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An anomalous dispersion for modes of a material resonator is highly desired to form frequency

combs. A resonator free-spectral-range (FSR) controlled by shape so as to increase with

frequency x/2p compensates the normal index dispersion @n/@x> 0, producing evenly spaced

resonances. Only special shapes achieve this scope. We show here that broad periodic corrugated

waveguides working at Littrow regime feature such an increasing trend @FSR/@x> 0. We

outline experimentally this trend on silicon-on-insulator devices designed for 45� Littrow

operation. We predict dispersion-free silicon-based designs across the 1.4–4.0 lm mid-infrared

range. VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802253]

Accuracy of frequency metrology is hugely benefiting

from the use of frequency combs. The possibility has

emerged to get such stable combs not by a pulsed laser—fur-

ther fed to a supercontinuum generation device—but directly

from the spontaneous instability of a cw beam in a material
resonator, feeding a broad bunch of modes through near-

resonant v(3) nonlinear mechanisms. However, triggering the

instability requires that at least a few seed modes align their

free spectral range (FSR), thus inducing phase-matched sum

and difference frequencies.1 This research started around

studies of whispering-gallery modes in microspheres.2,3 It

has further actively targeted resonators whose FSR is

“liberated from dispersion,” for instance made of a calcite

truncated ellipsoid4 or from carefully designed Si3N4

rings.5,6 Such designs impose stringent relations between

materials and shape, leaving very few free parameters. Silica

microtores appear to have similar requirements.7 Recently,

related aspects, such as broadband polarization independence

of dispersion in silicon waveguides8 and capillary-type cylin-

drical resonator modal management,9 were also tackled

along interesting avenues. Generally, constraining optical

features, such as the FSR absolute value or modal character-

istics such as confinement factors, penetration or effective

index differences, are not desirable for further engineering of

such systems, hence the interest for options that lessen such

constraints.

Here, we show that periodic broad corrugated waveguides

(BCW) have a potential for a “dispersion-liberating” or said

more conventionally, a dispersion-compensating engineering,

with added versatility. We previously studied these highly

multimode structures (i) for their “Littrow lasing” feature10

and (ii) for their ability to manifest the phenomena of

“multiple slow light” or “critical coupling.”11–14 These slow

modes arise at the crossings of equidistant branches of two

dispersion manifolds of opposite slopes.15 Coupling of modes

with proper amounts of transverse and longitudinal momen-

tum4 thus appears as a generic enabler for dispersion compen-

sation strategies. The control of special electromagnetic

features in highly multimode waveguides could also benefit

from knowledge of the quasi-optics community.16

In Fig. 1, we depict a generic “Littrow resonator” much

as those of Ref. 15 of period a and width w but for the

unfolding along the dashed-dotted line, done in order to

remain more generic. Its resonant frequencies originate from

stationary points of the modes x¼x(kx) of the infinite

BCW. Here, nearly flat bands essentially result from the

crossing, at or around the longitudinal wavevector kx¼ p/a,

of the elementary manifold of the broad waveguide (Fig.

1(b)), with its folded counterpart (kx ! 2p/a� kx). The

manifold branches are simply in the hard-wall limit

xp � ðc=nzÞ½ðpp=wÞ2 þ ðkxÞ2�1=2; (1)

nz¼ nz(x) being the underlying slab effective index. The

Littrow “retrodiffraction” condition, which also reads

k0x¼�kx [2p/a], is thus obviously obeyed at kx¼ p/a.10,15

Whatever the details of coupling among the crossing mani-

folds, the resulting stationary frequencies (weakly curved

dotted hyperbola of Fig. 1(b)) are known to be constrained

by these crossings, and thus their FSR essentially follows the

“Littrowian” FSR, FSRL¼Dx =2p, which derives from the

intervals of the series xL,p¼ (c/nz)[(pp/w)2þ (p/a)2]1/2. It is

clear that FSRL grows from a small value near the light line

(xp¼ kxc/nz), i.e., when p!1, to the asymptotic Fabry-Perot

(FP) value FSRFP¼ (c/2nzw), since 2p�p¼xp� (c/nz) (pp/w)

in this regime p!1. This is the essential mechanism of neg-

ative dispersion that we exploit here. To our knowledge, this

basic implementation of negative dispersion has not been

reported for resonators.

