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Analyses of the kinetics and magnitude of enhanced two-wave mixing gain under externally applied square-wave
and sinusoidal electric fields are used to determine photocarrier drift mobility. These direct measurements do
not require that any other photorefractive parameters be known.

INTRODUCTION

Photorefractive crystals exhibit large optical nonlineari-
ties1 and have great potential in optical data processing.2

The extrinsic photorefractive effect in these electro-optic
and photoconductive materials is rather well understood.
The band-transport model' has been successfully em-
ployed to describe photorefraction in crystals such as the
sillenite compounds, Bi12SiO2 0 and Bi12GeO 2 0 (BGO).4

The photorefractive effect results from photoexcitation
of charge carriers in the conduction or valence band, fol-
lowed by their migration and their final recombination in
deep traps. An electric field is thus created, leading to an
induced index pattern resulting from the electro-optic ef-
fect. This band-transport model has been employed to
measure' the main photorefractive parameters3 :

* NA, the deep trap density,
* L, the diffusion length of charge carriers in the con-

duction or valence band,
* DI, the dielectric relaxation time.
Knowledge of these parameters is of first importance

because it permits the prediction of the kinetics of the
photorefractive index modulation. However, the usual
measurements are lengthy, and even careful precautions
during the experiments do not prevent large uncertain-
ties. Therefore it appears necessary to find a simpler
way to determine the parameters.

We describe two methods of measuring with good ac-
curacy the charge-carrier mobility A, which is directly re-
lated to the diffusion length L and to the charge-carrier
recombination time R by'

L= ( LLTR) (1)

where k is Boltzmann's constant, T is the temperature,
and e is the charge on the carrier.

The recombination time TR can easily be determined
from photocurrent measurements, and, therefore, the dif-
fusion length L can be deduced from the mobility mea-
surement. Furthermore, comparison between the values
for the diffusion lengths found by conventional techniques
and these new ones can confirm the validity of the band-
transport model in the photorefractive samples.

The mobility measurement is based on the fact that a
photorefractive grating consists of a superposition of an
ionic grating and a charge-carrier grating. By a sudden
and large change in the magnitude of an externally ap-
plied electric field we can shift the photocarrier grating
while the ionic modulation (resulting from photoionization
and charge-carrier recombination) remains unchanged for
a short time. The charge-carrier grating shift is directly
related to the charge-carrier velocity (e.g., to the mobility),
and its effect on the total space-charge field can be ob-
served by two-beam coupling experiments, for instance.

We first observed this effect while performing a two-
beam-coupling experiment under a sinusoidal alternating
electric field. For a given value of the ac field frequency
we observed an unexpected reinforcement of the enhanced
photorefractive gain. From this reinforcement we de-
duced the present methods. As we derived only approxi-
mate equations to calculate the mobility values with the
sinusoidal field method, we will first explain how to de-
duce the mobility from the study of the kinetics of the
gain by using the second method with square-wave ap-
plied fields. We will then experimentally check that the
sinusoidal field method gives the same results.

We first use a band-transport model to find the opti-
mum experimental conditions. However, we will demon-
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strate that the phenomenon that we observe does not
depend on any model.

MATHEMATICAL ANALYSIS

We base our mathematical approach on the band-transport
model, and we take into account one kind of charge car-
rier only (either electrons or holes). We rely on the analy-
sis performed in the quasi-continuous regime by Valley.7

In this development, the crystal is assumed to be illumi-
nated by a sinusoidal irradiance pattern resulting from
the interference of two coherent optical beams. Assum-
ing that the interference pattern modulation index is low
compared with unity and that the applied electric field E0
is constant, a second time-derivative equation is found for
the space-charge electric field E:

a28E (1 1 \ad3E 1 1
2 E+ 1 +1 aE+ (E -Esc) =0, (2)

at2 Ta Tb at Ta Tb

where Esc is the steady-state space-charge field and Ta and
Tb are two complex constants whose expressions are given
in Ref. 7. Tb is proportional to the inverse of optical irra-
diance, so during the experiments this irradiance will be
chosen low enough so that the imaginary part (or the real
part) of i/Ta is much larger than both the imaginary and
the real parts of /Tb. As is shown below, this condition is
necessary for isolation of a term that is dependent only on
the mobility. Equation (2) can be rewritten as

a2 aE 1 a+E 1(3
-t +a a + b(SE -Esc) = . (3)at2+L at Tb S j

For low irradiance, the time constant Ta is equal to

1 i + 1 + 1 + 1 (4)
Ta TE TR TDI TD

in which i represents the square root of -1, TE is the drift
time constant, and TD is the diffusion time constant:

