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High-capacity photorefractive neural network
implementing a Kohonen topological map

Yann Frauel, Gilles Pauliat, André Villing, and Gérald Roosen

We designed and built a high-capacity neural network based on volume holographic interconnections in
a photorefractive crystal. We used this system to implement a Kohonen topological map. We describe
and justify our optical setup and present some experimental results of self-organization in the learning
database. © 2001 Optical Society of America

OCIS codes: 070.460, 070.5010, 160.5320, 210.2860, 200.4700.

1. Introduction

Neural networks have proved to be good alterna-
tives to traditional computers for solving certain
problems such as those of classification and pattern
recognition. They are particularly well adapted
to processing complex and noisy data. Basically,
they constitute a large number of interconnected
elementary processors that work in parallel.
Therefore the use of free-space optics may be a good
way to implement such systems because of the high
connectivity and massive parallelism of such a sys-
tem. Several optical neural networks have al-
ready been built,1–16 but few of them have actually
achieved large capacities.13–16 So our aim was to
demonstrate the feasibility of such a system and to
find the problems that are caused by high capaci-
ties.

Among the possible optical techniques, volume
holographic interconnects are especially promising.
Indeed, holographic memories with 109 data—that
is, elementary holograms—have already been dem-
onstrated.17 If these holograms are read out every
millisecond, we get the equivalent of 1012 opera-
tions�s. In particular, photorefractive crystals are
an interesting choice for the recording material be-
cause they allow one to dynamically write, modify,

or erase holograms.18 This gives one the opportu-
nity to change the neuron interconnections in real
time. We previously built a simple photorefractive
neural network that implemented a topological
map.9 This system was rather limited, but it al-
lowed us to gain experience and thus to design a
whole new setup with a greatly enhanced capacity.
In this paper we describe the improved setup
and the experimental results that we obtained with
it.

2. Theoretical Background

A. Volume Holographic Interconnects

When N reference beams �with complex amplitudes
Ri

W� interfere with M learning beams �with complex
amplitudes Lk� in a volume holographic material,
they write M � N elementary gratings whose index
modulations �nik are functions of Ri

W, of Lk, and of
the exposure time. Inasmuch as the amplitudes of
the beams provide only M � N degrees of freedom, it
is not possible to record any set of �nik with only one
exposure. To obtain a particular set of values, one
must proceed to a series of several sequential expo-
sures with different beam amplitudes. Taking ad-
vantage of the Bragg selectivity, or using fractal
arrangements,19 we set the reference beams such
that each of them can read only the gratings that it
previously recorded. When the learning beams are
switched off and the holograms are read with the
reference beams, M beams are diffracted in the di-
rection of the learning beams. For transmissive
thick holograms, the diffraction efficiencies vary as
sin���nikd���, where d is the thickness of the holo-
grams and � is the wavelength of the light. Provided
that �nik �� ��d, the diffraction efficiencies are sim-
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ply proportional to �nik, and the diffracted ampli-
tudes are thus

Dk 	 

i�1

N

�nikRi, 1 � k � M, (1)

where Ri is the reference-beam amplitude during
readout, which may differ from the amplitude during
writing, Ri

W.
We define an input vector as I 	 �R1, R2 . . . � and

weight vectors as Wk 	 ��n1k, �n2k . . . �. Relation �1�
can then be rewritten as

Dk 	 Wk � I. (2)

In other words, the amplitude of a diffracted beam is
the inner product of the input and the weight vectors.
This amplitude �or rather its square� can then be
detected by a camera and sent to a computer, which
can apply a threshold function. The result of such a
computation corresponds to the usual output of a
neuron with N weighted inputs.

We used the geometry depicted in Fig. 1. The N
reference beams are angularly multiplexed, whereas
the M learning beams are spatially multiplexed, i.e.,
set side by side. The M neurons are thus spatially
separated. Although this geometry has a lower ca-
pacity than the more commonly used double-angular
geometry, it has the advantage that a neuron can be
updated with a learning beam without altering the
state of other neurons too much. This property is of
great importance for correct operation of the learning
algorithm, as described below.

