkb x8L)v(x8) without loss of
generality. The related differential equation in v is

d
dx8

v 5
2pL

l
~M 2 jb I!v, (9)

where I is the identity matrix. The general solution of
Eq. (9) can be written as v (x8) 5 C (x8)v (0), where
C (x8) is a 2 3 2 matrix whose coefficients can be com-
puted by numerical integration. As explained below, we
are concerned in the following with the matrix C(1),
which we simply denote by C. If we assume that
(2pL)/l ! 1, it is easy to determine that an approximate
expression for C is

C 5 I 1
2pL

l
C1~1 ! 1 S 2pL

l D 2

C2~1 !

1 S 2pL

l D 3

C3~1 ! 1 OS 2pL

l D 4

, (10)

where C1(x8) 5 *0
x8(M 2 jbI)d t, C2(x8) 5 *0

x8(M
2 jbI)C1d t and C3(x8) 5 *0

x8(M 2 jb I )C2d t. For the
series expansion of Eq. (10) to be valid, the integrals of e
and e21 have to be defined over the interval [0; 1], which
is guaranteed for physical reasons. For (kb) to be the x
component of the propagating wave vector, a vector v*
verifying v* (1) 5 Cv* (0) and v* (1) 5 v* (0) has to exist
(pseudoperiodicity condition). Here v* is an eigenvector
of matrix C, and the corresponding eigenvalue is equal to
one. In other words, the determinant of matrix C 2 I is
equal to zero, and the dispersion relation, up to the sec-
ond order of L/l, can be written as

iC1~1 ! 1 ~2pL/l!C2~1 ! 1 ~2pL/l!2C3~1 !

1 O~2pL/l!3i 5 0. (11)

B. General Formula
For reasons of brevity we now omit the long but elemen-
tary intervening calculations and give only the results.
We denote by a* (x8), b* (x8), A(x8), and B(x8), the quan-
tities defined by

a* ~x8! 5 a~x8! 2 e0
a,

b* ~x8! 5 b~x8! 2 g2a0
a 1 e0

12a ,

A~x8! 5 E
0

x8
a* ~x !d x,

B~x8! 5 E
0

x8
b* ~x !d x,

respectively. By keeping all terms up to the second order
of L/l in Eq. (11), we obtain the following dispersion re-
lation:
e0
a~g 2a0

a 2 e0
12a! 1 b2 5 ~2pL/l!2R, (12a)

with

R 5 e0
2a^BuB& 1

b4

e0
2a ^AuA& 1 2b2^BuA&

2 2e0
a^Bub* A& 1 2

b2

e0
a ^Aua* B& 2 ^a* uB&2.

(12b)

In Eq. (12b), the covariance ^ f u g& of two functions f and g
is defined by ^ f u g& 5 *0

1@ f (x) 2 *0
1f (x8)dx8#@ g(x)

2 *0
1g(x8)dx8#dx. Basically, the computation of prod-

ucts ^ f u g& in Eq. (12b) relies on integrals of functions e
and e21 and on products of these functions. Equations
(12a) and (12b) are the main practical results of this pa-
per. They are valid for TE and TM polarizations (up to
the second order of L/l) and for any kind of periodic
structures, as long as the permittivity depends only on
the x coordinate. They hold for the two practically im-
portant cases of unslanted lamellar and volume gratings.
The case of slanted grating is discussed in Section 4.

In general, one is interested in knowing the effective in-
dex neff of the subwavelength grating for a given angle of
incidence u. This amounts to imposing the x component
of the normalized propagating wave vector b by the rela-
tionship

b 5 n1 sin~u!. (13)

In Eq. (12b), R is a function of both b and g. We trans-
form it into a function depending only on b by replacing g
with its zeroth-order approximate expression g 2 5 (e0
2 b2)/(e0

aa0
a) in the expression of R. Thus the effec-

tive relative permittivity eeff (eeff 5 neff
2 ) is given by

eeff 5 b2 1 g 2, (14)

with

g 2 5 f~b! 5
1

e0
aa0

a Fe0 2 b2 1 S 2pL

l D 2

R~b!G .
(15)

For transparent dielectric gratings, g 2 is either positive
or negative. Negative values correspond to total internal
reflection at the upper grating interface. In general, for
absorbing materials, g 2 is a complex number.

