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We study the far-field reflected diffraction pattern of an index discontinuity in a thin one-dimensional slab
illuminated by a plane wave and show that a time-saving modeling technique based on plane wave expansion
approaches fairly well the Maxwell-based rigorous models. This method is simple to implement, and it fur-
thermore allows a good understanding of the optical phenomena involved in the propagation of light through
the slab. © 2011 Optical Society of America

OCIS codes: 050.1940, 050.1970, 070.7345, 080.1510, 230.3990.

1. INTRODUCTION
This work was motivated by the desire to account for parasitic
optical effects in pixelated optical components. As technolo-
gies to fabricate pixels on various kinds of substrates develop,
pixelated components present themselves as approximants to
continuous display or wavefront shaping components. The
visibility of the discontinuities between pixels is a parasitic
effect that should be minimized [1–3]. Specifically, we would
like to quantitatively account for the parasitic shine effects
that appear when one observes a pixelated component from
a distance and that result from diffraction at the pixel bound-
aries. Indeed, pixelated components show abrupt edges per-
pendicular to the substrate, which may typically be either a
transition from the index substrate (after etching) to air or
a transition between one medium deposited on the substrate
to another such medium with a different index. As a generic
building block of the discontinuity between pixels, we there-
fore selected the index discontinuity in a one-dimensional
(1D) slab. The purpose of this work is to introduce a heuristic
model for diffraction by an index discontinuity in a 1D slab
that provides results close to the true electromagnetic phe-
nomena in a number of cases of practical interest but can
be calculated in a short time so that complex components
comprising many pixels can be modeled.

Indeed, in spite of considerable progress in the numerical
solution of the Maxwell’s equations, and in spite of their broad
applicability to many component geometries from gratings to
nanophotonic devices, approximate solutions are still useful
because they offer faster numerical implementation. Among
them, heuristic solutions, which can be described in terms
of simple and well-understood optical phenomena such as
the optical path length along a ray or Fresnel reflection
and transmission, have the additional advantage that they lend
themselves easily to intuition and are therefore good guides to
component design.

The heuristic approach was pioneered many years ago, no-
tably by Swanson [4], who introduced the so-called extended

scalar theory to account for the diffraction efficiency of per-
iodic structures such as echelette or multilevel binary grat-
ings. It can be seen as an intermediate approach between
the crude “scalar theory” and the elaborate but computation-
ally extensive rigorous approach, which explicitly solves the
Maxwell’s equations.

The so-called “scalar” theory, also called “thin element ap-
proximation,” assumes the phase delay through a layer of
thickness H of an index n medium to be 2πðn − 1ÞH=λ for
wavelength λ irrespective of the incidence and neglects the
shadowing that occurs when light reaches boundaries be-
tween grooves of a grating or pixels of a pixelated element.
Those two fairly crude approximations provide acceptable re-
sults when characteristic lengths on the component are much
larger than a wavelength, such as, for example, a ruled grating
with a pitch of tens or hundreds of wavelengths. For that rea-
son, the diffraction angles involved are small; therefore, the
scalar approximation is valid mainly in the paraxial domain.
Rigorous methods are, in principle, applicable at all length
scales but become impractical because of the computational
burden as soon as the total dimension of the component
reaches just a few wavelengths. Investigating the diffraction
by echelette and multilevel binary gratings [4], Swanson took
into account the real geometric path length across the struc-
ture as well as the shadowing effect that occurs when the
geometric ray hits the echelette profile discontinuity perpen-
dicular to the substrate. While that refinement brings little for
gratings with a pitch much larger than the wavelength and
fails for a pitch close to or smaller than the wavelength, it
brings a clear progress in the intermediate case of a pitch
somewhat larger than the wavelength. Glytsis [5] further ana-
lyzed the limits of the scalar theory to periodic diffractive op-
tical elements. References [6–9] detail calculation techniques
that imply both geometric and Fourier optics and lead to ac-
ceptable results in the nonparaxial domain, and the inclusion
of knife-edge diffraction has proven useful for near-field mod-
eling of elements a few wavelengths thick [10]. In Ref. [11], the
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diffraction pattern of a whole grating is obtained by the coher-
ent summation of the field diffracted by all periods of the
grating, each being calculated beforehand using rigorous
Maxwell-based models.