B. Topological Map

The unsupervised neural networks introduced by Ko-
honen20 perform topological mapping of the vectors of
a learning database. During a learning procedure,
each vector of this learning database is presented to
the system many times and at random. The net-
work automatically classifies these input vectors ac-
cording to their mutual correlations. Once this
process is completed, each time an input vector is
presented, a localized response appears in the output
�a plane in our setup�, and the locations of the re-
sponses reflect the correlations between the vectors.
That is, if two vectors are similar, the corresponding
responses must also appear similar.

In a holographic interconnect system as described
above, when a set of reference beams �coding an input

vector I� is presented simultaneously with learning
beam Lk, the holograms that correspond to neuron k
are modified. In a photorefractive crystal, for in-
stance, the interference of the beams results in an
illumination pattern that causes a spatial redistribu-
tion of the carriers �electrons or holes� and hence a
modification of the index modulations of the gratings.
If exposure time �t is short compared with the
writing-time constant of the material, it can be
shown9,21 that the variation of the index modulations
is such that the increment of the weight vector is

�Wk 	 �t�I � Wk�. (3)

We took advantage of this law to implement a Ko-
honen neural network.

3. Experimental Setup

Our experimental setup is sketched in Fig. 2. A
beam from an argon-ion laser at 515 nm is expanded,
collimated, and divided into two paths by a polarizing
beam splitter �PBS�. This PBS is preceded by a fer-
roelectric liquid-crystal switch, which switches the
optical polarization and thus changes the energy ra-
tio between the paths. The beams recombine and
interfere inside a copper-doped Bi12GeO20 photore-
fractive crystal �BGO:Cu�, chosen for its high sensi-
tivity.

The first path corresponds to the reference beams,
that is, to the input vector. The crystal is illumi-
nated with several angularly multiplexed reference
beams, whose amplitudes are the components of the
input vector. Each of these beams is created by a
point source located in the object focal plane of lens
L4. Because of the presence of lens L3, this plane is
also the Fourier plane of a Displaytech binary ferro-
electric liquid-crystal spatial light modulator �SLM�.
We generate the desired point-source pattern by dis-
playing its inverse Fourier transform onto this SLM.
We chose a ferroelectric SLM because of its short
commutation time. The area of the 256 � 256 pixels
is 3.84 � 3.84 mm. Each pixel of this reflective SLM
switches the vertical �i.e., perpendicular to the plane
of Fig. 2� input polarization into one of the two states
that are linearly polarized at 45° to the vertical.
The following PBS cube transforms this polarization

Fig. 1. Volume holographic interconnections.

Fig. 2. Experimental setup.
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modulation into a 0–� binary phase modulation.
This binary phase modulation produces, in the Fou-
rier plane, the required point-source pattern as the
�1-diffracted order. This binary phase modulation
also produces a zero order and other orders that are
blocked by the mask �M1, Fig. 2� set in this Fourier
plane. This way to generate the reference beams
was chosen because it automatically �roughly� nor-
malizes the input vectors and allows one to use gray-
scale vectors even though the SLM is binary.
Moreover, it can be shown that the residual noise
obtained with this method varies randomly when the
pattern is changed. This randomization strongly re-
duces the parasitic gratings inside the material.22

These reference beams are regularly spaced in the
horizontal plane. To reduce Bragg degeneracy cross
talk, we make the angular spacing in the horizontal
plane between two consecutive reference beams twice
the angular Bragg selectivity. This spacing permits
the use of 128 beams simultaneously. If these ref-
erence beams were regularly aligned in the same
incident �horizontal� plane, the harmonics that re-
sulted from the binarization for one reference beam
would be superimposed upon the other reference
beams, which would lead to highly nonuniform pat-
terns that are difficult to predict. To reduce this
problem, the vertical positions of the points in the
object focal plane are chosen at random. The total
vertical span of these points is half the horizontal
span. Lenses L3 and L4 form a refractive telescope
that images the SLM onto the crystal with a 1.2�
magnification ratio.