1
TE =T~ 

e
D LkB Tk2

(5)

(6)

First, we want to point out that E given by Eq. (7) rep-
resents the space-charge field arising from both the ionic
modulation 3E' and the charge-carrier modulation 6Ecc:

SE = E' + SEcc. (8)

Using the development of Ref. 7, we derive the kinetics of
the charge-carrier electric field. We get

aEcc(t) = RA(1 - T)exp[-(t/Ta)]
Tal)

+ B(1 - Texp[-(t/Tb)] + Esc1,
Tb / J (9)

with

R = - 1 .
TDI . TDI

-_+ T
TD TE

(10)

Coefficients A and B can now be calculated from the
continuity conditions at t = 0. It should be noted that the
first time derivative, E/ at, is not always continuous (for
instance when the applied electric field is discontinuous),
while SECC and 3E (or SE) corresponding to physical quan-
tities are always continuous.

Our purpose here is to perform an accurate measure-
ment of the damped oscillations of 8E caused by the fast
time constant a (e.g., TE). Therefore the imaginary part
of /Ta (e.g., the oscillation pulsation /TE) must be larger
than its real part (e.g., 1/TiD + /TDI + 1/TR). The experi-
ments thus have to be conducted with large fringe spac-
ings and low irradiance to reduce both 1/D and 1/TDI. The
applied electric field must also be large enough that the
recombination time TR is larger than the drift time TE.

Also, the amplitude of the damped oscillations must not be
negligible compared with the overall signal. This condi-
tion is more difficult to fulfill. For instance, the response
of the system to a modulation step:

{It<0 m=0t < M=0
t > 0 ; 

or t 
m 0
m = 0

will cause the ratio A/B to be equal to

A = _Ta
B Tb

(11)

(12)

with E0 the external applied electric field, k = 27r/A the
grating wave number, and A the fringe spacing.

From Eq. (2) the kinetics of eE is described by

3E(t) = A exp[-(t/Ta)] + B exp[-(t/Tb)] + Esc, (7)

where the two constants A and B depend on the initial
conditions at time t = 0. From Eqs. (4) and (7) we see
that E presents a fast oscillating behavior whose fre-
quency is dependent only on the unknown mobility and on
two other experimental parameters: the fringe spacing
and the applied electric field. The mobility can thus be
directly deduced from the study of the kinetics of E. We
will now pursue our analysis in order to optimize the ex-
perimental conditions necessary for easy observation of
the oscillations.

Thus the two conditions ulTall << hITbjj and A not negligible
compared with B contradict each other. A similar result
is obtained when an external electric field step is applied
to the crystal. Assuming that TE << TR,TD,TDI, we get

t < E = 0 AA Ta

t > E 0 X0 B TDI
(13)

The physical reason for Eq. (12) [relation (13)] is that for
t < 0 the photorefractive index modulation does not exist
(is quite small) and reaches its steady state after a time
t Tb. Therefore the amplitude of the space-charge field
for t Ta << Tb is negligible compared with its steady-
state value. This is also the reason why the fast time con-
stant Ta is generally omitted in the usual analyses3 with
continuous optical beams.

Pauliat et al.
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In order to measure a we have to break the relation
given by Eq. (12). According to the above discussion, this
is possible only if for the two sets of experimental condi-
tions (for t < 0 and t > 0) we have E large. For this
reason we use the alternating field enhancement tech-
nique,8 9 for which we will experimentally demonstrate
that A/B is large enough to permit accurate measurements
to be performed.