The discontinuity in the 1D slab that we consider here ob-
viously cannot be analyzed by the scalar theory, which just
ignores the boundary effects that we are interested in. Grating
models are also not directly applicable, because the structure
is inherently nonperiodic. We shall show that a heuristic ap-
proach nevertheless exists for our case. Namely, we introduce
the plane wave expansion [12], also called the “angular spec-
trum representation,” as an additional tool in the domain of
heuristic models. Fresnel transmission and reflection co-
efficients have to be taken into account as well. However,
because we consider the spurious effects of pixel edges
observed from centimeters to meters away, near-field effects,
in particular those carried by evanescent components of the
field, are irrelevant to our discussion and will not be consid-
ered here. On the contrary, diffraction at infinity will provide a
fair estimation of the effects. It is therefore our goal to show
that in the case of diffraction at infinity by an index disconti-
nuity in a 1D slab illuminated by a plane wave, a heuristic
model that relies only on Fourier optics can be a good approx-
imation to “rigorous” results whenever (just like in Swanson’s
work) no length scale close to or smaller than one wavelength
is involved.

We assess the validity of our model by testing it against
electromagnetic calculations. For the latter, we use our latest
implementation of thewell-known rigorous coupledwave anal-
ysis (RCWA) [13] in its generalization to nonperiodic struc-
tures, the aperiodic Fourier modal method (a-FMM) [14].
One may note here that the comparison is possible because
we consider just one index discontinuity in a 1D slab. Our
heuristic model can be extended to components comprising
many pixels and therefore many discontinuities, while the
electromagnetic methods would lead to impractically heavy
calculations.

In Section 2, we first describe the diffracting structure that
we study in this work and identify the quantity of interest to
address diffraction at infinity. We also summarize in a few
lines the two electromagnetic implementations of the a-FMM
that we have used here as references. Our heuristic model is
detailed in Section 3. Section 4 shows a selection of numerical
results, and the limitations are discussed in Section 5. This
manuscript is restricted to TE polarization and to phenomena
observed in reflection. As we have found out through addi-
tional tests that are not reported here for the sake of brevity,
no obstacle exists for its extension to TM polarization and to
transmission.

2. TWO APPROACHES FOR A SLAB
DIFFRACTION PROBLEM
The structure considered is shown in Figs. 1 and 2, where O is
the center of the orthogonal coordinate system ðO; x; zÞ. A
monochromatic plane wave propagates in an incident medium
of index n0 ¼ 1 and then hits an interface with a structure
whose dimension along the z axis is H and which is infinite
along the x axis. This structure is deposited upon a substrate
of index n3, which is semi-infinite in the z < −H half-space,
and it is divided into two parts for −H < z < 0: the refraction
index is n1 for x < 0 and n2 for x > 0. A two-dimensional geo-

metry is considered; i.e., the structure is invariant under any
translation in the y direction, and the incoming light is a plane
wave with its wave vector ~k in the x, z plane. Its amplitude

Fig. 1. (Color online) (a) Partial waves 1 (x < 0) and 2 (x > 0) and
(b) partial waves 3 [x > 2H tanðθn02Þ] and 4 (x < 0). Partial waves 1
and 4 have semi-infinite pupils on the left, and partial waves 2 and 3
have semi-infinite pupils on the right.

Fig. 2. (Color online) (a) Partial waves 5 [−2H tanðθn01Þ <
x < −H tanðθn01Þ] and 50 [H tanðθn12Þ < x < 2H tanðθn12Þ] and (b) par-
tial waves 6 [−H tanðθn01Þ < x < 0] and 60 [0 < x < H tanðθn12Þ].
Partial waves 5, 6, 50, and 60 are limited by the vertical index discon-
tinuity in the slab and therefore have finite-size pupils.
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is denoted u0, and θ is its incidence angle. For numerical
applications, we consider a wavelength λ ¼ 500nm.

As explained in the introduction, we are interested in dif-
fraction at infinity by that structure, and we seek to give a
good quantitative account of the effect of such a structure
for various values of parameters n0, n1, n2, n3, and H=λ.
To that end, we compare an electromagnetic approach taken
as the reference and the heuristic approach, which is the sub-
ject of the present work.

In both cases, we start from an expression of the angular
spectrum of the diffracted field uðx; 0þÞ calculated just above
the structure (z ¼ 0þ, index n0), where theþ index designates
the limit as value z ¼ 0 is approached from the positive side.
The angular spectrum is the Fourier transform ~uðα=λÞ of
uðx; 0þÞ. We discard its evanescent part and express the dif-
fraction at angle θ0 ¼ arcsinðαÞ by u∞ðαÞ. The angular spec-
trum method relates u∞ðαÞ to ~uðα=λÞ through [15]

u∞ðαÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
~u

�α
λ

�
: ð1Þ

Equation (1) is valid for both the electromagnetic approach
and our heuristic method. Therefore, each method is aimed
at calculating the complex amplitude repartition uðx; 0þÞ or
at least its nonevanescent part, before using Eq. (1) to evalu-
ate the far-field light distribution. In the next few lines, we
briefly describe the electromagnetic algorithms that we imple-
mented before describing our heuristic method in Section 3.

In the electromagnetic approach, the field is obtained by
rigorously solving the Maxwell’s equations using the method
described in [14], relying on an analytical integration along the
z or x direction and on the use of a nonlinear complex coor-
dinate transform which maps the two semi-infinite intervals to
finite intervals. Because of the coordinate transform, the fields
are nil at the boundaries of the computational box and can be
periodized and expanded in a Fourier series: that is “artificial
periodization.”

The method used to generate the incident plane wave de-
pends on the direction of integration. We may select either z
or x as the direction of integration, which splits the electro-
magnetic method into two mathematically equivalent but nu-
merically independent subcases. In the z-integration method,
we introduce a “discontinuity plane” z ¼ z0 in the upper re-
gion. In the x-integration method, we introduce a line of pseu-
doperiodical point sources. The complex amplitudes of the
discontinuity and those of the sources are chosen so that
the generated incident wave is “almost” plane at the origin
and decreases slowly at infinity, in order to avoid numerical
truncation artifacts. The relatively large (a few wavelengths)
size of the objects studied here makes the convergence of
these rigorous methods delicate, but the fact that our two in-
tegration methods lead to perfectly overlapped curves con-
firms the results. The detail of these two implementations
of the a-FMM will be the object of a future publication.

When x → �∞, the field u has an asymptotic form given by
geometric optics and multiple beams interferences, as it is a
simple reflection of the incident plane wave on a slab. To
avoid numerical artifacts due to truncation, we subtract this
asymptotic expression from the field u before the Fourier in-
tegration, and we add its Fourier transform (in the sense of
distributions) back to the final result.

3. DESCRIPTION OF THE MODEL
In the heuristic method that we develop here that we call the
Fourier optics model (FOM), we consider eight partial waves
denoted 1, 2, 3, 4, 5, 50, 6, and 60, whose size and position are
suggested by the rays in Figs. 1 and 2. Note that on these fig-
ures, the partial waves are represented as geometric optic
rays for the sake of convenient visualization but that the cal-
culations involve wave optics rather than just geometric op-
tics. Each “case” 1, 2, 3, 4, 5, 50, 6, 60 corresponds to different
Fresnel reflection or transmission coefficients, phase delays
or wave vectors ~k. The primed numbers refer to waves trans-
mitted at the slab end interface between n1 and n2 at x ¼ 0,
while the others are either reflected at that interface (5 and 6),
or not affected by it (1, 2, 3, and 4).

In this paper we will use the notation np − nq to designate
an interface with light coming from the np side. We introduce
the following notations for the angles involved in the calcula-
tions, the sign convention being shown in Figs. 1 and 2, where
we draw a geometric representation of light propagation in
the slab. All angles are measured from the normal to the
substrate. If we consider an incidence angle θ, θn01 (respec-
tively, θn02) is the angle in the n1 index medium (respectively,
n2) after refraction at the n0 − n1 interface (respectively,
n0 − n2). After refraction at n1 − n2, the refraction angle in
n2 is θn12, and, in the absence of total internal reflection,
we denote by θn013 the refraction angle in n3 after refraction
at n1 − n3. The angle for geometric rays reflected to infinity for
the case j is denoted θ0j . It is clear that many of the θ0j are equal
to each other, but we keep the notations separate to identify
which partial wave is being considered. We expect to see in
our results some diffraction peaks located around the differ-
ent values calculated for θ0j .