C. Remarks
For TE polarization, a* and A are both equal to zero.
The dispersion relation of Eqs. (12a) and (12b) takes a
simple form, since only the product ^BuB&2 has to be com-
puted. The methodology used above to derive second-
order expressions can be used up to the fourth order with-
out burdensome handwritten computation. For the sake
of generality, we now give the effective relative permittiv-
ity of the TE wave up to the fourth order of L/l:
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eeff 5 e0 1 S L

l
D 2S (

pÞ0

epe2p

p2 D 1 S L

l
D 4

3 S ~4b2 2 e0!(
pÞ0

epe2p

p4 1 (
pÞ0,kÞ0

epek2pe2k

p2k2 D .

(16)

Equation (16) relies on the Fourier coefficients ek of the
relative permittivity e rather than on products of type
^•u•&. The equation will be easier to use in Section 3. In
general, the fourth-order EMT for TE waves provides ac-
curate results (see Sections 3 and 4 for volume gratings
and Section 2 of Ref. 18 for the case of highly modulated
lamellar gratings illuminated under normal incidence).
From Eq. (16) it is concluded that the normal surface of
TE waves is still a sphere up to the second order; a b de-
pendence exists only in the fourth-order term of the effec-
tive index. For TM polarization the normal surface is no
longer an ellipsoid of revolution up to the second order.
and dichromated gelatins. We assume that the relative
permittivity in the grating region is e (x)/L
5 e0 1 De cos(2px/L), where e0 is the bias relative per-
mittivity of the material and De is the relative permittiv-
ity modulation. To our knowledge only the zeroth-order
EMT has been applied to the analysis of such continu-
ously varying permittivity gratings,19 and the present pa-
per is the first to present accurate expressions that are
valid for large periods near cutoff.

For TE polarization, Eq. (16) becomes

TE: eeff 5 e0 1
~De!2

2 S L

l D 2

1 2b2~De!2S L

l D 4

. (17)

As mentioned above, a dependence in u is observed in the
last term of order 4. For TM polarization, the effective-
index expression is more complex. By including the Fou-
rier coefficients an of the inverse relative permittivity, we
obtain
TM: eeff 5
1

e0a0 Xe0 2 b2 1 e0a0b2 1 S L

l
D 25

b4De2

2e0
2 1 b2DeS 1 2

b2

e0
D S 2a1

a0
1

Dea2

2e0a0
D

1
e0

a0
2 S 1 1

b4

e0
2 2

2b2

e0
D F e0(

nÞ0
S an

n D 2

1 2De(
n.0

anan11

n~n 1 1 !G 6 C. (18)
Thus the conventional uniaxial crystal approximation for
1-D gratings is strictly valid only in the static limit.

We checked the closed-form expression of Eqs. (12a)
and (12b) against results available in the literature:

• For lamellar gratings with one groove per period
(two-component layered media), the handwritten compu-
tations of products ^•u•& in the expression of R is straight-
forward, since it requires the computation of integrals of
piecewise-constant functions. We found that our EMT
results are consistent with those derived by Rytov15 or
more recently by Gu and Yeh.16

• For more general grating structures including non-
lamellar gratings, such as volume gratings or lamellar
gratings with more than one groove per period, the prod-
ucts ^•u•& in Eq. (12b) can be expressed by use of the Fou-
rier coefficients an and en . It is easily shown that

* for TE polarization Eqs. (12a) and (12b) are iden-
tical to Eq. (15), which was previously derived by Bell
et al. in Ref. 17 for grating profiles for which a center of
symmetry exists for e (x);

* for TE and TM polarizations our EMT result is
consistent with those previously obtained by Lalanne
and Lemercier-Lalanne [see Eqs. (8) and (15) in Ref.
18] for grating structures that are arbitrary but have
normal incidence (b 5 0).

3. UNSLANTED VOLUME GRATINGS
In this section we are concerned with sinusoidally un-
slanted modulated volume holograms. These holograms
can be recorded into different materials that include, for
example, photorefractive crystals, photopolymers, solgels,
For the following numerical tests we assume that the vol-
ume hologram is recorded in a dichromated gelatin layer
deposited on a glass substrate (n3 5 1.54). The incident
medium is air (n1 5 1), and the grating is 8.8 mm thick.
The bias permittivity of the hologram is 1.8496 at a wave-
length of 0.6328 mm. This corresponds to a bias index of
1.36. The relative-permittivity modulation De is 0.25,
which corresponds to an index modulation of ;0.09.
This experimental situation is identical to that used by
Campbell and Kostuk in Ref. 19, in which the limits of va-
lidity of zeroth-order EMT for modeling the birefringence
properties of sinusoidally modulated volume holograms
are analyzed.