EXPERIMENTS

Two-beam coupling experiments in sillenite crystals are
performed with the usual coupling configuration. The
two coherent optical plane waves from an Ar+ laser lying
in the (110) plane are incident upon the (110) face of the
sample. In order to optimize the two-wave mixing gain
and to minimize the output intensity oscillations due to
the electrically induced changes of the birefringence (and
therefore of the photorefractive gain), the incident beams
are linearly polarized along the [110] axis.'0 The induced
index modulation leads to an energy redistribution be-
tween the two input beams, the probe and the pump. If
the pump beam intensity is much larger than the probe
beam intensity, then the probe beam intensity I, in the
presence of the pump beam is related to the probe beam
intensity Ia in the absence of the pump beam by3

(14)

where L is the interaction length and g is the photorefrac-
tive gain proportional to the imaginary part of the space-
charge field SE. Thus the kinetics of SE can be observed
by monitoring I,.

MOBILITY MEASUREMENTS

The main advantage of the square-wave technique is that
we can rely on Eqs. (7) and (9) to describe the observed
phenomenon and to deduce the exact value of the mobility.
During each half-period of the ac field, the electric field is
indeed constant. This is no longer true with the second
method, which uses a sinusoidal field. Equation (2) is
indeed no longer valid for a continuously time-dependent
applied electric field. Consequently we will use the
square-wave method first, and a comparison of the results
obtained employing the second technique will give us a
proof of the validity of the sinusoidal field technique.

The first sample that we study is a Fe-doped BGO
crystal (hereafter termed BGO 1) grown at the Univer-
site de Bordeaux, France. Its dimensions are 4.1 mm x
6.6 mm x 7.9 mm along the [001], [110], and [110] axes.
The pump intensity (I = 960 ,uW/cm2 at wavelength A =
488 nm) is 400 times larger than the probe beam inten-
sity. For this optical irradiance we checked that the slow
time constant Tb (a few seconds) is much larger than the
fast time constant so that the expression for Ta given by
Eq. (4) is valid. The fringe spacing A of the photoinduced
grating is 61 + 2 ,m.

In Fig. 1 we have plotted the amplified probe beam in-
tensity versus time for a square-wave applied field (peak
voltage 1.5 kV for an electrode spacing of 4.1 mm, two-
wave mixing gain g = 1.4 cm-'). This figure clearly
shows the damped oscillations of the amplified intensity
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Fig. 1. Kinetics of the relative amplified intensity (output probe
beam intensity with pump beam on/output probe beam intensity
with pump beam turned off) and the corresponding applied
voltage.

after each switch of the applied field. According to
Eq. (2), the oscillation frequency is 1/2 7rE. Therefore
from Eq. (5) we get

A =
I,.- = 375 ± 30 /isec. (15)

This period 2
TE represents the time needed for the

charge carriers to travel from one fringe to another one.
The oscillations shown in Fig. 1 can be interpreted as fol-
lows. The period T of the ac field is larger than Ta but
slower than Tb. Thus, before each switch of the ac field,
the charge-carrier grating is in equilibrium under the in-
fluence of both the applied field and the ionic grating
space-charge field. After the sudden change in the value
of Eo, the charge-carrier grating migrates at a velocity
AEo. The beating of this moving modulation with the
quasi-static ionic grating (which builds up from charge-
carrier recombination) produces the oscillating behavior
of the gain. This explanation demonstrates that the ob-
served phenomenon does not depend on the quasi-static
band-transport model that we have used in this paper to
determine the best experimental conditions.

The same physical explanation holds to describe the
origin of the resonance frequency that appears when a
two-beam coupling experiment is performed under a sinu-
soidal electric field. In Fig. 2 we show the photorefrac-
tive gain versus the applied field frequency. The peak
value of the sinusoidal field is 1.5 kV, and the other experi-
mental conditions remain unchanged (A = 61 ± 2 ,m,
I = 960 ,uW/cm2, A = 488 nm). The resonance peak at
Vres = 1200 ± 30 Hz is explained as follows. When the ap-
plied field is close to zero, a charge-carrier grating builds
up in phase with the interference pattern. During the
positive (or negative) phase of the applied field, these
charge carriers are shifted by a length d:

d J/ | pJEo sin( t)dt (16)

Pauliat et al.
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Fig. 2. Photorefractive two-wave mixing gain versus the fre-
quency of the sinusoidal applied electric field for BGO 1 (see
text). The resonance peak is located at Vre, = 1200 Hz.