Our first step is the experimental demonstration that the

BCW-based resonators for hL¼ 45� Littrow operation, similar

to those of Ref. 15, do exhibit this property. These are silicon-

on-insulator (SoI) samples processed by EpixFab,17 whose

slab effective index nz¼ 2.83 for TE polarization at

k¼ 1.55 lm is well characterized. These finite BCW have

sawtooth lateral corrugation, of height h, on one side only,

which amounts to fold Fig. 1(a) onto the dashed-dotted line.

We adapt the definitions of w and p for this issue to be trans-

parent. We believe that the appearance of our Littrow resona-

tor is more compelling and helps better the intuition with the

0003-6951/2013/102(15)/151107/4/$30.00 VC 2013 AIP Publishing LLC102, 151107-1

APPLIED PHYSICS LETTERS 102, 151107 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  129.104.29.1

On: Tue, 20 Oct 2015 12:36:26

http://dx.doi.org/10.1063/1.4802253
http://dx.doi.org/10.1063/1.4802253
http://dx.doi.org/10.1063/1.4802253
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4802253&domain=pdf&date_stamp=2013-04-17


“unfolded” choice of Fig. 1. The corrugation is of a large as-

pect ratio h/a, namely h/a� 2.5. The width w of the BCWs

corresponds to a resonator order m¼ 75.15 We have m¼ 2p, a

factor of 2 coming from the degeneracy lifting of the crossing

(another factor would come from operating near hL¼ 45�,
kx�p/a¼ pp/w�ky, but it is compensated by the unfolding,

doubling w and m). We contact them by broad access guides

tilted at hL¼ 45�. We then observe the resonances thanks to

grating couplers and adequate optics to inject a tunable laser.

We monitor the output power P(k), (k¼ 2pc/x), and analyse

its peaks. The BCW length is denoted by Tq, q being an even

integer, since ray optics grants that tiling q triangles allows

developing (q� 2)/2 coupled resonances in the actual folded

resonator.15 T4 devices with a single resonance are most ex-

emplary of our proposal, but devices with several split

resonances like T6 reported here are also of interest to accom-

modate richer dispersion features.

The devices analysed here have better couplers than those

used in Ref. 15, but are fully similar in other respects. Thus, we

could get a spectrally extended set of resonances, and unambig-

uously assess the increasing FSR trend, given the well-known

modalþ chromatic dispersion of nz(x), @nz(x)/@x> 0.

In Fig. 2(b), we show the spectra of a representative T4

device, nominally m¼ 75 and h/a¼ 2.5. We treated the spec-

trum to extract the FSR as neutrally as possible. We convert

P(k) to P(x), compensate the spectrum for the bell-shaped gra-

ting coupler efficiency, and use P(x)2 to minimize a first time

the background influence. We then form the sliding correlation

function C(x,Dx) �
Ð

P(x0 �Dx=2)2 P(x0 þDx=2)2dx0,
restricting x0 to a window of width �1.3 THz and sliding cen-

ter x. We then used the centroid Dxc(x) of C(x,Dx)s with

s¼ 4 to further minimize the influence of tails in C.18 The

result is robust against the choice of the window, we only

weighted on Fig. 2(c) the dot size of these centroids by P(x) to

better outline the relevant flat regions of Dxc(x). The resulting

series is clearly ascending, showing a strong anomalous disper-

sion @FSR/@x> 0, the last point being off the rest (see Refs.

10 and 19 with more spectral features of “Littrow resonators”).

As for the T6 spectrum (Fig. 2(a), displaying split peaks), its

FSR analysis was performed directly from the data. The pattern

is not monotonous, but overall similar to T4.

We account only for a fraction of this behaviour by the

na€ıve Littrow model combined with the known SoI dispersion

nz¼ nz(xL) (we use the dispersive indices of the literature

and the nominal silicon thickness 217 nm from our slab

index). The total dispersion, if the resonators correspond

exactly to the band edge kx¼ p/a, is found by solving

xL,p¼ (c/nz(xL))[(pp/w)2þ (p/a)2]1/2 for xL, and by forming

the intervals FSRp. In practice, we invert the formula to

FIG. 1. (a) Scheme of a resonator formed by a

broad waveguide section in the Littrow regime.

The dashed-dotted line is a mirror plane. The

actual devices are folded on this plane and have a

single grating (Ref. 15). (b) Dispersion of a broad

waveguide (solid line) with the effect of periodic-

ity (folding at kx¼p/a). Coupled modes are

dashed lines, and follow, modulo the splitting, the

net of crossings of basic modes [dotted hyperbola

xH(kx) and black circles]. They have increasing

FSR at kx¼p/a (dots). The excitation along a

light line, associated to a given angle in practice,

hits the indicated points of the coupled modes in a

way that further increases the FSR dispersion.

