
HAL Id: hal-00861450
https://hal-iogs.archives-ouvertes.fr/hal-00861450

Submitted on 12 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of shallow traps on the enhancement of the
photorefractive grating amplitude by a high-frequency

alternating electric field: a probabilistic analysis
Ivan Biaggio, Gérald Roosen

To cite this version:
Ivan Biaggio, Gérald Roosen. Influence of shallow traps on the enhancement of the photorefractive
grating amplitude by a high-frequency alternating electric field: a probabilistic analysis. Journal of
the Optical Society of America B, 1996, 13 (10), pp.2306-2314. �hal-00861450�

https://hal-iogs.archives-ouvertes.fr/hal-00861450
https://hal.archives-ouvertes.fr


Influence of shallow traps on the enhancement
of the photorefractive grating amplitude

by a high-frequency alternating electric field:
a probabilistic analysis

Ivan Biaggio* and Gérald Roosen
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We calculate the photorefractive grating amplitude in the presence of a high-frequency applied electric field in
terms of the mean-square drift length of the charge carriers. We describe how a shallow-trap level and the
related long effective deep-trap recombination time are detrimental to the enhancement produced by a square-
wave field. We give expressions for the shallow-trap-induced reduction in the steady-state photorefractive
gain as well as for its frequency dependence. The photorefractive gain reaches the same value obtained in the
one-level model at low frequencies but falls almost exponentially to a shallow-trap-limited value for higher
frequencies. We compare the predictions of our model with other existing models and with experimental data.
© 1996 Optical Society of America.

1. INTRODUCTION

The application of a square-wave alternating electric field
during holographic recording in a photorefractive crystal
leads to large grating amplitudes and a large photorefrac-
tive gain.1 In Refs. 1 and 2 analytical expressions for the
space-charge field have been derived under the main as-
sumption that the frequency of the applied field is much
smaller than the recombination rate of the photoexcited
charge carriers. The frequency dependence of the space-
charge field amplitude at high frequencies, where the
modulation period becomes of the order of the free-carrier
lifetime, was calculated in Ref. 3. In Ref. 4 the band-
transport model was solved numerically in the presence of
two levels, one deep and one shallow. The treatments in
Refs. 3 and 4 are quite complex and involve a fair number
of parameters. They are difficult to use for describing
the basic processes that limit the space-charge field am-
plitude at high frequencies. To our knowledge, no simple
analytical solution for the enhancement of the space-
charge field amplitude in the presence of a shallow-trap
level has been published yet.

We show that at grating spacings larger than diffusion
and drift lengths it is possible to simplify the problem and
to understand the limits to the enhancement mechanism
by considering only the relevant time constants that de-
scribe charge-carrier excitation and recombination pro-
cesses. The enhancement effect of an alternating field
can be understood for all the frequencies higher than the
photorefractive response rate on the basis of a simple
probabilistic model. The high-frequency ac field in-
creases the mean-square length traveled by a charge car-
rier between photoexcitation and recombination. We use
this mean-square length to calculate the space-charge
field amplitude obtained under an ac field.

This approach presents several advantages: It is valid

for all the applied-field frequencies larger than the photo-
refractive response rate; the resulting space-charge field
can be described only in terms of the mobility–lifetime
product and the characteristic time constants; and the
model can be adapted to account for changing experimen-
tal realities, such as multiple levels or other field wave
forms, with minimum modification.

First we briefly review the simplest case already
treated in Ref. 1, then we use probability theory to calcu-
late the influence of an applied-field period comparable
with the free-carrier lifetime,3 and finally we study the
case in which a shallow-trap level is present. We derive
simple analytical expressions that give the amplitude of
the photoinduced space-charge field as a function of the
characteristic time constants that describe recombination
in the two levels and the thermal excitation time from the
shallow level.

2. DESCRIPTION OF THE BASIC
APPROACH

A photorefractive crystal is illuminated by two interfering
light beams that give rise to a low-contrast sinusoidal in-
terference pattern. In the presence of a single trap level
and an applied ac field with a time period much longer
than the free-charge-carrier lifetime and much shorter
than the photorefractive response time, the sinusoidal
steady-state space-charge field is phase shifted by p/2
with respect to the light fringes. Its amplitude is1,2

Esc 5 m
EqED8

Eq 1 ED8
, (1)

where m is the modulation of the light interference pat-
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tern and is assumed to be small (m is given by the ratio
between the amplitude of the sinusoidal intensity modu-
lation and the average intensity).

Eq is the well-known trap-limited field

Eq 5

eN

ee0Kg

, (2)

with e being the unit charge; e, the effective dielectric con-
stant; N, the effective impurity center density; and Kg ,
the modulus of the grating wave vector.

ED8 is a modified diffusion field given by

ED8 5 KgS kBT

e
1

mtE2

1 1 Kg
2LD

2D , (3)

where kB is Boltzmann’s constant, T is the absolute tem-
perature, m is the mobility of the charge carriers, t is their
lifetime, E is the amplitude of the applied field, and LD

is the charge-carrier diffusion length given by LD
2

5 mtkBT/e. Because the absolute value of the applied
electric field is constant (it is a square-wave field), the ef-
fect of a higher, electric-field-induced charge-carrier tem-
perature can be taken into account by use of the correct
mobility value for every applied field amplitude. For
simplicity, we do not introduce an explicit electric-field
dependence of the mobility.

Equations (1)–(3) are obtained from the space-charge
field expression given in Ref. 1 by straightforward alge-
bra. We prefer the form of Eqs. (1)–(3) because it is
easier to interpret physically. Equation (1) has the same
form as in the classical photorefractive model with no ap-
plied field.5 The space-charge field amplitude is given by
the modified diffusion field ED8 when it is significantly
smaller than the trap-limited field. It is given by the
trap-limited field Eq when ED8 is much larger than Eq.
When the applied field is zero, the field ED8 is the diffu-
sion field ED 5 KgkBT/e, and Eq. (1) develops into the
classical solution. We also use Eq. (1) in connection with
the results that we obtain below by our probabilistic ap-
proach.

The influence of the high-frequency applied field is con-
centrated in the second term on the right-hand side of Eq.
(3). The alternating electric field leads to an effective dif-
fusion field ED8 that is larger than the normal diffusion
field describing the thermal movement of the charges. At
grating spacings much larger than the diffusion length,
the denominator of the second term becomes negligible
(its value tends to 1). The enhancement effect of the ap-
plied ac field is equivalent to a higher temperature.
From Eq. (3) we can see that strong enhancements of the
holographic recording efficiency can be obtained when the
drift length induced by the external field becomes larger
than the diffusion length [(mtE)2

. mtkBT/e]. This is
the main condition for a square-wave applied field. It is
not important how the drift length relates to the grating
spacing.

Below we describe photoassisted charge transport by
means of a random-walk model. Using this approach, we
are able to describe the charge transport caused by ther-
mal diffusion as well as the charge transport induced by
the applied ac field. We define the step length of the ran-
dom walk as the random distance that a charge carrier

moves before it recombines on the same impurity level as
that from which it was excited. The contribution of drift
to charge transport can be taken into account by the
random-walk approach if each drift-dependent charge dis-
placement has an equiprobable random direction. This
is true in the case of an applied field with a period much
shorter than the photorefractive response time because
the photoexcitation time of every charge carrier is ran-
domly distributed with respect to the phase of the ac field.
A photoexcited charge has equal chances of finding a posi-
tive or a negative electric field.

The fundamental assumption that must be fulfilled to
describe the macroscopic charge transport with a random
walk is that the macroscopic charge redistribution must
be produced by a large number of uncorrelated
photoexcitation–recombination steps. The number of in-
dividual steps must be large in any time interval of inter-
est. When the illumination pattern is in the form of a
plane-wave grating, this amounts to neglecting diffusion
length and drift length when compared with the grating
spacing. Our model is thus a long grating spacing ap-
proximation. The experimental conditions under which
it can be applied are very easy to realize.

Consider the basic relation between the random-walk
description and diffusion. A diffusion process described
by a diffusion equation

dn

dt
5 D

d2n

dx2
(4)

corresponds to a random movement of particles with den-
sity n, with each particle performing a random walk.
The diffusion constant D is related to the efficiency of the
diffusion process. In this one-dimensional example the
random walk consists of steps in the 6x direction. The
steps are characterized by a mean-square length ^L2& and
by an average step time t. In any time interval Dt where
Dt/t @ 1 the effect of the random walk on a population of
particles is given by Eq. (4), with

D 5
^L2&

2t
. (5)

We describe the light-induced redistribution of charges
that leads to the photorefractive effect in terms of a ran-
dom walk, with each step being given by the charge dis-
placement that takes place between photoexcitation and
recombination of a charge carrier in the same level as
that from which it was excited. The step time t corre-
sponds to the recombination time (which is the same as
the free-carrier lifetime if only one trap level is present).
When no electric field is applied to the sample, ^L2& is the
mean-square diffusion length ^LD

2& 5 2mtkBT/e, and D

is given by the Einstein relation D 5 mkBT/e.
Using our assumption that the ac field period is much

shorter than the photorefractive response time, we can
describe the ac field only in terms of the mean-square step
length that it induces. ^L2& also contains a term related
to random drift. The diffusion constant given in Eq. (5)
and the classical band conduction model5 can be used in
the usual way to derive the steady-state space-charge
field amplitude. The result has the same form as is given
in Eq. (1).
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We do not repeat here the complete derivation of Eq. (1)
in the standard band conduction model, but we give a
short derivation of the effective diffusion field as a func-
tion of ^L2&. Consider the effect of diffusion when a sinu-
soidal light interference pattern produces a sinusoidal
modulation in the photoexcitation rate. Steady state is
reached when the average charge displacement induced
by diffusion is exactly compensated by the charge dis-
placement induced by the space-charge field that is built
up. At long grating spacings the grating amplitude
reaches a value E0 that is given by the equilibrium of
diffusion- and space-charge-field-induced drift current:

D
dn

dx
5 mnE0 . (6)

For a sinusoidal grating n(x) 5 n0[1 1 m cos(Kgx)]
and a small modulation index m, Eqs. (5) and (6) lead in
the first order to E0 5 m[Kg^L2&/(2tm)] sin(Kgx). This
can be written as E0 5 mED8 sin(Kgx), where
ED8 5 Kg^L2&/(2tm) is the effective diffusion field.
When only thermal diffusion is present, ED8 does not de-
pend on the mobility or the lifetime of the charge carriers.
The steady-state grating amplitude depends on the aver-
age charge-carrier displacement produced by a single
excitation–recombination step and on the average step
time t. It does not depend on the rate with which
charges are displaced; i.e., it does not depend on the opti-
cal intensity.