This value [relation (18)] is slightly larger than the one
measured previously [Eq. (15)] with the square-wave field
method. The reason is that some charge carriers recom-
bine before the end of the half phase of the ac field. Thus
inequality overestimates the length d. The agreement
between the two methods is better when several frequen-
cies are visible and the measurement is achieved by taking
into account the lowest resonant frequency (for d = nA/2
with n maximum).

According to the physical explanation of this resonance
peak, at the main resonance frequency the charge-carrier
grating passes over the dark (or bright) fringes twice dur-
ing each period T. Consequently, for this special fre-
quency the photorefractive gain should have a component
oscillating at twice the frequency vres. This phenomenon
is clearly visible in Fig. 4, which shows the kinetics of the
amplified beam for vre,.
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Fig. 3. Photorefractive two-wave mixing gain for BGO 2 (see
text) versus the frequency of the sinusoidal applied field. Four
resonance and four antiresonance frequencies are visible.

and then recombine mostly at this length d. During the
other phase of the applied field, the same process occurs.
If the drift length d is equal to an odd number of half-
fringe spacings A/2, then the charge carriers recombine
mainly in the dark fringes. The buildup of the photore-
fractive grating is thus optimized for two-beam coupling.
Conversely, if d is a multiple of A, then the photorefractive
grating is reduced. In Fig. 2 we see only the main reso-
nance frequency (for d = A/2) and one antiresonance fre-
quency (for d = A). However, for one sample (which we
term BGO 2) we have observed four different resonance
frequencies (for d = A/2, 3A/2, 5A/2, 7A/2) and other
four antiresonance frequencies (for d = A, 2A, 3A, 4A), as
shown in Fig. 3. From inequality (16) we calculate the
main resonance frequency:

res Eo (17)

From the curve in Fig. 2 we get

A 2
= - = 530 + 15,usec. (18)
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Fig. 4. Relative amplified intensity versus time at the resonance
frequency Vres. All the experimental conditions are the same as
for Fig. 2. The intensity oscillates at twice the applied voltage
frequency Vres.
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Table 1. Summary of Measurements Performed on Three BGO Samples with Different Dopings with the
Square-Wave and the Sinusoidal Field Methods
Mobility L (m)

Square-Wave Method Recombination Time
Sample [106 m2/(V-sec)] Sinusoidal Method (/isec) Square-Wave Method Sinusoidal Method

BGO 1 (Fe) 0.44 0.32 1200 3.7 3.2

BGO 2 (Fe) 1.8 1.3 525 4.9 4.2

BGO 3 (Fe + V) 0.70 0.44 650 3.4 2.7

In order to prove definitively that the resonance fre-
quency is related to the mobility by formula (17), we mea-
sured, for various fringe spacings, optical wavelengths
(A = 488 or 514 nm), and applied voltages V the product
vresA versus V. The experimental data are shown in Fig. 5.
The measurements at wavelength A = 515 nm are repre-
sented by squares for a fringe spacing A = 18.3 + 0.5 Aum
and by circles for a fringe spacing A = 30.3 ± 1.5 ,.m.
Triangles correspond to measurements performed at A =
488 nm and A = 28.8 ± 1.5 m. All these data are
aligned on a straight line passing through the origin, as
predicted by formula (17). This also means, first, that
the mobility does not depend on the applied voltage and,
second, that the electric field E0 is proportional to the ap-
plied voltage. We assume that the applied electric field is
related to this voltage and to the electrode spacing d by

E = VId. (19)

We also checked that the resonance frequencies do not
depend on the optical irradiance. However, the ampli-
tude of the two-wave mixing gain at these resonant fre-
quencies depends on the irradiance and can be larger or
smaller than the two-wave mixing gain obtained with a
square-wave applied field. For instance, for BGO 1 and
for the same experimental conditions (A = 488 nm, I =
980 ILW/cm

2, A = 61 ,.m), the maximum two-wave mix-
ing gain with a sinusoidal applied field (g = 2.1 cm-' in
Fig. 2) is larger than the gain obtained with a square-wave
applied field (g = 1.4 cm-' in Fig. 1).

DISCUSSION

Results of measurements for three different BGO samples
grown by the Czochralski method at the Universit6 de
Bordeaux are listed in Table 1. The Fe concentration
in the melt was 50 parts in 106 for BGO 1 and 17 parts
in 106 for BGO 2. For the Fe + V-doped BGO 3, the Fe
concentration was 22 parts in 106 and the V concentration
20 parts in 106.

The second column in Table 1 shows the absolute values
of the mobility determined by using the square-wave
method. The uncertainties are -10%. More-precise mea-
surements are easily achievable. However, we have ex-
perimentally observed that the measured values were a
little bit higher (a few percent) when the sample was
heated by Joule's effect. Therefore more-accurate mea-
surements will be significant only with a temperature-
stabilized setup. The next column shows the measured
absolute values for the mobility obtained by using the si-
nusoidal field technique and performing the calculation on

the main resonance peak. In these experiments there
is a systematic error due to the use of the approximate
formula (17). This error is difficult to evaluate. How-
ever, it can be minimized by performing the measure-
ments on the other resonance peaks as explained above.
The values for the recombination time constants listed in
the fourth column are obtained by measuring the expo-
nential decay of the photocurrent when the illuminating
beams are turned off. These values are much larger than
usual ones, and this is a function of the choice of the BGO
samples. Indeed, owing to the limited frequency band-
width of our ac field power supply, we were able to perform
measurements only on those special samples because of
the condition that TE << TR. The only samples with large
recombination time constants were Fe doped. This is not
merely a coincidence, as Table 1 shows: the more heavily
doped the sample, the longer the recombination time con-
stant and the smaller the mobility. The diffusion lengths,
in the fifth and sixth columns, are calculated by report-
ing the values for the mobilities and recombination time
constants in Eq. (1). The uncertainties on L obtained
with the square-wave method are -10%. For the sinu-
soidal method, the uncertainties are again more difficult
to evaluate; however, the agreement between the two
methods is satisfactory.

CONCLUSION

We have presented two techniques to measure photocarrier
mobilities. In the first one, the square-wave technique,
the mobility is deduced from the kinetics of the two-wave
mixing gain; in the second, the mobility is derived from
the gain magnitude when a sinusoidal field is employed.
The square-wave technique can produce highly accurate
measurements. However, the photorefractive sample
must be thermally stabilized. The sinusoidal field method
is less accurate but easier to perform because the require-
ment on the frequency bandwidth of the electric power
supply is not so strong. Nevertheless, this method is pre-
cise enough to permit different samples to be classified
according to the mobility values.

We employed both methods to study three Fe-doped
BGO samples. We observed that the heavier the doping,
the smaller the mobility and the larger the recombina-
tion time, so the diffusion lengths for all three samples
are similar.

REFERENCES

1. P. Giinter and J. P. Huignard, Photorefractive Materials and
Their Applications II, Vol. 62 of Topics in Applied Physics
(Springer-Verlag, Berlin, 1989).

Pauliat et al.



1486 J. Opt. Soc. Am. B/Vol. 7, No. 8/August 1990

2. P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, and
M. Khoshevisan, Opt. Eng. 28, 328 (1989).

3. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and
V L. Vinetskii, Ferroelectrics 22, 949 (1979).

4. J. M. C. Jonathan, R. W Hellwarth, and G. Roosen, J. Opt.
Soc. Am. A 1, 1245 (1984).

5. R. A. Mullen and R. W Hellwarth, J. Appl. Phys. 58, 40 (1985).
6. G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and

G. Roosen, Opt. Commun. 59, 266 (1986).

7. G. C. Valley, IEEE J. Quantum Electron. QE-19, 1637 (1983).
8. S. I. Stepanov and M. P. Petrov, Opt. Commun. 53, 292 (1985).
9. C. Besson, J. M. C. Jonathan, A. Villing, G. Pauliat, and

G. Roosen, Accepted for publication in Optics Letters.
10. G. Pauliat, C. Besson, and G. Roosen, IEEE J. Quantum Elec-

tron. 25, 1736 (1989).

Pauliat et al.