FIG. 2. (a) Raw collected spectrum of a T6 device, twice the length of Fig.

1(a). (b) Raw spectrum of a T4 device, and same spectrum squared and with

overall compensated profile, suited for automated FSR determination. (c)

Calculated FSR for the kx¼p/a case (dots and full line) and the 45� light

line case (dots and dotted line) and for the experimental T4 data (grey dots

and correlation account by the local centroid of Dxc(x) of C(x,Dx)s with

s¼ 4) and T6 (large crosses).
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calculate fractional orders p¼ p(xL) on a fine mesh of x and

interpolate the result at integer orders. The only free parame-

ter is the width, since we simplify and neglect any detail of

the actual grating and coupled modes in this way. The

advantage exploited later below is the capability to scan a

large parameter space. Using a reasonable width of

w¼ 14.6 lm (�twice the actual width, the actual devices of

Ref. 15 are folded), we get the thick line, whose slope

(@FSR/@x)theo is nearly one half of (@FSR/@x)exp.

To account more faithfully for the observed dispersion,

we have to take into account the geometry used to optically

access these devices. There could be other ways, (see below)

but in our current way at fixed angle, the projection kx is pro-

portional to x, forming a specific “light-line” kx¼ sin h nz x/

c. This is illustrated in Fig. 2(b). Due to the residual curvature

of the coupled modes, the FSR tends to grow faster toward the

upper right, and slower toward the lower left, thus increasing

the perceived dispersion. This behavior points out that our res-

onators still borrow features of a waveguide: as long as no

curvature or localizing feature is added to them, they are a

section of a perfect periodic waveguide. To get the math of

this effect is slightly more cumbersome. The reader can estab-

lish by various means20 the generic expression of “hyperbola”

xH(kx) based on the net of crossing, Fig. 1(a), which forms the

relevant frame for the coupled modes dispersion

xHðkxÞ ¼ ðc=nzÞ½ðp=aÞ2 þ ðpp=wÞ2 þ Dk2
xð1þ L2=p2a2Þ�1=2

(2)

with Dkx¼ kx� p/a. Then, injecting a fixed light-line relation

Dkx / (x�xo), algebra gives p2 as the solution of a second

degree equation. We then follow the same procedure as

above, calculating p(x) continuously and interpolating at

integers to find resonances. Fig. 2(b) shows that this effect

reconciles quite well the experimental and modelled slope.

There is still a shift of the order of 2 THz to perfectly fit, but

this is not our scope here, we note only that the phase

response of the grating would have to be known.

As for the more erratic values of FSR for the longer T6

device, we attribute their shifts to the marginally wavy na-

ture of dispersion around minima of Fig. 1(b) (see also Ref.

15), which plays a bigger role for longer devices (more

k-resolution for a more extended mode), and could also favor

a more complex interplay with excitation geometry.

Having assessed the strong anomalous dispersion in

those specific 45� Littrow resonators, we now consider the

possibility to get exact dispersion compensation in a general

Littrow resonator that counteracts the typical “weak” normal

dispersion nz(x) of slab waveguides used in integrated sili-

con photonics. The general Littrow resonator design bases

its resonances on the crossings at xp¼ (c/nz)[(pp/w)2þ (p/

a)2]1/2. We can indeed take this simpler situation correspond-

ing to the flatter case in Fig. 2(b) if we assume that we excite

the resonator at normal incidence through or upon the mirror

with an ideal double period grating, so that the diffracted

value of kx (�2p/2a) is fixed at p/a at any wavelength.

As we had a strong overcompensation of the Si waveguide

dispersion for the above short period, with @FSRL/@x> 0, we

thus increase the period a to reduce the dispersive effect of the

second term. We diminish the Littrow angle given by

tanhL¼ ky/kx¼w/(pa). We are, thus, closer to the FP disper-

sion. The total dispersion is then found as above, by solving for

xp with nz¼ nz(xp), then forming FSRp and here eventually the

FSR dispersion Dp � FSRpþ1�FSRp¼ �pþ1þ �p�1� 2�p

¼ (xpþ1þxp�1� 2xp)/2p, whose zeros are tracked. In the

same spirit, we consider symmetric silicon slabs with symmetric

clad, as occurs when embedding a SoI chip with deposited

silica. We use standard database for chromatic dispersion of Si

and silica,21 targeting a wavelength range k¼ 1.4 lm to 4.0lm.