We define the cutoff k as the period-to-wavelength ratio
Lc /l beyond which the grating of Fig. 1 stops behaving as
a zeroth-order filter (some diffracted orders are noneva-
nescent in the substrate or incident medium). For a
given angle of incidence u, whether a diffraction order
propagates is determined by the grating equation. For
unslanted gratings, it is found that k 5 1/@max(n3 , n1)
1 b)], which reduces to k 5 1 /(n3 1 sin u ) for the vol-
ume hologram considered.

A. Testing Effective-Medium Theory Against Exact
Bloch-Wave Computation
We first present a comparison between the effective-index
predictions of Eqs. (17) and (18) and exact values obtained
with Bloch-wave computation.20 The Bloch-wave method
exploits the periodicity of the grating permittivity and re-
lies on a Fourier decomposition of the electromagnetic
field quantities. Figure 2 shows the effective relative
permittivity of the volume grating as a function of b for
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TE polarization. EMT predictions and Bloch-wave com-
putational results correspond to dashed or solid curves
and circles, respectively. For period-to-wavelength ra-
tios up to k/2, the agreement between EMT predictions
and exact numerical results is excellent: The largest dif-
ferences equal 2 3 1024 and 3 3 1025 for the second- and
fourth-order EMT predictions, respectively. At cutoff the
EMT prediction is less accurate, especially for b greater
than 0.6 (angles of incidence u greater than 37°). How-
ever, it is noticeable that the differences do not exceed
0.005 for the fourth-order EMT approximations and for b
smaller than 1 (u , 90°). Figure 3 shows a comparison
for TM polarization. As above, the dashed curves repre-
sent the second-order relative effective permittivity [Eq.
(18)], and circles are exact values. Once again a good
agreement is obtained. It is even better than for TE po-
larization: The deviation between approximate and ex-
act results does not exceed 0.002 even at cutoff for b
smaller than 1.

Two interesting features in Figs. 2 and 3 have to be
mentioned. First, as b increases toward 1.36, the effec-
tive relative permittivities found with Bloch-wave compu-
tations are nearly identical for TE and TM polarizations.
This is easily understood when we consider that, for
b ' 1.36, waves are propagating along the x direction
(g 5 0), normal to the fringes and are experiencing a
thin-film stack (rugate) under normal incidence. Second,
it is noteworthy that, for a given value of b in Fig. 3
(b ' 1), the effective relative permittivity is nearly inde-
pendent of L/l. This is a general property of periodic
structures for which 1/e (x) 5 2pe (x) 1 q, with p and q
being two real numbers. These structures include lamel-
lar gratings composed of two materials and also volume

Fig. 2. Effective relative permittivity as a function of the angle
of incidence for TE polarization and for different period-to-
wavelength ratios: comparison between EMT predictions (dot-
ted and solid curves) and Bloch-wave computation (circles).
Dotted and solid curves are obtained with second-order and
fourth-order EMT of Eq. (17), respectively.
gratings with small permittivity modulations. In fact, it
is easily shown that, for these structures, R(b) is null for
b2 5 pe0

2g 2. For the volume grating considered in this
paper, De ! e0 and p 5 1/e0

2, because 1/e (x)
' 2e (x)/e0

2 1 2/e0 . Thus R(b) is null for b2 5 g 2.
As b2 1 g 2 is approximately equal to the bias relative
permittivity e0 , it is predicted that the effective relative
permittivity is weakly dependent on L/l for b
5 (e0/2)1/2 ' 0.96, as confirmed by Fig. 3.

B. Testing Effective-Medium Theory Against Exact
Diffraction Theory
The preceding tests do not provide any information about
the equivalence (or nonequivalence) of volume gratings
and homogeneous thin films. They indicate only that the
second- and fourth-order effective indices [Eqs. (17) and
(18)] are accurate expressions for the effective relative
permittivity of the fundamental mode supported by the si-
nusoidally modulated structure, even for large period-to-
wavelength ratios near cutoff. In the following we are
concerned with testing the equivalence of subwavelength
volume holograms and homogeneous thin films. More
specifically, we try to answer two questions: (1) In the
far field, do the diffraction patterns of subwavelength vol-
ume gratings mimic those of homogeneous thin films? and
(2) Is the far-field pattern accurately predicted by the
second- and fourth-order EMT expressions of Eqs. (17)
and (18)? To answer these questions, we note that Fig. 1
defines a diffraction problem that can be solved rigor-
ously. Solving Maxwell’s equations and boundary condi-
tions at the grating interfaces, we compute the complex
transmitted amplitude t and the reflected amplitude r of
the zeroth-order diffracted waves. Then by the analogy
between subwavelength gratings and homogeneous thin
films, we define the equivalent effective index of the vol-

Fig. 3. Effective relative permittivity as a function of the angle
of incidence for TM polarization and for different period-to-
wavelength ratios: comparison between the second-order EMT
predictions (dotted curves) of Eq. (18) and Bloch-wave computa-
tion (circles).



1848 J. Opt. Soc. Am. A/Vol. 15, No. 7 /July 1998 P. Lalanne and J.-P. Hugonin
ume grating as the real number nRCWA (where RCWA
stands for rigorous coupled-wave analysis) that mini-
mizes the error function

e 5 ur8~nRCWA ! 2 ru 1 ut8~nRCWA ! 2 tu, (19)

Fig. 4. Effective relative permittivity as a function of the angle
of incidence for TE polarization and for different period-to-
wavelength ratios: comparison between EMT predictions (dot-
ted and solid curves) and results (circles) obtained by minimizing
the error function of Eq. (19) by use of RCWA. Dotted and solid
curves are obtained with second-order and fourth-order EMT of
Eq. (17), respectively.

Fig. 5. Effective relative permittivity as a function of the angle
of incidence for TM polarization and for different period-to-
wavelength ratios: comparison between second-order EMT pre-
dictions (dotted curves) and results (circles) obtained by minimiz-
ing the error function of Eq. (19) by use of RCWA.
where r8(nRCWA) and t8(nRCWA) are the reflection and the
transmission complex coefficients of an 8.8-mm-thick ho-
mogeneous layer with an optical index nRCWA . A similar
procedure was used in Ref. 18 to test subwavelength
lamellar gratings. The value of e is primordial, since it
provides a quantitative answer to question (1). The an-
swer to question (2) relies on the comparison between
nRCWA and the EMT prediction of Eqs. (17) and (18).

The values of nRCWA found for TE and TM polarizations
are represented as circles in Figs. 4 and 5, respectively.
For TE polarization, the maximum values of the error

Fig. 6. TM–TE phase shift predicted by EMT (dotted curves)
and RCWA (solid curves) for the dichromated gelatin grating.
(a) and (b) are obtained for L 5 (1/2)(l/1.36) and (1/4)(l/1.36),
respectively. They can be directly compared with those ob-
tained with a zero-order EMT by Campbell and Kostuk [see Figs.
4(a) and 4(b) in Ref. 20].
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function obtained for L/l 5 k/2 and k/5 are 5.9 3 1024

and 3.9 3 1025, respectively. For TM polarization, the
maximum values are slightly larger and are equal to
4.8 3 1023 and 4.4 3 1023, respectively. These values
are very small, and we conclude that, with good accuracy,
the subwavelength volume hologram can be seen as a ho-
mogeneous thin film. For the sake of comparison, let us
recall that error values of ;6 3 1022 were observed for
high-index-modulation subwavelength gratings in Ref.
18. The fact that we obtain small values for the error
function e is not surprising, since, in general, the equiva-
lence between subwavelength gratings and homogeneous
thin films improves when the index modulation decreases
and the grating depth increases (evanescent waves can be
neglected12). Moreover, in Figs. 4 and 5, the second- and
fourth-order EMT predictions are plotted. An excellent
agreement is obtained between rigorous computational
results and EMT predictions; deviations between nRCWA
and the second- and fourth-order EMT predictions are
nearly invisible for TM and TE polarizations, respec-
tively.
Figure 6 shows the phase difference between the TM
and the TE polarizations of the zeroth-order transmitted
beam as a function of the angle of incidence for two dif-
ferent grating periods. The solid curves show the phase
difference computed by the RCWA.21 The dotted curves
show the phase shifts of the equivalent birefringent thin
film determined by EMT. We performed the thin-film
computation with the Airy formula for homogeneous thin
films,22 assuming the fourth-order approximation for TE
and the second-order approximation for TM. Figure 6(b)
is obtained for a volume grating with a period equal to
(1/4)(l/1.36); l/1.36 is the wavelength in the volume ho-
logram. As can be seen in this figure, the phase differ-
ences computed with RCWA and the birefringent thin-
film model are approximately equal; the maximum
difference is smaller than 0.1°. At a period equal to
(1/2)(l/1.36) [Fig. 6(a)], a deviation between RCWA and
thin-film computational results is observed. For angles
of incidence from 0° to 50°, the deviation does not exceed
0.7°. However, for larger angles of incidence the devia-
tion is rather large, reaching 6.7° for u equal to 80°. Fig-
Fig. 7. TM–TE phase shift predicted by EMT (dotted curves) and RCWA (solid curves) for a slanted-fringe dichromated gelatin grating
for several period-to-wavelengths, L/l 5 k/5, k/3, 2k/3, and k. The slant angle is F 5 45°.
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ures 6(a) and 6(b) can be compared directly with those ob-
tained with a zeroth-order EMT by Campbell and Kostuk
[see Figs. 4(a) and 4(b) in Ref. 19]. From this compari-
son, we notice that the second- and fourth-order EMT
models developed in this paper drastically improve the ac-
curacy of the birefringence thin-film computation.

4. SLANTED VOLUME GRATINGS
In this section we consider planar slanted-fringe grating
geometries. We denote by F the grating slant angle and
by (x1 , z1) the natural coordinate system of the grating.
We have x1 5 x sin F 1 z cos F and z1 5 2x cos F
1 z sin F. The relative permittivity of the grating,
which depends on the x- and z-coordinates, is assumed to
be given by e (x/L, z/L) 5 e0 1 De cos(2p x1 /L). For
slanted-fringe gratings the cutoff k is given by k
5 sin(F)/@max(n3 , n1) 1 b#, which reduces to k
5 sin(F)/@n3 1 sin(u)# for the volume grating considered
in this paper. As above, we look for a plane wave with an
x- and z-coordinate dependence equal to exp@ jk(g z
1 b x)], with b given by Eq. (13). In the natural coordi-
nate system of the grating (x1, z1), the plane-wave ex-
pression is simply given by exp jk@(g cos F 1 b sin F)x1
1 (g sin F 2 b cos F)z1#, and according to the EMT of
Section 2 we have

~g sin F 2 b cos F!2 5 f~g cos F 1 b sin F!, (20)

where f is the function defined by Eq. (15). In general,
Eq. (20) has two solutions for g, denoted by g1 and g2 .
Analytical expressions for g1 and g2 can be found by look-
ing for a solution of Eq. (20) in a power series of L/l.
Simple expressions are obtained for TE polarization.
Figure 7 shows a comparison between EMT prediction
and rigorous computational results for the dichromated
gelatin grating and a slant angle of 45°. As above, the
EMT results include terms up to the fourth order of L/l
for TE and up to the second order for TM. For the EMT
computation, standard thin-film analysis software cannot
be used, since the grating is not equivalent to a uniaxial
layer. However, the computation is very similar and is
easily handled when we assume that the electromagnetic
field U in the grating is a superposition of two
plane waves, U 5 u1 exp@ jk(b x 1 g1z)# 1 u2 exp@ jk(b x
1 g2 z)#, which propagate in two homogeneous media
with different effective indices, (b2 1 g1

2)1/2 and (b2

1 g2
2)1/2, respectively. In Fig. 7 dashed and solid

curves are obtained with the EMT and the RCWA, respec-
tively. As can be seen, the phase differences computed
with the two approaches are in excellent agreement for
any angle of incidence and for L/l 5 k/5 and k/3. For
L/l 5 2k/3, a slight difference is observed. It does not
exceed 1°. However, at cutoff a large deviation exists
and the EMT is not valid.

5. CONCLUSION
Analytical expressions for high-order terms in L/l of the
effective indices of arbitrary 1-D gratings were derived for
slanted and unslanted geometries in classical mounting.
These analytical expressions include terms up to the
second- and fourth-order of L/l, respectively, for TM and
TE polarizations. They can be applied to any periodic
structure, symmetric or not, with continuously varying
index profiles or step-index profiles. They are a generali-
zation to arbitrary profiles of previous results available
for lamellar gratings with one groove per period, a struc-
ture often called two-component layered media. This
generalization includes the practically important case of
volume holograms. It was shown that for TE polariza-
tion the normal surface of periodic structures is a sphere
up to the second order only. Deviations from the sphere
are found in the fourth-order term of the period-to-
wavelength ratio. For TM polarization it was shown that
the normal surface is no longer an ellipsoid of revolution
at the second-order approximation. The predictions of
the EMT model were compared for sinusoidally modu-
lated volume holograms with exact electromagnetic theo-
ries to determine the limits of validity of the EMT predic-
tion. For the grating simulated in this study (index
modulation of ;0.09), it was found that the analogy with
birefringent homogeneous media is accurate up to period-
to-wavelength ratios equal to half the cutoff value for
slanted and unslanted grating geometries and for any
angle of incidence.
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