The second path corresponds to the learning
beams. A second Displaytech ferroelectric SLM is
imaged onto the crystal. The effective area of the
256 � 256 pixels is also 3.84 mm � 3.84 mm. This
reflective SLM changes the horizontal input polariza-
tion to either vertical or horizontal polarization.
This new polarization direction results in a binary
amplitude modulation after the PBS cube. Many
diffracted orders are present in the Fourier plane of
lens L1. With the help of filter M2, which selects the
zero diffracted order only, we obtained an intensity
contrast ratio of 2300:1. This high contrast is the
second reason why we chose ferroelectric SLMs.

The refractive telescope, made with lenses L1 and
L2, forms the image of this SLM onto the crystal with
a unit magnification ratio. Each block of 2 � 2 pix-
els defines the amplitude of one learning beam. The
crystal is thus illuminated with 128 � 128 spatially
multiplexed signal beams. A mechanical shutter is
located in this path to stop the light during the read-
out stage �see Section 4 below�. The crystal is then
imaged onto a Dalsa 256 � 256 fast CCD camera.
That camera is used with the binning mode enabled;
i.e., the pixels are grouped in blocks of 2 � 2 pixels,
and their signals are added such that the apparent
resolution of the CCD is 128 � 128 pixels. Opera-
tion of the CCD camera in this binning mode was
required for increasing the signal-to-noise ratio that
was limited by the low diffraction efficiency of the
photorefractive crystal. The optical system is made

such that each 2 � 2 pixel block corresponds to one
learning–diffracted beam.

As can be seen from Fig. 2, the BGO:Cu crystal is
set in a 90° geometry: The reference and learning
paths are orthogonal. The crystal’s dimensions are
5.9 mm � 7.3 mm � 7.5 mm along the �110� � �1�11� �
� �1�11� crystallographic axes. The �110� axis is per-
pendicular to the incidence plane; the reference
beams enter by the �1�11� face, and the learning
beams enter by the �1�11� � face. Quarter-wave plates
were used on both paths to yield circular polarization
�with the same rotation directions�. We did this to
maximize the diffraction efficiency by taking into ac-
count the strong optical activity of the crystal. For
this configuration, we measured an exponential time
constant for the buildup of the photorefractive grat-
ing of 340 ms, for a total intensity of �50 mW�cm2.
This relatively short photorefractive time constant
shortens the learning procedure. It is typical of
Bi12GeO20 samples and is gained at the expense of
low diffraction efficiency. The measured photore-
fractive gain is indeed 0.3 cm�1. With the intensity
ratio between the reference and the image paths
taken into account, the gain has a maximum diffrac-
tion efficiency of less than 0.3%, to be divided among
the 128 � 128 pixels. This diffraction efficiency is
even reduced relative to the square of the number of
vectors to be classified, which can limit this number
eventually.

This 90° geometry offers some advantages com-
pared with a copropagating geometry: The diffrac-
tion efficiency is nearly independent of the reference
beam’s incident angle, the number of usable refer-
ence beams is greater,23 and the scattering noise is
less bothersome.

During writing, the illumination of the reference
path is 1.2 mW cm�2 onto the crystal, whereas that of
the learning path is 48 mW cm�2. This high ratio
limits the erasure of the holograms that correspond
to neurons, which should not be modified and which
are illuminated by the reference beams only. Before
each readout, switching of the ferroelectric switch
increases the illumination of the reference path to 3
mW cm�2 to improve the diffracted amplitudes
slightly. The inverse switching restores the initial
illumination after readout and before updating of the
subsequent hologram.