As waveguide dispersion matters, we study seven different sili-

con thicknesses d from d¼ 200 nm to 600 nm, the latter being

still monomode for the larger wavelengths of interest. We first

plot on Fig. 3 the resulting frequencies of near-zero dispersion

as a function of lattice period a. We also superimpose the

corresponding constant-Littrow-angle loci for selected angles

form 10� to 24� as dashed lines. The inset depicts the FSR dif-

ferences Dp vs. frequency for the case (d¼ 200 nm, a� 1lm,

�� 150 THz, and hL� 24�) pointed by a black arrow together

with the similar quantity for a bulk silicon resonator and a prin-

ciple FP carved in a raw waveguide. Exact values at which Dp

crosses zero are asymptotically independent of size w: A large

w simply lessens discretization. For instance, for d¼ 200 nm,

L¼ 133.6lm corresponds to an order p¼ 500 of the FP resona-

tor with nz¼ 2.807 at k¼ 1500 nm. Such a large order limits the

typical excursions of Dp to 10–100 MHz.

It appears from this extended scan of a basic silicon-

based system with only periodicity as a parameter that the

choice of the zero-dispersion frequency can readily cover a

broad range of mid-IR to near-IR frequencies, associated to

wavelengths 1.4–4.0 lm. This study of the simplest general-

ization of Littrow resonators thus reveals favourable perspec-

tives for the realisation of resonators without dispersion,

crucial to frequency combs.

Compared to previous schemes, the main requirement is

not a precise dimension per se, but rather the achievement of

FIG. 3. Plot of the frequencies of zero dispersion (dots merging to solid

lines) for initial silicon waveguide slabs of different thicknesses (from bot-

tom to top, d¼ 200, 240, 300, 360, 420, 500, and 600 nm), as a function of

the Littrow grating period a. The assumption is here the band edge one,

kx¼p/a for the resonances cf. Fig. 1(b), which can be made by feeding the

resonator through a double period grating on a mirror (bottom left inset);

The dotted lines represent the Littrow angle at the zero dispersion situation

thus realised, labelled from 10� to 24� by 2� steps. The top right inset repre-

sents the dispersion of resonators made in bulk silicon (middle line), in a

200 nm silicon slab, and that of the Littrow resonator (d¼ 200 nm, a� 1 lm,

�� 150 THz, and hL� 24�).
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sufficiently high Littrow-type diffraction efficiency on a broad

band, to rival with the high finesses of microrings, microtores,

and microspheres. Progresses in integrated grating diffraction

efficiency are tackled in spectrometer devices.22 The hope to

operate at finesses around 500–1000 is substantiated by the

so-called “high-index contrast grating” (HCG) made of high-

index suspended rods, which are made to operate in the

demanding vertical cavity surface-emitting laser (VCSEL)

devices since a decade.23 Adapting similar strategies to our

in-plane blazed angle demands could offer equally high effi-

ciencies close to 99.5% (in addition, note that the normal inci-

dence channel in Fig. 3 inset should not be considered as a

loss). Pure silicon gratings have also been made adequate for

very specific highly resonant cavities where ultimate stability

was sought.24 Another option is to recourse to some flavour of

distributed feedback that is known to limit vertical scattering

by delocalizing the reflection (at the expense of an extra dis-

persion to be included and mastered, though). This option has

been worked out for spectrometers.25

In conclusion, we exhibit a first demonstration of strong

anomalous dispersion and several handles to understand real-

istic silicon-based resonators. Though, it is clear that a lot of

work remains to be done to practically operate “dispersion lib-

erated” resonators of this kind. Issues are for instance, under-

standing whether simpler blazed gratings could help reaching

a high Q; if their phase would then add a favourable imprint

on the “bare” Littrow dispersion calculated here; the role of

the device access guides. We also acknowledge that the possi-

ble frequency combs that would stem from such devices

would have to be further engineered for expanding the zero-

dispersion range and favouring the “mode alignment” due to

nonlinear mechanisms to be detailed yet. Nevertheless, we

find it promising that our proposed silicon-based designs offer

sufficient flexibility to get dispersion compensation with still a

lot of freedom in FSR value, in compensation wavelength and

in higher-order dispersion, to cite a few key quantities for the

generation of frequency combs.
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