For simplicity’s sake, we restrict our calculations to posi-
tive values of θ. Indeed, changing the sign of θ is equivalent
to interchanging the values of n1 and n2. All these angles
are related to each other via the Snell–Descartes laws, with
the peculiarity that, remembering that we refer all angles to
the normal to the substrate, n1 cosðθn01Þ ¼ n2 cosðθn12Þ. We
assume that n0 ¼ 1, n1 ≥ 1, and n2 ≥ 1 such that there is no
total reflection at the first interface met by the incident wave.
In fact, the case where total reflection may occur could be
treated along exactly the same lines. We also neglect all beams
that are reflected more than once at the interface with the sub-
strate, which is why the problem is reduced to those eight
partial waves only.

We investigate, in detail, the study of the propagation of
partial wave 3, and we give in Appendix A the results follow-
ing the samemethod for the seven other cases. Let us consider
in Fig. 3 an unfolded scheme associated to the propagation of
partial wave 3, on which the light is coming from the back side
of the slab ðz ¼ −2HÞ and which is equivalent to the one
depicted in Fig. 1(b), taking into account the reflection coeffi-
cient at z ¼ −H, which corresponds to the n2 − n3 interface.
We start from the complex amplitude repartition just above
the z ¼ −2H interface, which we denote as z ¼ −2Hþ:uðx;
−2HþÞ:

u3ðx;−2HþÞ ¼ HeðxÞei2πλ n0x sin θt02ðθÞ; ð2Þ
where HeðxÞ is the Heaviside function that describes the
semi-infinite pupil of partial wave 3 and t02ðθÞ is the Fresnel
transmission coefficient at n0 − n2 under incidence θ:

1650 J. Opt. Soc. Am. A / Vol. 28, No. 8 / August 2011 Peloux et al.



tTE02 ðθÞ ¼
2n0 cosðθÞ

n0 cosðθÞ þ n2 cosðθn02Þ
: ð3Þ

The Fourier transform of u3ðx;−2HþÞ at spatial frequency μ is
given by

~u3;−2HðμÞ ¼
t02ðθÞ

2πiðμ − n0 sin θ=λÞ
: ð4Þ

Let us give an expression for the complex amplitude reparti-
tion u3;r in the n2 index medium defined by −2H < z < −H.
The plane wave decomposition leads to

u3;rðx; zÞ ¼
Z

~u3;−2H

�α0n
λ

�
ei

2π
λ ð2HþzÞ

ffiffiffiffiffiffiffiffiffiffi
n2
2−α02n

p
ei

2π
λ xα0n

dα0n
λ ; ð5Þ

α0n ¼ n2 sin θn, where the angles θn, one of which is repre-
sented in Fig. 3, are associated to the propagation direction
of the plane waves. The terms in the exponential correspond
to i~kn2

· ~r, where ~r is the position vector whose coordinates
are ðx; zÞ in the ðO; x; zÞ coordinate system and ~kn2

is the wave
vector of a plane wave in the n2 index medium. u3;r becomes
u3;R in H < z < 0 after reflection at n2 − n3:

u3;Rðx; zÞ ¼
Z

r23ðα0nÞ~u3;−2H

�α0n
λ

�
ei

2π
λ ð2HþzÞ

ffiffiffiffiffiffiffiffiffiffi
n2
2−α02n

p
ei

2π
λ xα0n

dα0n
λ ;

ð6Þ

where r23ðα0nÞ is the Fresnel coefficient for the reflection of
the plane wave associated to α0n. When this plane wave meets
the n2 − n3 interface, its transmitted part is refracted at an an-
gle of θn;3, not represented in Fig. 3, such that according to the
Snell–Descartes’ law for refraction: n2 sin θn ¼ n3 sin θn;3.
Then

r23;TEðα0nÞ ¼
n2 cos θn − n3 cos θn;3
n2 cos θn þ n3 cos θn;3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α02n

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − α02n

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α02n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − α02n

q :

ð7Þ

We can notice that if n3 < n2, r23;TEðα0nÞ has complex values
for the higher α0n: that is total internal reflection. After refrac-
tion at n2 − n0, u3;R becomes u3;RT in z > 0. According to the
Snell–Descartes’ law, the component of the wave vector

changes along z so that its norm is equal to 2πn0=λ in the
n0 half-space:

u3;RT ðx; zÞ ¼
Z

t20ðα0nÞr23ðα0nÞ~u3;−2H

�α0n
λ

�

× ei
2π
λ 2H

ffiffiffiffiffiffiffiffiffiffi
n2
2−α02n

p
ei

2π
λ z

ffiffiffiffiffiffiffiffiffiffi
n2
0−α02n

p
ei

2π
λ xα0n

dα0n
λ ; ð8Þ

where in this medium α0n ¼ n0 sin θn;0 ¼ n2 sin θn. The highest
values of θn such that n2 sin θn > 1 are associated to total in-
ternal reflection and are thus not taken into account in Eq. (8).
Therefore, −1 ≤ α0n ≤ 1, and

t20;TEðα0nÞ ¼
2n2 cos θn

n2 cos θn þ n0 cos θn;0
¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α02n

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α02n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
0 − α02n

q :

ð9Þ

Here the expression for uðx; 0þÞ in Eq. (1) is u3;RT ðx; 0þÞ,
whose analytical expression given by Eq. (8) reveals an in-
verse Fourier transform. Thus, one can write the repartition
at infinity u3;∞ðαÞ:

u3;∞ðαÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
t20ðαÞr23ðαÞ~u3;−2H

�α
λ

�
ei

2π
λ 2H

ffiffiffiffiffiffiffiffiffi
n2
2−α2

p
: ð10Þ

The exponential term corresponds to a phase delay due to the
double crossing of the n2 medium. In Appendix A, we show
that the calculations associated to the other partial waves are
expressed in the same vein. This means that the repartition of
the complex amplitude at infinity can be calculated using a
single Fourier transform for each partial wave, which only in-
volves analytical expressions of phase delays and Fresnel
coefficients. As a result, the calculation time is reduced by or-
ders of magnitude compared to the electromagnetic models.
Moreover, with such an approach, we can easily calculate the
contribution of each partial wave to the total diffracted en-
ergy, which cannot be done using the a-FMM model and leads
to a better understanding of the diffraction phenomenon in
the slab.

We underline the fact that when the angle refracted at a
given interface using the Snell–Descartes’ law has an imagin-
ary value, it indicates total internal reflection. The associated
Fresnel coefficient in reflection is then also an imaginary num-
ber, whose argument corresponds to a phase shift, that we
calculate using imaginary cosines, and we include those con-
tributions in our model. Therefore, our model is applicable to
the cases where total internal reflection is involved. Of course,
for the transmitted part of such partial waves, we could take
into account the evanescent waves, but because we are inter-
ested in the far-field diffraction pattern, we omit them. This
restriction is illustrated by the fact that we restrict the range
of values of α0n from −n2 ≤ α0n ≤ n2 to −1 ≤ α0n ≤ 1 between
Eqs. (5) and (8). The next section illustrates the validity of
our approach.

4. RESULTS
As the light considered here is monochromatic, in Figs. 4–6 we
represent j

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
u∞ðαÞj2, expressed in square micrometers.

There, as examples among a number of cases that we have

Fig. 3. (Color online) Unfolded scheme associated to the study of
partial wave 3. The thick vertical dashed lines stand for the n1 − n2
discontinuity, and the horizontal dashed lines stand for the interface
between the slab and the substrate.
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investigated, we show the reflected angular diffraction pat-
terns corresponding to some specific angular regions of dif-
fraction at infinity for two sets of parameters (n1, n2, n3,
H, θ) in the TE mode, calculated with our FOM and with
the a-FMM methods. Because the problem is unbounded in
x on the negative and the positive sides, the central reflection
peak obviously grows to infinity and has therefore been cut
out. We can verify that the peaks appear where they were
expected to. Indeed, for instance, in the case of Fig. 5, for
θ ¼ 10° the specular peak associated to cases 1, 2, 3, and 4
is located around −10°, and the peak associated to cases 5
and 6 around 10°. We can also calculate that θ050 ¼
θ060 ≃ −34:4° and check that this value agrees with the calcu-
lated diffraction pattern. In Fig. 6 we illustrate a configuration
where no light is transmitted through the n1 − n2 interface as
the angle θn12 has an imaginary value. The resemblance be-
tween the curves obtained with our FOM and by the a-
FMM methods and the absence of a peak associated to partial
waves 50 and 60 proves that our model is valid even in the pre-
sence of total internal reflection.

In this latter configuration where no light associated to par-
tial waves 50 and 60 is reflected toward infinity, we also show
in Fig. 7 a magnification around the peak associated to partial
waves 5 and 6, and we represent the results calculated con-
sidering, respectively, partial wave 5 only, partial wave 6 only,
partial waves 1 to 4 only, and all six partial waves 1, 2, 3, 4, 5,
and 6. We can see that partial waves 1 to 4 have a weak in-

fluence on the shape of the peak around θ0 ¼ 10°, because
their intensity in this region is very small in comparison to par-
tial waves 5 and 6. Those reflect a diffraction pattern that is, as
expected, located around θ0 ¼ −10°. The global shape of the
peak results mainly from the interferences between partial
waves 5 and 6.

As the figures show a good correlation between the models,
we can conclude that in the case studied here, our simple
FOM is an acceptable tool for further investigation of dif-
fraction at infinity by such structures. Using the software
MATLAB, the calculation time for one diffraction pattern, with
a 2:33GHz dual-core CPU personal computer with 8Gb RAM,
is about 24 hours with the Maxwell-based models; it is a few
seconds with the FOM.

5. LIMITS OF THE MODEL
Obviously there are certain limits to our model. For instance,
considering Fig. 1(b), when the distance L3 between the left
limit of the partial wave 3 and the z axis becomes close to one
wavelength, more differences between FOM and a-FMM ap-
pear. This happens when the incident light is close to normal
incidence and/or when H is itself on the order of one wave-
length or less, and then our approximation of ignoring the ef-
fect of the n1 − n2 interface on the plane waves of the angular
decomposition as if their light was propagating only in a
homogeneous n2 medium −2H < z < 0 as shown in Fig. 3,

Fig. 4. (Color online) TEmode (n1 ¼ 1,n2 ¼ 1:5,n3 ¼ 1:5,H ¼ 4 μm,
θ ¼ 30°). Central peak associated to cases 1 to 4 and peak associated to
cases 5 and 6. The specular peak grows to infinity at θ0 ¼ −30°, as
should be expected, and it has therefore been truncated.

Fig. 5. (Color online) TE mode (n1 ¼ 1:4, n2 ¼ 1:5, n3 ¼ 1,
H ¼ 20 μm, θ ¼ 10°). Left (near −34:4°): peak associated to cases 50
and 60, middle (near −10°): central peak associated to cases 1 to 4
and right (near 10°): peak associated to cases 5 and 6. The central
peak grows to infinity at θ0 ¼ −10°, as should be expected, and it
has therefore been truncated.

Fig. 6. (Color online) TE mode (n1 ¼ 1:5, n2 ¼ 1:4, n3 ¼ 1,
H ¼ 20 μm, θ ¼ 10°). Left (near −10°): central peak associated to
cases 1 to 4 and right (near 10°): peak associated to cases 5 and 6.
The central peak grows to infinity at θ0 ¼ −10°, as should be expected,
and it has therefore been truncated.

Fig. 7. (Color online) TE mode (n1 ¼ 1:5, n2 ¼ 1:4, n3 ¼ 1,
H ¼ 20 μm, θ ¼ 10°). Peak associated to partial waves 5 and 6, calcu-
lated using our FOM, considering case 5 only (thick orange curve),
case 6 only (brown, thick, dashed curve), cases 1 to 4 (magenta
dashed–dotted curve), and considering cases 1, 2, 3, 4, 5, and 6 (blue
solid curve).
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is not valid any more. For instance, we found that the results
of the FOM fail if we consider θ ¼ 1° with the set of param-
eters of Fig. 5, in which case the distance L3 is equal to 465nm,
which is lightly smaller than the wavelength. This result meets
Swanson’s statement [4] that its extended scalar theory ap-
plied to multilevel gratings is not acceptable if the period
of these gratings is not large in comparison to the wavelength.

A second limit lies in the fact that we consider only one
reflection on the back surface of the slab, which is obviously
not the case in the a-FMM model. This limit can explain the
small difference between the models observed around the
peak associated to partial waves 50 and 60 in Figs. 5–7. In
the case of Fig. 4, n0 ¼ n1 and n2 ¼ n3, and therefore no multi-
ple reflection occurs. Then neither the first nor the second
limit mentioned applies to that case, and we can see that
the curves match perfectly.

6. CONCLUSION
In this paper, we have described a simple intuitive 1D model
based on Fourier and elementary geometric optics, to calcu-
late the reflected far-field diffraction pattern of a 1D discon-
tinuity in a thin slab illuminated by an infinite plane wave. This
model presents the advantage of being simple to implement
and time saving. The results obtained were compared to those
from “rigorous” electromagnetic algorithms based on the
Fourier modal method and show a good correlation in a range
of parameters that we have qualified by examining the limits
of validity of our model.

Compared to previous works on advanced heuristic diffrac-
tion models since Swanson [4], this work has introduced the
use of the plane wave expansion model of Fourier optics,
which is particularly suited to nonperiodic structures. In ad-
dition, we have shown that the heuristic decomposition of
light diffraction provides an estimate of how much light is
diffracted by the various possible sequences of successive
reflection and refraction: that has no equivalent in the electro-
magnetic model. We feel that the panoply of heuristic diffrac-
tion techniques can now be used for many other simple
structures of interest—it being understood that complex
structures are intractable through heuristic approaches and
that they cannot address cases where length scales too close
to or smaller than the wavelength come into play.

APPENDIX A
The study of partial waves 1 and 2 is straightforward, as in
both cases there is only one reflection, respectively, at n0 −

n1 and n0 − n2. Let us first consider case 1. We start from

u1ðx; 0þÞ ¼ Heð−xÞei2πλ n0x sin θt01ðθÞ; ðA1Þ

where t01ðθÞ is the Fresnel transmission coefficient at n0 − n1

under θ incidence, and we note ~u1;0ðμÞ the Fourier transform
of u1ðx; 0þÞ. Then

u1;∞ðαÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
~u1;0

�α
λ

�
: ðA2Þ

Considering case 2:

u2ðx; 0þÞ ¼ HeðxÞei2πλ n0x sin θt02ðθÞ; ðA3Þ

u2;∞ðαÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
~u2;0

�α
λ

�
: ðA4Þ

In case 4, the pupil is located at n0 − n1. When the light meets
that pupil, it has already performed a double crossing of the n1

medium. Then we start from

u4ðx; 0þÞ ¼ Heð−xÞei2πλ n0x sin θt01ðθÞr13ðθÞt10ðθÞei2πλ ×2n1H cos θn01 ;

ðA5Þ

where t01ðθÞ and t10ðθÞ are, respectively, the Fresnel transmis-
sion coefficients at n0 − n1 and n1 − n0 and r13ðθÞ is the
Fresnel reflection coefficient at n1 − n3 under initial θ inci-
dence (the angles used for the Fresnel coefficient calculation
are θn01 and θn013), and we note ~u4;0ðμÞ the Fourier transform
of u4ðx; 0þÞ. Then

u4;∞ðαÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
~u4;0

�α
λ

�
: ðA6Þ

The study of partial waves 5, 50, 6, and 60 assumes the pupil to
be the n1 − n2 interface. The unfolded schemes associated to
these cases are represented in Figs. 8–11.

In case 5,

u5ð0−; zÞ ¼ ΠH

�
zþ 3H

2

�
ei

2π
λ n1ð2HþzÞ cos θn01 t01ðθÞr12ðθÞ; ðA7Þ

where ΠHðxÞ is the 1D rectangular function of width H and
r12ðθÞ is the Fresnel reflection coefficient at n1 − n2 under in-
itial θ incidence. The Fourier transform of u5ð0−; zÞ at spatial
frequency μ is given by

~u5;0ðμÞ ¼ t01ðθÞr12ðθÞei2πλ 2Hn1 cos θn01

×Hsinc
�
H
�
μ − n1 cos θn01

λ

��
e
i3πH

�
μ−n1 cos θn01

λ

�
:

ðA8Þ

Using the angular spectrum decomposition, we only consider
the propagation of plane waves in the ðx < 0; z > 0Þ direction,
and then α0n ¼ n1 cos θn has a positive value. Let u5;r be the
complex amplitude repartition in the n1 medium:

Fig. 8. (Color online) Unfolded scheme associated to the study of
partial wave 5.
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u5;rðx; zÞ ¼
Z

~u5;0

�α0n
λ

�
e−i

2π
λ x

ffiffiffiffiffiffiffiffiffiffi
n2
1−α02n

p
ei

2π
λ zα0n

dα0n
λ : ðA9Þ

The term below the integral is multiplied by r13ðα0nÞ after
reflection at n1 − n3, where

r13;TEðα0nÞ ¼
n1 cos θn − n3 cos θn;3
n1 cos θn þ n3 cos θn;3

¼
α0n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − n2

1 þ α02n
q

α0n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − n2

1 þ α02n
q :

ðA10Þ

And then, after refraction at n1 − n0

u5;RT ðx; zÞ ¼
Z

t10ðα0nÞr13ðα0nÞ~u5;0

�α0n
λ

�

× ei
2π
λ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
0−ðn2

1−α02n Þ
p

e−i
2π
λ x

ffiffiffiffiffiffiffiffiffiffi
n2
1−α02n

p dα0n
λ : ðA11Þ

Where here

t10;TEðα0nÞ ¼
2n1 cos θn

n1 cos θn þ n0 cos θn;0
¼ 2α0n

α0n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
0 − n2

1 þ α02n
q :

ðA12Þ

In Eq. (A11), the range of values of α0n is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − n2

0

q
≤ α0n ≤ n1, as

the wave vector’s norm is equal to 2πn0=λ. Then t10;TEðα0nÞ is a
real number, whatever the value of α0n in this range. As we

already stated it in the study of partial wave 3, the total inter-
nal reflection of the most tilted waves (which correspond to
the smallest values of α0n) is then taken into account by
this restriction of the range of α0n from 0 ≤ α0n ≤ n1 toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1 − n2

0

q
≤ α0n ≤ n1.

We apply the variable change v ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α02n

q
and then

obtain for u5;RT ðx; 0þÞ an analytical expression, here again re-
vealing an inverse Fourier transform. Thus, we can write the
repartition at infinity u5;∞ðαÞ:

u5;∞ðαÞ ∝ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
t10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q �
r13

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q �

× ~u5;0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q
λ

� αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q : ðA13Þ

Using the same reasoning for partial wave 6, we start from

u6ð0−; zÞ ¼ ΠH

�
zþH

2

�
ei

2π
λ n12H cos θn01

× ei
2π
λ n1z cos θn01 t01ðθÞr13ðθÞr12ðθÞ ðA14Þ

to get the field at infinity:

u6;∞ðαÞ ∝ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
t10

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q �
~u6;0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q
λ

� αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 − α2

q :

ðA15Þ

Concerning cases 50 and 60, we use the same development
with plane waves in the ðx > 0; z > 0Þ direction:

u50 ð0þ; zÞ ¼ ΠH

�
zþ 3H

2

�
ei

2π
λ n1ð2HþzÞ cos θn01 t01ðθÞr12ðθÞ:

ðA16Þ

And then

Fig. 9. (Color online) Unfolded scheme associated to the study of
partial wave 6.

Fig. 10. (Color online) Unfolded scheme associated to the study of
partial wave 50.

Fig. 11. (Color online) Unfolded scheme associated to the study of
partial wave 60.
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u50;∞ðαÞ ∝ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
t20

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q �
r23

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q �

× ~u50 ;0

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q
λ

1
CA αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
2 − α2

q ; ðA17Þ

with

t20;TEðα0nÞ ¼
2α0n

α0n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
0 − n2

2 þ α02n
q ; ðA18Þ

r23;TEðα0nÞ ¼
α0n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − n2

2 þ α02n
q

α0n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
3 − n2

2 þ α02n
q : ðA19Þ

Finally, for case 60:

u60 ð0þ; zÞ ¼ ΠH

�
zþH

2

�
ei

2π
λ n12H cos θn01

× ei
2π
λ n1z cos θn01 t01ðθÞr13ðθÞt12ðθÞ: ðA20Þ

And at infinity:

u60;∞ðαÞ ∝ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

λ

s
t20

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q �
~u60;0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q
λ

� αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 − α2

q :

ðA21Þ
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