4. Learning Algorithm

A. Principle

Our system must be trained to learn how to classify
the input vectors correctly. This training is unsu-
pervised because no classification is imposed by the
experimenter. The system uses the learning algo-
rithm to automatically group together vectors that
are similar one to another. The algorithm consists
in presenting a particular input vector, detecting the
location of the higher response �called the winning
neuron�, and updating the weights of the neurons
that are located in the neighborhood of the winner.
The whole process is then repeated with a new input
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vector until the classification is completed. The ra-
dius of the updated neighborhood shrinks with time.

B. Metrics Discrepancy

In his description of the learning algorithm, Ko-
honen19 specifies that the measurement metrics of
the neuron responses must be consistent with the
weight-vector updating law. Thus he uses the
weight updating that is given in relation �3� and that
corresponds to a reduction of the Euclidean distance
between the weight and the input vectors. How-
ever, this consistency implies that the responses of
the neurons must also be a measurement of the Eu-
clidean distance between these two vectors. Such is
not the case for our system because the responses are
given by relation �2�, which is a measurement of cor-
relation instead of Euclidean distance. The metrics
based on correlation may also be used for the topo-
logical map, but, in this case, every vector should be
normalized.20 In our setup, such use is impossible
for the weight vectors that are defined by holograms.
We thus have a metrics discrepancy between reading
�correlation-based distance� and writing �Euclidean
distance�. We have demonstrated, with computer
simulations, that this discrepancy results in wrong
classifications of the input vectors. For instance, we
used a 10 � 10 map to classify 36 vectors, each with
121 components. These vectors are shown in Fig. 3,
where the bright parts correspond to 0s and the dark
parts represent 1s. It can be seen that vector 1, for
example, is decreasingly correlated with vectors 2–6
but also with vectors 7, 13, 19, 25, and 31. In math-
ematical terms, we can say that the topology of the
input space is bidimensional. That is, the vectors
can be seen as the nodes of a 6 � 6 grid and the
mutual correlations are higher, as the corresponding
nodes are spatially close to one another. At the end
of the learning stage, we plotted the location of the
winning neuron for each input vector, and we linked
these locations according to the initial correlation
grid. If the topological classification were correct,
we should have reconstructed a kind of grid. As
anticipated, Fig. 4�a� shows that this does not happen
when Kohonen’s algorithm is applied. In this algo-
rithm, the update coefficient, which corresponds to

exposure time �t in relation �3�, decreases with time.
We showed that it is possible to take the same coef-
ficient for every vector presentation, provided that
the coefficient is sufficiently small to yield a limited
modification of the weights �for instance, �0.1�.
With this single small modification of the algorithm
we obtained a better classification, even though there
is a metrics discrepancy �Fig. 4�b��.

C. Experimental Implementation

The learning process starts by displaying on the ref-
erence SLM a pattern that corresponds to an input
vector of the learning database. At that time, the
shutter on the learning path is closed. The only
light that goes in the direction of the camera is then
the light that results from diffraction of the reference
beams onto the holograms that are recorded inside
the crystal. At the beginning of the learning stage,
there is no hologram, and the camera detects only
noise. The learning therefore starts from noise.
The signal detected by the camera stands for the
responses of the neurons. These responses are spa-
tially nonuniform. They are sent to a personal com-
puter, which detects the location of the higher
response �winning neuron�. The shutter is then
opened, and a disk centered on the winning neuron is
displayed on the learning SLM. The radius of this
disk decreases when the number of iterations in-
creases. Displaying this disk on the learning path
results in illumination of only a small area of the
crystal by the learning beams. In this area—and
nowhere else—the holograms are updated. Accord-
ing to relation �3�, the holograms that correspond to
updated neuron k are reinforced if Wk is similar to the
input vector; if not, they are erased. This explains
why adjacent neurons tend to be sensitized to similar
vectors and also why widely dissimilar vectors tend to
activate the map in extremely distant locations.21

The whole process is reiterated with a new input
vector and for the same exposure time. At the end of
the learning stage �typically after 2000 vector presen-
tations�, the responses should be spatially organized
according to the mutual correlations of the input vec-
tors. