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The new formulation of the coupled-wave analysis recently proposed by Lalanne and Morris [J. Opt. Soc. Am.
A 13, 779 (1996)] and by Granet and Guizal [J. Opt. Soc. Am. A 13, 1019 (1996)] that drastically improves the
convergence performance of the method for lamellar gratings and for TM polarization is shown to be badly
conditioned for gratings with a small thickness. Numerical evidence obtained with the coupled-wave analysis
and with the differential methods for several grating diffraction problems shows that, in some cases that we
identify, the convergence of the conventional formulation can be faster than that of the new one. The discus-
sion includes lamellar, multilevel binary, and continuous-profile geometries. © 1997 Optical Society of
America [S0740-3232(97)00407-9]
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1. INTRODUCTION
Recently a striking improvement of the convergence rate
of the coupled-wave method for TM polarization
(magnetic-field vector perpendicular to the grating vector)
was reported by several authors.1,2 This improvement
was obtained by reformulation of the eigenvalue problem
in the grating region. In the conventional formulation,3

the infinite set of second-order differential equations for
the magnetic field is written as

k0
22@U9# 5 @E~K xE21K x 2 I!#@U#. (1)

In the new formulation, Eq. (1) is replaced by

k0
22@U9# 5 @A21~K xE21K x 2 I!#@U#. (2)

In Eqs. (1) and (2), I is the identity matrix; Kx , a diagonal
matrix; E, a Toeplitz matrix formed by the permittivity
harmonic coefficients of the relative permittivity «m ; and
A, a Toeplitz matrix formed by the inverse-permittivity
harmonic coefficients am . U is a vector formed by the
space-harmonic coefficients Um of the magnetic field, and
k0 represents the magnitude of the incident plane-wave
vector in vacuum. These are rather standard notations
used in Refs. 1 and 3, and they are used in Ref. 2 with
minor changes. The difference between the conventional
and the new formulations is small: The new formulation
uses the matrix A21 instead of the matrix E. To my
knowledge, two interpretations are available to explain
why the use of matrix A21 produces a striking difference
of performance in terms of convergence rate. A simple
intuitive argument was given in Ref. 1 based on the study
of the quasi-static limit (grating period infinitely small
compared with the wavelength). A similar discussion
can be found in Ref. 4. In the quasi-static limit, gratings
are equivalent to thin films, and the diffracted amplitudes
and the electromagnetic fields can be derived analytically;
0740-3232/97/0701583-09$10.00 ©
no evanescent orders have to be taken into account. The
authors of Ref. 1 showed that, with the conventional for-
mulation, an accurate description of the quasi-static limit
requires that all the evanescent orders be retained in the
computation. In contrast, as can be expected from the
thin-film analogy, it is sufficient to retain only the zeroth
orders to describe adequately the quasi-static limit prop-
erties of the grating with the new formulation. The au-
thors of Ref. 1 concluded that the conventional formula-
tion presents some kind of bad conditioning, and that is
why they reformulated the eigenvalue problem. To avoid
any confusion with the inverse-problem literature, ‘‘bad
conditioning’’ in this paper refers to a formulation in
which an infinite number of orders are necessary to mod-
elize properly a situation (asymptotic limit) that can in
principle be modelized by retaining only the zeroth or-
ders. Similarly, ‘‘good conditioning’’ refers to a formula-
tion in which only the zeroth orders are sufficient to mod-
elize the situation. A more mathematical explanation of
the performance improvement of the new formulation was
given by Li in a recent paper.5 The author showed that
the new formulation converges faster because it uni-
formly satisfies the boundary conditions in the grating re-
gion, whereas the conventional formulation does so non-
uniformly. This is obviously a strong and surprising
argument. It has interesting consequences; if one is in-
terested in visualizing the electromagnetic fields inside
the grating region, the new formulation offers a good
framework to compute accurately the electric and mag-
netic vectors and the electric displacement. At first
sight, the intuitive argument used in the quasi-static
limit and the mathematical derivation of Li are not corre-
lated. For instance, the intuitive argument predicts that
the new formulation provides better performance even for
nonlamellar gratings with continuous relative permittivi-
1997 Optical Society of America
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ties; Li’s analysis does not consider this situation. The
fact that the two interpretations both argue in favor of the
new formulation is happily a good coincidence.
In this paper it is shown that, in some situations, the

new formulation exhibits slow convergence rates, which
are even slower than those obtained with the conven-
tional formulation. In Section 2 the TM-polarization
case of gratings is analytically studied in the small depth
limit (grating depth h much smaller than the wavelength,
hk0 ! 1). It is shown that, with the new formulation, an
infinite number of orders has to be retained in the com-
putation to modelize correctly the small depth limit. On
the contrary, the conventional formulation is shown to be
well conditioned. This situation is similar to the quasi-
static limit, but opposite conclusions are obtained about
the performances of the conventional and the new formu-
lations. In Section 3 a highly conductive grating is con-
sidered with different depth values, and the convergence
rates of the new and the conventional formulations are
compared in each case. Section 4 provides numerical evi-
dence that, for multilevel binary and continuous-profile
gratings, the grating depth is a parameter of primary im-
portance for the convergence rates of the two formula-
tions. Section 5 concludes the paper and includes a brief
discussion of other polarization problems, such as the
conical case.

2. SMALL DEPTH LIMIT OF GRATINGS
FOR TRANSVERSE-MAGNETIC
POLARIZATION
The one-dimensional grating diffraction problem consid-
ered in Sections 2 and 3 is depicted in Fig. 1. The grating
region is composed of a one-dimensional periodic struc-
ture along the x axis with an arbitrary permittivity pro-
file «(x). It is bound by two different media with refrac-
tive indices n1 and n3 . The z axis is perpendicular to the
grating boundaries, and the diffraction problem is invari-
ant in the y direction. A temporal dependence of
exp( jvt) of the incident wave is assumed ( j2 5 21).
Magnetic effects are not considered in this paper, and the
constant m0 denotes the permeability of the periodic
structure and of the surrounding regions. We denote by

Fig. 1. Geometry for the nonconical grating diffraction problem
analyzed in Sections 2 and 3 for TM polarization. The relative
permittivity is assumed to be independent of the z variable.
The refractive indices of the incident medium and of the sub-
strate are n1 and n3 , respectively. The grating depth is h, and
u denotes the angle of incidence.
c the velocity of light in vacuum. The following notations
are those of Ref. 1. Normal incidence (u 5 0) is assumed
in this section. The grating period is denoted by L, and
the length of the grating vector K is equal to 2p/L. Us-
ing the Floquet theorem, we can express the x component
Ex of the electric field and the y component Hy of the
magnetic field in the grating region as

Ex 5 (
m

Sm~z !exp jKmx, (3a)

Hy 5
1

m0c (
m

Um~z !exp jKmx. (3b)

For the conventional formulation, the first-order differen-
tial equations for Ex and Hy are

Um8

k0
5 2j(

p
«m2pSp , (4a)

Sm8

k0
5 jma2(

p
p«m,p

~21 !Up 2 jUm . (4b)

Similarly, for the new formulation, we have

Um8

k0
5 2j(

p
am,p

~21 !Sp , (5a)

Sm8

k0
5 jma2(

p
p«m,p

~21 !Up 2 jUm . (5b)

In Eqs. (4) and (5), a is the wavelength-to-period ratio
(a 5 K/k0), and «m,p

(21) and am,p
(21) are the (m, p)th coeffi-

cients of matrices E21 and A21, respectively. The differ-
ence between Eqs. (5) and (4) is rather small: Equations
(5b) and (4b) are identical, and the coefficients «m2p in
Eq. (4a) are replaced by the coefficients am,p

(21) in Eq. (5a).
The y components H1, y and H3, y of the magnetic fields

in regions 1 and 3 are given by

m0cH1, y 5 exp@ jn1k0~z 2 h !# 1 (
m

Rm

3 exp@2jk0~n1
2 2 m2a2!1/2~z 2 h !#

3 exp~ jmKx !, (6a)

m0cH3, y 5 (
m

Tm exp@ jk0~n3
2 2 m2a2!1/2z#

3 exp~ jmKx !, (6b)

respectively. In Eqs. (6), Re(ni
2 2 m2a 2 )1/2 2 Im(ni

2

2 m2a2)1/2 . 0 for i 5 1, 3.
We now proceed with the solution of the grating diffrac-

tion problem in the limit in which the grating depth is
small compared with the wavelength (hk0 ! 1). To
avoid any confusion with related work,6 in this paper the
expression small depth limit is related to a situation such
that the grating thickness is made infinitely small while
all the other grating parameters (k0 , K, n1 , n3 , and
« i , with i5 2`...`) are held constant. We assume
that the mth space-harmonic field components in the
grating region can be expanded into a power series in
terms of h (hk0 ! 1). Consequently, we have
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Sm~h ! 5 Sm~0 ! 1 hk0
Sm8 ~0 !

k0
1 O~h2k0

2!, (7a)

Um~h ! 5 Um~0 ! 1 hk0
Um8 ~0 !

k0
1 O~h2k0

2!. (7b)

Equations (7) provide a linear relationship between the
electromagnetic-field components at the two boundaries
of the grating region. We also assume that the reflection
and the transmission coefficients, Rm and Tm , can be ex-
panded in a similar way:

Rm 5 Rm
~0 ! 1 hk0Rm

~1 ! 1 O~h2k0
2!, (8a)

Tm 5 Tm
~0 ! 1 hk0Tm

~1 ! 1 O~h2k0
2!. (8b)

The quantities Rm
(0) , Rm

(1) , Tm
(0) , Tm

(1) , Sm(0), and Um(0)
are unknown constants to be determined from the bound-
ary conditions (continuity of the tangential electric- and
magnetic-field components at the grating boundaries).
Rm
(0) and Tm

(0) are the reflection and the transmission coef-
ficients of the mth space-harmonic field components for a
null grating thickness. Rm

(1) and Tm
(1) are dimensionless

coefficients.

A. Solutions with the Conventional Formulation
By means of Eqs. (4), Eqs. (7) become

Sm~h ! 5 Sm~0 ! 1 hk0F jma2(
p

p«m,p
~21 !Up~0 ! 2 jUm~0 !G

1 O~h2k0
2!, (9a)

Um~h ! 5 Um~0 ! 1 hk0F2j(
p

«m2pSp~0 !G 1 O~h2k0
2!.

(9b)

By matching the boundary conditions and neglecting the
terms O(h2k0

2), we obtain

Um~0 ! 1 hk0F2j(
p

«m2pSp~0 !G
5 dm,0 1 Rm

~0 ! 1 hk0Rm
~1 ! , (10a)

Um~0 ! 5 Tm
~0 ! 1 hk0Tm

~1 ! , (10b)

Sm~0 ! 5 2
1

n3
2
An3

2 2 m2a2@Tm
~0 ! 1 hk0Tm

~1 !#,

(10c)

Sm~0 ! 1 hk0F jma2(
p

p«m,p
~21 !Up~0 ! 2 jUm~0 !G

5
1

n1
2 $2n1dm,0 1 An1

2 2 m2a2

3 @Rm
~0 ! 1 hk0Rm

~1 !#%. (10d)

dm,0 is the Kronecker symbol. By eliminating Um(0) and
Sm(0) between Eqs. (10), we find that
dm,0 1 Rm
~0 ! 2 Tm

~0 ! 1 hk0

3 F 2 j(
p

«m2p

1

n3
2
An3

2 2 p2a2Tp
~0 !

1 Rm
~1 ! 2 Tm

~1 ! 5 0, (11a)

2
1

n3
2
An3

2 2 m2a2Tm
~0 ! 1

1

n1
dm,0

2
1

n1
2
An1

2 2 m2a2Rm
~0 !

1 hk0F2
1

n3
2
An3

2 2 m2a2Tm
~1 !

1 jma2(
p

p«m,p
~21 !Tp

~0 ! 2 jTm
~0 !

2
1

n1
2
An1

2 2 m2a2Rm
~1 !G 5 0. (11b)

Solving the system of Eqs. (11) is done straightforwardly.
Identifying terms of order zero, we obtain

Rm
~0 ! 5

n3 2 n1

n3 1 n1
dm,0 , (12a)

Tm
~0 ! 5

2n3

n3 1 n1
dm,0 . (12b)

Equations (11) allow us to derive Tm
(1) and Rm

(1) for any
value of m, but we restrict the computation to the deriva-
tion of T0

(1) and R0
(1) for clarity. Identifying terms of or-

der one in Eqs. (11) and incorporating Eqs. (12), we find
that

R0
~1 ! 5 jS «0

n3
2

n3n1 1 «0
n3 1 n1

DT0
~0 ! , (13a)

T0
~1 ! 5 2j

n3n1 1 «0
n3 1 n1

T0
~0 ! . (13b)

B. Solutions with the New Formulation
We straightforwardly derive the calculus of the reflection
and the transmission coefficients with the new formula-
tion from the previous calculation by noting that Eqs. (5)
are identical to Eqs. (4) if the coefficient «m2p in Eq. (4a)
is replaced by the coefficient am,p

(21) in Eq. (5a). Conse-
quently, the expression of the reflection and the transmis-
sion coefficients [Eqs. (12) and (13)] holds with the new
formulation, except that «0 has to be replaced by a0,0

(21) in
Eqs. (13).
Of course, when an infinite number of orders is re-

tained in the computation, «0 and a0,0
(21) are equal,5 and

the two formulations provide the same (exact) expressions
for R0

(1) and T0
(1) . However, for numerical purposes, only

a finite number M of orders are retained in practice. We
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denote by aM,0,0
(21) [aM,0,0

(21) → a0,0
(21) when M → `] the (0, 0)th

coefficient of matrix A21 when M orders are retained for
the computation. «0 and aM,0,0

(21) are different in general.
Consequently, when using the new formulation for grat-
ings with a small depth (hk0 ! 1), one needs to retain all
the orders to compute the exact values of coefficients
R0
(1) and T0

(1) . In contrast, when using the conventional
formulation, one obtains exact values whatever the num-
ber of retained orders is (M > 1). Although it was not
considered in the previous derivations for purposes of
clarity, similar conclusions hold for the mth transmitted
and reflected amplitude coefficients, which are accurately
derived by use of the new formulation only if an infinite
number of orders are retained. The situation is similar
to that of the quasi-static-limit case, except that, in the
small depth limit, opposite conclusions are ob-
tained: The conventional formulation is well condi-
tioned, and the new one is not.
The previous discussion can be stated in a different

way. From the expansion series of Eqs. (8) and from the
expressions of R0

(1) and T0
(1) derived in this section for the

new and conventional formulations, it is straightfor-
wardly shown that for normal incidence

Proposition (1): For any truncation rank M, it is pos-
sible to define a depth h0 so that, for any depth smaller
than the depth h0 , the conventional formulation provides
more-accurate computational results of the zeroth-order
normalized electric-field amplitudes R0 and T0 than does
the new formulation.

In fact, Proposition (1) holds for any normalized electric-
field amplitudes Rm and Tm . For arbitrary angles of in-
cidence, the simple approach used in this section does not
permit us to derive mathematically that one formulation
will be more accurate than the other one. It just can be
shown that

Proposition (2): For any truncation rank M, it is pos-
sible to choose a domain of incidence near u 5 0, so that
for any depth smaller than a given depth h0 , the conven-
tional formulation provides more-accurate computational
results of the zeroth-order normalized electric-field ampli-
tudes R0 and T0 than does the new formulation.

Thus Proposition (1) does not generalize to arbitrary
angles of incidence, but, as is shown in the next two sec-
tions, even for large angles of incidence, a significant deg-
radation of the convergence rate of the new formulation is
observed for small grating thicknesses.
Before considering numerical examples, let us summa-

rize the results obtained in this section and in previous
related studies.1,7 The new formulation is well condi-
tioned for small period-to-wavelength ratios, is badly con-
ditioned for small depth-to-wavelength ratios, and uni-
formly matches the boundary conditions for lamellar
gratings. When thin lamellar gratings are considered
the new formulation raises a conflict. In contrast, the
conventional formulation is well conditioned for small
depth-to-wavelength ratios, is badly conditioned for small
period-to-wavelength ratios, and does uniformly match
the boundary conditions for lamellar gratings. In Sec-
tion 3 the convergence rates of the conventional and the
new formulations are compared for lamellar gratings and
for different grating depths.

3. NUMERICAL EXAMPLES: LAMELLAR
GRATINGS
For numerical purposes, we consider a difficult diffraction
problem that has been extensively discussed in the con-
text of convergence rates of the coupled-wave method.1,2,8

The diffraction configuration is a 30° incidence angle and
a highly conductive grating etched in a gold substrate
(n3 5 3.18 1 j4.41) is considered. The grating period is
1 mm, the duty cycle (defined as the groove-width-to-
period ratio) is 0.5, and the wavelength is chosen equal to
1 mm, so that the grating depth is also equal to the depth-
to-wavelength ratio. Only the negative first and zeroth
reflected orders are propagating.
Figures 2–4 show the total reflected intensities (the de-

viation from 1 represents the absorption) as a function of
the number of retained orders for h 5 0.01l, 0.05l, 0.5l,
respectively. The solid curves are obtained with the new
formulation. Plus signs correspond to the conventional
formulation. For h 5 0.01l (Fig. 2), the new formulation
converges slowly; from 3 to 40 retained orders, and some
oscillations are observed. The amplitude of the oscilla-
tions decreases as the number of retained orders in-

Fig. 2. Total reflected intensity (including the zeroth and the
minus-first orders) as a function of the number of retained orders
for a metallic grating and TM-polarized light. The solid curve is
obtained with the new eigenproblem formulation. The plus
signs are data provided by the conventional eigenproblem formu-
lation. The lamellar grating considered for the computation is
etched in the substrate (the relative permittivity is either n1

2 or
n3

2) and has a fill factor of 0.5 (the fill factor is defined as the
groove-width-to-period ratio). n1 5 1, n3 5 3.18 1 j4.41, u
5 30°, L 5 l, and h 5 0.01l.
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creases. In contrast, the conventional formulation pro-
vides a faster convergence rate; no oscillations are
observed, and an accurate value of the total reflected in-
tensity is obtained even with a small number of retained
orders (M . 10). It is concluded that the conventional
formulation provides better performance than does the
new one. Consequently, the convergence rate is more
sensitive to the bad conditioning of the new formulation
than to the nonuniform boundary matching provided by
the conventional formulation. In Fig. 3 (h
5 0.05l), an intermediate situation is depicted. Both
formulations provide oscillations. For M , 20, the am-

Fig. 3. Same as in Fig. 2, except that h 5 0.05l.

Fig. 4. Same as in Fig. 2, except that h 5 0.5l.
plitude of the oscillations is much stronger with the new
formulation than with the conventional one. For 20
, M , 40, the amplitudes of the oscillations are ap-
proximately the same with the two formulations. For
M . 50, weak oscillations remain visible with the con-
ventional formulation; no oscillations are observed with
the new formulation. Moreover, forM . 60, the total re-
flected intensity keeps on slowly increasing with the con-
ventional formulation, whereas a plateau is observed
with the new formulation. The observation of a plateau
in Fig. 3 indicates a better performance of the new formu-
lation, even for a small depth value of 0.05l. For h
5 0.5l (Fig. 4), the situation is clear; no small depth
limit considerations can be applied, and the new formula-
tion outperforms the conventional one. The convergence-
rate performances are similar to those observed in Refs. 1
and 2, in which this diffraction problem was analyzed for
a depth equal to one wavelength.
In Figs. 2–4, the vertical scales are not the same, and a

visual comparison cannot be directly operated. When a
small number of orders are retained for the computation,
the error observed for large depth (Fig. 4) with the con-
ventional formulation is much larger than the error ob-
served for small depth (Fig. 2) with the new formulation.
This result is not surprising because, as the grating depth
is becoming smaller and smaller, the influence of the grat-
ing itself on the diffracted intensities vanishes. For the
purpose of illustration, let us consider the case of Fig. 2
(h 5 0.01l). The reflected intensities of the zeroth and
the minus-first orders are 61.0% and 0.2%, respectively.
In the ultimate limit in which the grating thickness is
null, no diffraction occurs. The zeroth-order normalized
electric-field amplitude R0 is simply given by Fresnel for-
mulas [this is the signification of Eqs. (12)], and the re-
flected intensity is 61.4%. This value slightly differs
from the zeroth-order reflected intensity obtained for h
5 0.01l (deviation of 0.4%). Thus if we consider that
the diffraction problem of Fig. 2 can be roughly seen as
resulting from a reflection at a planar air–metal inter-
face, the oscillations observed with the new formulation
for a small number of retained orders are surprisingly
large. In my opinion, this illustrates the effect of the bad
conditioning on the convergence rate.
The situations shown in Figs. 2–4 clearly show that the

grating depth has a significant effect on the convergence
performance of the two formulations. This confirms the
simple prediction obtained in Section 2 for normal inci-
dence. In Section 4 a similar study is reported for non-
lamellar gratings with multilevel binary and continuous
profiles.

4. NUMERICAL EXAMPLES: MULTILEVEL
BINARY AND CONTINUOUS PROFILES
In this section we consider the diffraction problem de-
picted in Fig. 5. The angle of incidence is u 5 30°, the
grating period is L 5 l (l 5 1 mm), and the incident me-
dium is air, n1 5 1. Two grating geometries are shown.
In the first case (heavy lines in Fig. 5), the grating has a
triangular profile. The grooves are isosceles triangles
with a continuously varying fill factor from 0 at the air–
grating interface to 1 at the substrate–grating interface.
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Below, this grating geometry is referred to as the continu-
ous grating profile geometry. For this geometry, the
comparison between the convergence rates of the conven-
tional and the new formulations is provided by use of the
differential method.9 For the numerical computation,
the classical fourth-order Runge–Kutta algorithm is used,
and for deep gratings the R-matrix propagation
algorithm10 is considered to eliminate numerical insta-
bilities. We denote by N the number of slices. Accord-
ing to the terminology of Ref. 10, N also represents the
stratification order. The second geometry shown in Fig.
5 corresponds to a multilevel binary grating. This geom-
etry is related to the continuous grating profile geometry,
in the sense that one obtains the fill factor of each grating
layer by clipping the fill factor of the continuous grating
profile. In Fig. 5, a four-layer grating geometry is de-
picted; each grating-layer thickness is h/4. Consistently
with the continuous-profile case, the number of grating
layers is denoted by N. For multilevel binary gratings,
the numerical results reported below are obtained by use
of the coupled-wave method. For deep gratings, the nu-
merically stable enhanced transmittance approach11 is
used. For the two geometries, the grating is assumed to
be etched into the substrate. Thus the relative permit-
tivity in the grating region is either n1

2 or n3
2. Note

that the following results are obtained without any modi-
fication of the R-matrix algorithm and of the enhanced
transmittance approach. So the effect on the
convergence-rate performance is due only to the use of the
conventional or the new formulations for solving the dif-
ferential equation or the eigenvalue problem in each slice
or grating layer. Different numerical results are now re-
ported.
Let us start with a simple diffraction problem for which

nonconductive gratings are considered (n3 5 2.42).
Four transmitted and two reflected orders are nonevanes-
cent. In Fig. 6 the zeroth-order transmitted intensity is
plotted as a function of the number of retained orders for
a small depth equal to one tenth of the wavelength. As
above, the solid curve and the plus signs correspond to the
new and the conventional formulations, respectively.
This choice is consistent throughout the paper. Figure

Fig. 5. Diffraction problems analyzed in Section 4. Two grat-
ing geometries are shown: the grating with a triangular profile
(heavy lines), and its associated multilevel binary version for N
5 4 grating layers. n1 5 1 and u 5 30°. h denotes the grat-
ing depth, and a TM-polarized light is considered.
6(a) is obtained with the coupled-wave method. For the
computation, ten grating layers are considered. For
M5 49, the zeroth-order transmitted intensities com-
puted with the new and the conventional formulations
have approximately identical values of 80.939% and
80.944%, respectively. For Fig. 6(b), the differential
method is used with ten slices. Here again, the conver-
gence is fast, and for 49 retained orders nearly identical
diffraction efficiencies are obtained. The zeroth-order

Fig. 6. Comparison between the new and the conventional for-
mulations for the dielectric (n3 5 2.42) gratings shown in Fig. 5
and for h 5 0.1l. The solid curves and the plus signs corre-
spond to the new and the conventional formulations, respec-
tively. (a) Results obtained with the coupled-wave method and
N 5 10, (b) results obtained with the differential method and
N 5 10.
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transmitted intensities computed with the new and the
conventional formulations are 80.870% and 80.873%, re-
spectively. These are values close to those obtained with
the coupled-wave method. For this simple diffraction
problem in which a dielectric grating is considered, the
two formulations perform well, and convergence rates are
fast. However, from Fig. 6 it can be concluded that the
conventional formulation provides the fastest conver-
gence rate. This conclusion holds for both the differen-
tial and the coupled-wave methods. We now consider the

Fig. 7. Same as in Fig. 6, except that h 5 l and N 5 100 slices
are used with the differential method.
same dielectric grating (n3 5 2.42), but with a depth
equal to one wavelength. Figures 7(a) and 7(b) show the
negative first-order transmitted intensities computed
with the two formulations, respectively, as a function of
the number of retained orders. The results obtained
with the coupled-wave method are shown in Fig. 7(a).
Ten grating layers (N 5 10) are used for the computa-
tion. Clearly, the new formulation outperforms the con-
ventional one. As shown in Fig. 7(b), in which 100 slices
are considered to approximate the continuous profile, a
similar conclusion holds for the differential method. The
opposite performances obtained in Figs. 6 and 7 show that
the grating depth has a significant effect on the conver-
gence rates of the two formulations, not only for lamellar
and metallic gratings as was shown in Section 3, but also
for dielectric gratings with multilevel binary and
continuous-profile geometries.
In Fig. 7, although the fastest convergence rates are ob-

tained with the new formulation, the effect is rather small
since both formulations perform well for dielectric sub-
strates. This is why we now consider a highly conductive
grating situation for which the refractive index n3 is
equal to 3.18 1 j4.41, as in Section 3. Only the minus-
first and zeroth orders are propagating. The depth h is
equal to 0.1l. Figure 8(a) is obtained with the coupled-
wave method, and N 5 20 grating layers are considered
for the computation. For 179 retained orders, the total
reflected intensities computed with the conventional and
the new formulations are equal to 60.357% and 60.391%,
respectively. If we consider the average value 60.37% as
the exact value, we note from Fig. 8(a) that it is sufficient
to retain 25 orders with the conventional formulation to
compute an accurate value of the reflected intensity (the
deviation does not exceed 0.3% for 25 , M , 179). With
the new formulation, more than 100 orders are necessary
to obtain the same accuracy. In Fig. 8(b), results ob-
tained with the differential method are shown. Twenty
slices are used in the computation. For 179 retained or-
ders, the total reflected intensities computed with the
conventional and the new formulations are 60.592% and
60.446%, respectively. These are results consistent with
those found with the coupled-wave method. Moreover,
the convergence performances shown in Fig. 8(b) are simi-
lar to those observed in Fig. 8(a). However, we note that
in neither Fig. 8(a) nor Fig. 8(b) is a plateau observed
with the conventional formulation; in Fig. 8(a) a weakly
wavy behavior of the total reflected intensity remains vis-
ible, and in Fig. 8(b) a small bumpy variation is observed
for approximately 160 retained orders. For thin gratings
it is concluded that, although the convergence rate of the
conventional formulation is faster than that of the new
one, it is not as fast as that obtained with the new formu-
lation for deep gratings. In my opinion, this result re-
flects the conflicting situation that one encounters when
using the conventional formulation to modelize thin grat-
ings: The formulation is well conditioned in the small
depth limit but does not uniformly satisfy the boundary
conditions inside the grating region. The conflicting situ-
ation results in the observation of an intermediate con-
vergence rate.
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5. DISCUSSION AND CONCLUSIONS
In this paper, we have used an analytical derivation to
show that the new formulation of the coupled-wave
method recently proposed by several authors is badly con-
ditioned in the small depth limit for TM polarization and

Fig. 8. Total reflected intensity as a function of the number of
retained orders for the metallic (n3 5 3.18 1 j4.41) gratings
shown in Fig. 5 and for h 5 0.1l. The solid curves and the plus
signs correspond to the new and the conventional formulations,
respectively. (a) Results obtained with the coupled-wave
method and N 5 20, (b) results obtained with the differential
method and N 5 20.
for normal incidence. Numerous computational demon-
strations provided by the differential and the coupled-
wave methods comprise evidence that the bad condition-
ing has a negative effect on the convergence performance
of the new formulation. This degradation was observed
in many different situations, including dielectric and me-
tallic gratings, with lamellar, multilevel binary, and
continuous-profile geometries. It was even shown that,
for small grating thicknesses, the conventional formula-
tion outperforms the new one. This surprising result has
interesting practical consequences, since the use of the
conventional formulation rather than the new one can be
recommended for thin gratings. However, it is notewor-
thy that, when the conventional formulation is used for
thin gratings, boundary conditions are not uniformly
matched in the grating region. In fact, the study of thin
gratings by computational methods relying on a Fourier
expansion of the permittivity poses a conflicting situation:
Neither the new nor the conventional formulation pro-
vides a fully satisfying modelization. For instance, if one
is interested in visualizing the electromagnetic field in-
side the grating region, the new formulation has to be
preferred. However, if one is interested in computing the
diffracted intensities, the conventional formulation is in-
stead recommended. This distinction is particularly
striking for metallic gratings, and it is due to the fact that
the new formulation is badly conditioned in the small
depth limit. In fact, the situation is a little more com-
plex, and two convergence regimes that reflect the con-
flicting situation can be distinguished. When a moderate
number of orders are retained in the computation, the
convergence rate is imposed by the conditioning in the
small depth limit rather than by the (uniform or nonuni-
form) matching of the boundary conditions. When a
large number of orders are retained in the computation,
reverse conclusions hold, but the effect is rather small,
since for metallic gratings it only affects the third or the
fourth digit of the computed diffracted intensities.
One could be interested in the following question:

Which characteristic value of the depth-to-wavelength ra-
tio should determine the choice of using one formulation
rather than the other? Answering this question is a dif-
ficult task. The answer probably depends on the grating
profile and on the grating parameters and certainly de-
pends on the accuracy required for the computed diffrac-
tion efficiencies. An intuitive insight into the answer can
be gained from the work reported in Ref. 12, where, by
use of a derivation similar to that given in Section 2, it is
shown that the effective index of subwavelength gratings
is strongly dependent on the grating thickness for TM po-
larization. From the examples of Ref. 12 and from those
provided in this paper, it can be concluded that the char-
acteristic value is approximately 0.1 and probably smaller
for lamellar gratings. However, considering complex
situations such as that shown in Fig. 3, where the use of
the formulation with the strongest oscillations can be rec-
ommended, it is preferable to perform empirical tests
rather than to apply an approximate rule.
For TE polarization (electric-field vector perpendicular

to the grating vector), the formulation given in Ref. 3 is
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well conditioned in the quasi-static limit1 and uniformly
satisfies5 the boundary conditions inside the grating re-
gion. Moreover, by use of a derivation similar to that
given in Section 2, it can be shown that this formulation
is also well conditioned in the small depth limit. So no
problems occur for TE polarization. For conical mount-
ings of one-dimensional gratings, the new formulation
given in Ref. 1 is badly conditioned in the small depth
limit; difficulties comparable with those encountered in
this paper for TM polarization can be expected. For two-
dimensional gratings, the differential equations used for
conical mountings of one-dimensional gratings can be
used with minor notation changes.3 So the same termi-
nology (conventional and new) as that for conical
mountings1 of one-dimensional gratings can be employed
for two-dimensional gratings without any confusion. The
conventional formulation was recently revisited by sev-
eral authors,3,13,14 but no change in the eigenvalue prob-
lem formulation was reported. From the work on the
effective-medium theory of two-dimensional gratings re-
ported in Ref. 15, it is clear that both the new and the con-
ventional formulations are badly conditioned in the quasi-
static limit. Moreover, from Li’s work5 it is easily shown
that both formulations do not uniformly satisfy the
boundary conditions inside the grating region. However,
it is noteworthy that the conventional formulation is well
conditioned in the small depth limit.
The fact that both the conventional and the new formu-

lations do not provide a fully satisfying modelization of
gratings with arbitrary thicknesses and profiles is clearly
a weak point of the coupled-wave and the differential
methods. It is not my intention to emphasize such a pes-
simistic conclusion. Rather, I expect that this work will
contribute to the understanding of these two well-known
methods and will make using them even easier. Also, I
expect that the physical insights gained from the studies
of the quasi-static and small depth limits for the coupled-
wave method can successfully be applied to other rigorous
computation methods to improve their performance.
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seau conducteur et ses applications à l’optique,’’ Nouv. Rev.
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