The mean-square step length ^L2& can be expressed as a
sum of a term arising from thermal diffusion and a term
arising from random drift. In the presence of an applied
alternating electric field we define ^LE

2& as the mean-
square value of the distance that a charge carrier drifts
between a photoexcitation and a recombination event.
Because diffusion and drift are both random and uncorre-
lated, the mean-square value of the total random-walk
step length is given by the sum of the mean squares of dif-
fusion and drift lengths, respectively: ^L2& 5 ^LD

2&
1 ^LE

2&. The diffusion constant in Eq. (6) then contains
a diffusion term and a drift term. The effective diffusion
field describing thermal diffusion as well as random drift
is

ED8 5

Kg

2mt
~^LD

2& 1 ^LE
2& !. (7)

To obtain the space-charge field amplitude under an ap-
plied alternating field one must calculate ^LE

2& and insert
Eq. (7) into Eq. (1).

For a constant electric field with amplitude E and a
charge carrier with a lifetime t, ^LE

2& 5 2^uLEu&2

5 2(mtE)2. This result is derived from the exponential
probability density giving the distribution of charge-
carrier lifetimes:

P~t ! 5

1

t
exp~2t/t !, (8)

where t represents the average lifetime of a free charge
carrier.

Let us now calculate the value of ED8 for an alternating
electric field with a time period u much longer than the
charge-carrier lifetime (this is the case that we presented

at the beginning of this section and which has been
treated in Ref. 1). A charge carrier photoexcited at a
time t will drift by an average length LE(t) 5 mtE(t),
where E(t) is the electric-field value at photoexcitation
time. Because t can assume any value between 0 and u
in an equiprobable way, the resulting mean-square drift
length is given by the average over all possible values of t:

^LE
2& 5

2

u E
0

u

@mtE~t !#2dt, (9)

The maximum value of ^LE
2& is obtained when E(t) is a

perfect square wave. Because t ! u, the probability that
the field changes sign during the lifetime of the charge
carrier is negligible in such a case, and the drift length is
independent of excitation time. The resulting mean-
square value is ^LE

2& 5 2(mtE)2. We insert this value
into Eq. (7) to obtain

ED8 5 KgS kBT

e
1 mtE2D . (10)

This expression is the same as the result in Eq. (3), but
without the factor (1 1 Kg

2LD
2) in the denominator of

the second term. This is because our approach is a long
grating spacing approximation. In Eq. (3) the
(1 1 Kg

2LD
2) denominator diminishes the effect of the

applied field at grating spacings shorter than the diffu-
sion length. It reduces the importance of an enhance-
ment of the step length between photoexcitation and re-
combination when its thermally induced value is already
larger than the grating period.

It is possible to rewrite Eq. (3) as a function of the
mean-square drift length ^LE

2&:

ED8 5 KgFkBT

e
1

^LE
2&

2tm~1 1 Kg
2LD

2!
G . (11)

This expression, like Eq. (7), gives the effective diffusion
field as a function of the mean-square thermal diffusion
length, the mean-square drift length, and the mobility–
lifetime product. It assumes that the applied electric
field is a square wave.

Below we calculate the mean-square drift length ^LE
2&

for an applied square-wave field in the general cases in
which the lifetime of the charge carriers is comparable
with the electric-field period and when a second, shallow-
trap level is present. We show that a change in the
applied-field period changes only ^LE

2&. Because of this
fact it is possible to use Eq. (11) instead of Eq. (7) to cal-
culate the resulting space-charge field. When the long
grating spacing approximation is fulfilled, Eq. (11) and
Eq. (7) give the same result. When the diffusion length
is not completely negligible with respect to the grating
spacing, Eq. (11) ensures that the space-charge field am-
plitude becomes exactly the value given by Eqs. (1)–(3) in
the limit in which the assumptions of Ref. 1 are fulfilled
(i.e., only one trap level and a recombination time t much
smaller than the electric-field period u). Note, however,
that Eq. (11) is only an ad hoc expression valid in the case
in which the applied field is a square wave, whereas Eq.
(7) is always valid at long grating spacings.

In the short-lifetime approximation that we used
above, where t ! u, it is very easy to calculate from Eq.
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(9) the mean-square drift length corresponding to any
wave form of the applied field. Deviation from a perfect
square wave leads to a diminished photorefractive gain
because the probability that a photoexcited charge carrier
finds an electric field value near zero becomes appre-
ciable. In a sinusoidal ac field, Eq. (9) delivers a mean-
square drift length that is a factor of 2 smaller than that
found in the optimal square-wave case. This corresponds
to the long grating spacing limit of the space-charge field
expression for a sinusoidal ac applied field given in Ref. 1.

3. CHARGE-CARRIER LIFETIME
COMPARABLE WITH THE APPLIED-FIELD
PERIOD

When the average charge-carrier lifetime is comparable
with the applied-field period, one has to calculate the
mean-square value of the step length while taking into ac-
count the probability that the field switches its sign dur-
ing the life of the charge carrier.

If a charge carrier lives a time longer than a full period
u of the applied field, the drifts obtained during the posi-
tive and the negative half-periods will compensate each
other. To calculate the expectation value of the drift
length, one can fold all the equivalent lifetimes that differ
by multiples of u to the time interval from zero to u and
can define an effective folded time t. The corresponding
probability density P f is

P f ~t ! 5 (
n 5 0

`
1

t
expS 2

nu 1 t

t D
5

1

t
exp~2t/t !

1

1 2 exp~2u/t !
, (12)

where 0 , t , u. The expectation value for the squared
step length LE

2 is given by

^LE
2& 5 E

0

u

L2~t !P f ~t !dt, (13)

where L2(t) must be calculated with consideration of the
square-wave electric field and the fact that its phase can
assume any value between 0 and 2p in an equiprobable
way. We calculate ^LE

2& in two steps: by first integrat-
ing over all possible excitation times, and then integrat-
ing over all possible lifetimes, using Eq. (13).

As an example, we calculate L2(t) when t , u/2. The
probability P1/2 that a time segment of length t inter-
sects one of the two electric-field switch times found in the
time segment of length u is P1/2

5 (2t)/u. When this
event occurs, the charge carrier drifts in one direction
during a time (t 2 ts) and in the opposite direction dur-
ing a time ts , where ts denotes the moment when the
electric-field switches sign. ts is randomly distributed in
an equiprobable way between 0 and t. The average of
the square drift length over all possible excitation times is
thus in this case

L1/2
2~t ! 5

~mE !2

t
E

0

t

@~t 2 ts! 2 ts#
2dts 5

~mEt !2

3
.

(14)

The probability that a time segment of length t does not
intersect the time when the electric-field switches sign is
P1/1

5 (1 2 P1/2), and in such a case the average of the
square drift length is simply L1/1

2(t) 5 (mEt)2. The to-
tal average value of the squared step length is given by
P1/2L1/2

2
1 (1 2 P1/2)L1/1

2. The result is

L2~t !ut,u/2 5 ~mEt !2S 1 2

4

3

t

u D . (15)

In the same way, we can calculate the excitation-time
average of the squared step length when t . u/2. The
result has the same form as Eq. (15), but with (u 2 t) be-
ing substituted for t. Inserting these values of the
squared step length into Eq. (13) and changing integra-
tion variables, we obtain

^LE
2& 5 m2E2E

0

u/2

t2S 1 2

4t

3u D @P f ~t ! 1 P f ~u 2 t !#dt,

(16)

which is equal to

^LE
2& 5 2~mEt !2F1 2

4t

u

1 2 exp~2u/2t !

1 1 exp~2u/2t !
G . (17)

We obtain the space-charge field amplitude as a function
of the applied-field frequency by inserting Eq. (17) into
Eq. (11) and using Eq. (11) with Eqs. (1) and (2). The
mean-square drift length in Eq. (17) equals 2(mEt)2 for a
long applied-field period u and decreases to zero when u
becomes shorter than the free-charge-carrier lifetime.
This happens because the largest possible value of the
drift length is always given by mEu/2. When the field pe-
riod tends to zero, ^LE

2& must tend to zero: The space-
charge field amplitude goes back to the value obtained
without any applied field.

The above solution was compared with the expression
presented in Ref. 3, and we confirmed the exact corre-
spondence of the results in the limit in which the diffu-
sion length and the drift length are much smaller than
the grating spacing.

4. INFLUENCE OF SHALLOW TRAPS

The above treatment describes the detrimental effect of a
free-charge-carrier lifetime becoming comparable with
the period of the applied alternating electric field. This
effect is rarely a problem in practice because in most ma-
terials and at commonly used light intensities the lifetime
remains much smaller than the photorefractive response
time so that a wide bandwidth is available for the fre-
quency of the applied field.

However, sizeable concentrations of shallow traps are
not unusual in photorefractive materials. A shallow-trap
level is only a few fractions of an electron volt away from
the conduction- or valence-band edge, and charge carriers
that are trapped in it are reemitted by thermal excitation.
Such a shallow-trap level increases the time that it takes
for a photoexcited charge carrier to return to the deep-
trap level and can have important effects on the space-
charge field amplitude obtained under an applied ac elec-
tric field.
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We consider a shallow-trap level described by a trap-
ping time constant t2 and a thermal excitation time tth ,
and a deep level with a trapping time constant t1 , as de-
picted schematically in Fig. 1. These three time con-
stants are enough to describe the two levels. Thermal
emission from the deep level corresponds to a low-
intensity homogeneous illumination, and we do not ex-
plicitly take it into account. For simplicity, we assume
that photoexcitation from the shallow-trap level is negli-
gible compared with thermal excitation and that the pho-
torefractive grating comes principally from charge redis-
tribution in the deep level. We further assume that the
characteristic times describing the two levels are con-
stants (i.e., we assume little shallow-trap filling, or con-
stant homogeneous filling at a constant light intensity).
The model can be applied to electron transport as well as
hole transport.

We first discuss the influence of shallow traps on the
main parameters of our problem. Some of these results
have been discussed in Refs. 6–8, mostly in the limit
where t2 ! t1 . Here we state a few useful relationships
without making any assumptions on the relative magni-
tudes of t1 , t2 , and tth .

For the two-level system shown in Fig. 1, the average
lifetime of a photoexcited charge carrier is given by

t0
21

5 t1
21

1 t2
21. (18)

After photoexcitation or thermal excitation a charge car-
rier will live an average time t0 and will then recombine
in either one of the two levels. The probability that the
charge carrier ends up in the shallow-trap level is

p2 5 t1 /~t1 1 t2! (19)

and is t1/t2 times larger than the probability of recombin-
ing in the deep level. When p2 is appreciable, the charge
carrier will be trapped in the shallow-trap level and will
go through a number of thermal excitation and trapping
cycles before recombining into the deep level. The aver-
age span of time tdeep between photoexcitation and recom-
bination into the deep level can be found by use of a
weighted sum over all possible paths leading to final re-
combination in a deep trap: tdeep 5 t0 1 p2[(tth

1 t0 1 p2(tth 1 t0 1 ...)]. This series is easily summed
to yield

tdeep 5 t1~1 1 tth /t2!. (20)

The total average time spent as a free charge carrier in
the conduction or the valence band between photoexcita-
tion and final recombination into the deep trap is always
t1 , independent of shallow-trap concentration. The total
average time spent by a charge carrier in shallow traps,
waiting for thermal excitation, is given by ttht1/t2 . From
the point of view of charge redistribution in the deep
level, it is as though the charge carrier had a longer effec-
tive lifetime, given by Eq. (20), and a smaller effective mo-
bility. This trap-limited mobility is

m t 5 m~1 1 tth /t2!21. (21)

Multiplying Eq. (20) by Eq. (21), one can see that the
product of trap-limited mobility mt and effective deep-trap
recombination time tdeep is always given by the band mo-
bility multiplied by t1 and is independent from shallow-
trap concentration.7 Charge redistribution within the
deep level can be described by effective drift and diffusion
lengths, defined as distances traveled by a charge carrier
between photoexcitation and recombination into the deep
traps. The effective drift and diffusion lengths are not
influenced by the shallow-trap level.

The larger effective deep-trap recombination time [Eq.
(20)] induced by a shallow-trap level can easily be of the
order of seconds. A shallow-trap level limits the effec-
tiveness of a square-wave applied field whenever the field
period becomes shorter than the effective deep-trap re-
combination time tdeep . Below we describe this effect us-
ing the same probabilistic approach that we used above
for the one-level case. In contrast to a numerical simu-
lation of the full band conduction model such as that of
Ref. 4, this description concentrates on the most impor-
tant material parameters and makes it possible to iden-
tify the main physical mechanisms that limit the effec-
tiveness of a square-wave applied field.

In the presence of shallow traps the characteristic
steplength of the random walk is the distance traveled by
the charge carrier from its photoexcitation out of the deep
level until its recombination into the deep level. Be-
tween these two events the carrier can be captured in the
shallow-trap level and can be thermally excited any
number of times. The characteristic step time is
tdeep 5 t1(1 1 tth/t2) [Eq. (20)]. The trapping times as
well as the thermal excitation times obey the usual expo-
nential probability distributions.

Although all the probabilities are simple and well de-
fined, calculation of the mean-square step length ^LE

2&
from probability theory appears to be cumbersome in the
general case in which the applied-field period is compa-
rable with the step time. It is, however, very easy to ob-
tain the correct solution from a simple Monte Carlo simu-
lation: One generates a random free-carrier lifetime and
random excitation times according to their probability
distributions and then uses them and the given applied-
field period to calculate LE

2. This process is repeated a
large number of times. The expectation value ^LE

2& is
equal to the average over all the random LE

2 values.
The single steps of the Monte Carlo calculation are

(0) Create a charge carrier at a random time tex .
(1) Generate a random free-carrier lifetime Dt accord-

ing to its exponential probability density [Eq. (8)]. Given
a random number r homogeneously distributed between 0

Fig. 1. Definition of the relevant time constants. t1 is the time
constant that describes trapping into the deep level, t2 is the
time constant that describes trapping into the shallow level, and
tth is the thermal excitation time from shallow traps.
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and 1, Dt is obtained from Dt 5 2t0 ln(r), where t0 is the
average free-carrier lifetime given by Eq. (18).

(2) Calculate the drift length L i from tex and Dt, tak-
ing into account the phase and the periodicity of the ap-
plied field.

(3) Decide if trapping took place in the shallow-trap
level. One does this by generating a random number r

between 0 and 1 and checking whether r , p2

5 (1 1 t2/t1)21 [Eq. (19)].
(4) If the test in point (3) is passed, generate a ran-

dom thermal excitation time and go back to point (1). If
the test in point (3) is not passed (recombination takes
place in the deep level), calculate LE

2
5 (SL i)

2.
(5) Store the LE

2 calculated in point (4), and go back
to point (0).

After points (0)–(5) have been iterated a sufficient
number of times, the average ^LE

2& over all the simulated
LE

2 values can be calculated. One obtains the space-
charge field amplitude as before, by inserting ^LE

2& into
Eq. (11) and using the result in Eq. (1). The numerical
implementation of points (0)–(5) in a high-level program-
ming language is less than 50 lines long and can run ef-
ficiently on a desktop computer.

Figure 2 gives the frequency dependence of the space-
charge field amplitude obtained in this way. The curves
were calculated with 10,000 iterations and with a param-
eter set as close as possible to the one used by Moisan
et al.4 for their Fig. 15. The time constants were derived
from the trap concentrations and from the capture and
the excitation cross sections given in Ref. 4 and are
t1 5 1.25 ns, t2 5 0.022–2.2 ns, tth 5 50 ms. We used a
hole mobility of 80 cm2/(V s).

The drift length obtained with the above parameters is
already comparable with the grating spacing, so we are no
longer in the region in which the probabilistic model is

strictly valid. Moreover, the numerical simulation of
Ref. 4 considers a large number of material parameters,
whereas our approach describes the two levels with only
three parameters. In spite of this, the two models agree
well when one is describing the frequency dependence
above 50 Hz, i.e., for applied-field frequencies larger than

the photorefractive response rate (see Fig. 2 and Ref. 4,

Fig. 15; the numerical calculation of Ref. 4 includes the
effects of the photorefractive response time and is also
valid at low frequencies).

Figure 2 shows that the shallow-trap level does not
have any influence at low applied-field frequencies. The
reason is that in this case the effective deep-trap recom-

bination time tdeep 5 t1(1 1 tth/t2) is still much shorter
than the period of the ac field, and ^LE

2& is given by

2(mt1E)2
5 2(m ttdeepE)2. This is the same result as for a

single level.

In the interesting case in which the applied-field period
u remains longer than the free-charge-carrier lifetime t0 ,
one can calculate analytically the space-charge field am-
plitude in both the low- and the high-frequency regions of
Fig. 2. This gives an expression for the amount of the
shallow-trap-induced reduction in space-charge field am-
plitude that is observed at higher applied-field frequen-
cies.

This reduction is directly correlated to the decreased ef-
ficiency of the random drift process when the period of the
applied field becomes shorter than the effective deep-trap
recombination time tdeep . At applied-field periods u
much smaller than both the tdeep value and the thermal
reexcitation time tth , the correlation between the drift di-
rection after every thermal excitation that existed for
u @ tdeep is lost. Each thermal reexcitation is now a ran-
dom event leading to an independent step length, and one
must add the mean squares of the step lengths occurring

Fig. 2. Calculated space-charge field amplitude Esc /m as a function of the applied-field frequency in the presence of shallow traps.
Monte Carlo simulation with the following parameters: t1 5 1.25 ns, tth 5 0.5 ms, effective trap density N 5 4 3 1016 cm3, effective
dielectric constant e 5 10.3, grating spacing Lg 5 10 mm, applied-field amplitude E 5 10 kV/cm. The horizontal dashed line corre-
sponds to the one-level case, whereas the other curves indicate the behavior in the presence of a shallow-trap level with a characteristic
trapping time t2 from 2.22 to 0.022 ns.
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after thermal excitation. The mean-square step length
obtained for each photoexcitation event is thus

^LE
2& 5 2~mt0E !2

1 p2$2~mt0E !2

1 p2@2~mt0E !2
1 ...#%

5 2~mt0E !2
1

1 2 p2
, (22)

where we recall that t0 is the average free-carrier lifetime
[Eq. (18)] and p2 5 t1/(t1 1 t2) is the probability that a
charge carrier recombines into the shallow-trap level
rather than into the deep level [Eq. (19)]. Equation (22)
can be rewritten as

^LE
2& 5

2~mt1E !2

1 1 t1 /t2
5

^LE
2&uone level

1 1 t1 /t2
. (23)

Because one obtains the electric-field enhancement
[Eq. (11)] from ^LE

2& by dividing it by the mobility–
lifetime product, which is the same for a single level or in
the presence of shallow traps, Eq. (23) can be used to cal-
culate the difference between the two frequency-
independent plateaus in the frequency dependence of the
space-charge field amplitude (see Fig. 2). At long grating
spacings, the space-charge field amplitude can be much
smaller than the limit given by the trap-limited field Eq ,
whereas at the same time the applied-field amplitude can
be so high that thermal diffusion is negligible. In such a
case the space-charge field amplitude depends linearly on
^LE

2&, and the ratio between the space-charge field ampli-
tudes corresponding to the low- and the high-frequency
plateaus in Fig. 2 is approximately given by the factor
(1 1 t1/t2) in Eq. (23). The space-charge field amplitude
makes a transition from its low-frequency value to a value
1 1 t1/t2 times smaller when the half-period of the ap-
plied field is of the order of the effective deep-trap recom-
bination time tdeep 5 t1(1 1 tth/t2) [Eq. (20)]. In Fig. 2,
tdeep ranges from 28 to 0.28 ms.

Note that Fig. 2 uses a logarithmic frequency axis.
The curves plotted in this figure are very similar to expo-
nential decays. [An exponential decay exp(2x) on a loga-
rithmic x axis is represented by a curve that is horizontal
at low values of x and makes a transition to zero in ap-
proximately one decade, with the exponential time con-
stant corresponding to the inflection point of the curve.]
The space-charge field amplitude shown in Fig. 2 decays
more or less exponentially, with a decay time constant
given by tdeep , to the constant value obtained in Eq. (23).
When t2 , t1 the decays from the one-level space-charge
field amplitude to the shallow-trap-limited space-charge
field amplitude can be closely approximated by the one-
level solution of Eq. (17), with tdeep being substituted for
t.

5. INTENSITY DEPENDENCE

Illumination of the crystal will cause a charge redistribu-
tion between the deep level and the shallow level. Under
illumination the shallow traps will tend to fill, especially
if the thermal excitation time tth is relatively long. The
time constants t1 and t2 used in the above expressions for

the shallow-trap model are inversely proportional to the
concentration of empty deep traps and empty shallow
traps, respectively, and will therefore be intensity depen-
dent.

The intensity dependence of these characteristic times
must be considered when one is comparing experimental
results with the analytical solutions given above. One
can easily obtain t1 and t2 as a function of intensity by
solving the equations describing excitation and recombi-
nation in each level in the steady state, under the as-
sumption that the contrast in the illumination pattern is
low (so that the zeroth-order solutions for homogeneous
illumination can be used). Here we give only an expres-
sion related to the intensity dependence of the shallow-
trapping time constant t2 . Derivation of complete ex-
pressions for the intensity dependence of t1 and t2 from
the equilibrium equations in the steady state is trivial if
all the material parameters are known.

Using our earlier assumption that the thermal excita-
tion time from shallow traps is much smaller than the
photoexcitation time, we find that the shallow-trapping
time constant t2 obeys the relation

t2~I ! 5 t2~I 5 0 ! 1

tth

Nst
n~I !, (24)

where Nst is the total density of shallow traps and n(I) is
the density of free charge carriers under an illumination
intensity I. We can see that t2 starts from its minimum
value at small intensities and then grows linearly with
the conductivity of the crystal, which means that it will
increase when the long grating spacing photorefractive
response time decreases.5 The effect is seen to be strong
when the thermal reexcitation time from shallow traps is
long or when the total density of shallow traps is low.

Although t2 increases with intensity, t1 can only de-
crease with intensity: Empty deep traps are created as
charges are transferred from the deep level to the shallow
level. We thus expect the ratio t2/t1 to become larger at
larger intensities. This will increase the frequency at
which the space-charge field amplitude drops to the
shallow-trap-limited value [Eq. (20)]. The magnitude of
the reduction will decrease [Eq. (23)].

6. DISCUSSION

The probabilistic approach demonstrates that there is a
direct connection between the shallow-trap-induced
larger effective deep-trap recombination time and the fre-
quency dependence of the photorefractive grating ampli-
tude. In materials in which shallow traps are present,
we thus expect the two-wave mixing photorefractive gain
to depend on the applied-field frequency in a peculiar
manner. Consider the situation in which the effective
deep-trap recombination time tdeep induced by the
shallow-trap level is appreciably smaller than the photo-
refractive response time. In this case the gain first in-
creases with frequency according to the discussion in Ref.
2. The gain then saturates at the magnitude predicted
by the one-level theory for applied-field periods smaller
than the photorefractive response time.1,2 At still higher
frequencies the detrimental influence of shallow traps ap-
pears. The gain follows the behavior depicted in Fig.
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2: When the applied-field period becomes smaller than
the effective deep-trap recombination time [Eq. (20)], the
gain falls to the shallow-trap-limited value [Eq. (23)].
The electric-field enhancement will then disappear at
much higher frequencies, when the applied-field period
becomes comparable with the free-charge-carrier
lifetime.3

A similar frequency dependence has in fact been ob-
served in CdTe crystals in Refs. 4 and 9 and in Bi12SiO20

crystals in Refs. 10 and 11. In these experiments the
photorefractive gain typically peaks at an optimal fre-
quency only slightly larger than the photorefractive re-
sponse rate and then falls to a smaller high-frequency
value.

In Ref. 4 a numerical solution of the band-transport
level in the presence of shallow traps could reproduce the
observed behavior with a given set of material param-
eters, and the frequency dependence was attributed to the
influence of shallow traps. In Ref. 12 the explanation
given for a similar frequency dependence in Bi12SiO20 was
the emergence of spatial subharmonics.

In the following the experimental results reported in
Refs. 4 and 9–11 are compared with the predictions of the
general treatment that we presented above, and the prop-
erties that a shallow-trap level must have to explain all
the experimental data are discussed semiquantitatively.

In the data sets presented in Refs. 4, 9, and 10, the gain
never manages to reach the true one-level value before it
is depleted by the influence of shallow traps. The photo-
refractive gain goes through a low-frequency peak that is
generally less than a frequency decade wide. This would
be the case if the cutoff frequency given by the photore-
fractive response time2 were only slightly smaller than
the inverse of the effective deep-trap recombination time
[Eq. (20)]. The maximum value of the photorefractive
gain as a function of frequency then depends on the dif-
ference between the photorefractive response time and
the effective deep-trap recombination time tdeep , as well
as on the reduction factor in Eq. (23). Because these
three factors depend on intensity, a side effect of this is
that the low-frequency peak is influenced by optical inten-
sity and other parameters determining the speed of the
crystal, such as the grating spacing and the amplitude of
the applied field.

For example, in all the experimental studies4,9,10 the
same characteristic dependence on the applied-field am-
plitude was observed. The relative height of the photo-
refractive gain peak at low frequency decreases as the
applied-field amplitude decreases, and the position of the
peak moves slightly to higher frequencies. This happens
because the photorefractive response of the crystal is
faster at lower applied-field amplitudes, leading to a
higher cutoff frequency for the onset of the gain enhance-
ment. This cutoff frequency approaches the frequency at
which the shallow-trap-induced decrease of the gain takes
place. At the lowest applied-field amplitudes the cutoff
frequency is so high that the photorefractive gain reaches
its shallow-trap-limited value directly, without passing
through a higher value approaching the one-level result.

When the optical intensity is increased, the photore-
fractive response time becomes smaller, but the shallow-
trap-induced effective deep-trap recombination time [Eq.

(20)] also decreases because of the photoconductivity de-
pendence given in Eq. (24). This can explain the fact
that the gain-versus-frequency curve tends to be simply
translated horizontally on a logarithmic frequency axis
when the intensity is changed, as observed in Refs. 4 and
10.

The dependence of the gain-versus-frequency curve on
the light wavelength is also interesting. In Ref. 9 the
high-frequency decrease in gain observed in vanadium-
doped CdTe is relatively strong at a laser wavelength of
1.55 mm. But at 1.06 mm the transition to a possible
shallow-trap-limited value takes place at a higher fre-
quency and is less accentuated. This is consistent with a
larger t2 value at 1.06 mm [Eqs. (20) and (23)], which can
be related to a smaller shallow-trap concentration. Be-
cause the majority charge carriers were holes at 1.55 mm
and electrons at 1.06 mm, it is possible that the sample
has a larger concentration of shallow hole traps and a low
concentration of shallow electron traps. A hole shallow-
trap level could be connected with charge compensation of
the ionized deep level centers that come from the vana-
dium doping and could have a concentration as large as
the density of ionized deep centers. Shallow electron
traps are not needed for charge compensation. A low
density of shallow electron traps is also consistent with
the results obtained in Ref. 13, in which strong photore-
fractive gains at the 1.06-mm wavelength were observed
in CdTe crystals at applied-field frequencies as high as 1
kHz.

The fact that the data of Refs. 4, 9, and 10 do not show
a clear frequency-independent low-frequency plateau as
in Fig. 2 makes it difficult to analyze the experimental re-
sults quantitatively. The different magnitudes of the
peak photorefractive gain and its higher-frequency value
set only a lower limit to the factor (1 1 t1/t2) used in Eq.
(23). In the sample of Ref. 9 the photorefractive gain
drops by approximately a factor of 3 after the low-
frequency peak, which tells us that (1 1 t1/t2) . 3. t2 is
certainly smaller than t1 in that sample, but t1/t2 is prob-
ably not larger than 10 because the gain does not fall com-
pletely to the zero-applied-field value. Because the tran-
sition frequency is proportional to (t2/t1)/tth when tth@t2

[Eq. (20)], the thermal excitation time from shallow traps
should be of the order of 1 ms in this sample. All the
data presented in Refs. 4, 9, and 10 could be explained
with a shallow-trapping time constant t2 that is of the
same order of magnitude as the trapping time constant
for deep traps t1 , and with thermal excitation times of the
order of 1–10 ms. A separate measurement of the
mobility–lifetime product or of the free-carrier lifetime t0

would provide extra information about t1 and t2 , thus al-
lowing a more precise estimation of the shallow-trap pa-
rameters t2 and tth .

With the exception of an apparent high-frequency in-
crease in photorefractive gain that was reported in Ref.
11, all the data in Refs. 4 and 9–11 can be qualitatively
explained by our shallow-trap model, and the features in
the frequency response of the photorefractive gain can be
related to Eqs. (20) and (23). There are strong indica-
tions that a shallow-trap level is responsible for the ob-
served frequency dependence of the gain. However, the
available data are not complete enough to enable us to de-
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cide whether all the effects are caused by a shallow-trap
level or whether in some cases spatial subharmonics11,12

also play a role.
It is possible to design experiments in which the fre-

quency dependence of the gain is measured at long grat-
ing spacings, so that Eqs. (1)–(3), (11), and (23) can be
used to determine the shallow-trap parameters more ac-
curately. To be able to distinguish the two plateaus in
the gain-versus-frequency curve and to analyze the influ-
ence of the shallow-trap level quantitatively, one needs a
photorefractive response time that is at least 10 times
longer than the shallow-trap-induced effective deep-trap
recombination time tdeep , and the latter must clearly be
longer than the applied-field period for which the slew
rate of the high-voltage amplifier starts limiting the
gain.12 The frequency dependence should be measured
over at least three decades centered around the transition
frequency at which the photorefractive gain changes from
its low-frequency value to the shallow-trap-limited value.
One can increase this frequency by increasing the tem-
perature of the sample, because tth is expected to depend
exponentially on temperature.8

7. CONCLUSIONS

We discussed the enhancement of a photorefractive grat-
ing by an alternating applied electric field, using probabil-
ity theory instead of differential equations. The treat-
ment applies at grating spacings longer than diffusion
length and drift length. In this limit we expressed the
influence of shallow traps and of a long effective deep-trap
recombination time as a function of only three param-
eters: the thermal excitation time from shallow traps, and
the recombination probabilities in shallow traps and in
the deep level. We provided simple analytical expres-
sions describing the influence of the charge-carrier life-
time and of a shallow-trap level on the enhancement ef-
fect of an applied square-wave electric field.

Experiments performed at long grating spacings,
where our approach is valid, can be used as a tool for ma-
terial characterization. Beam coupling measurements
under an applied square-wave electric field would give in-
formation on whether high concentrations of shallow
traps are present in a given crystal, on the ratio between
recombination probability in shallow traps and that in
the deep traps, and on the thermal excitation time from
shallow traps.

*Present address: Nonlinear Optics Laboratory, Insti-
tute of Quantum Electronics, Swiss Federal Institute of
Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzer-
land. E-mail address: biaggio@iqe.phys.ethz.ch.
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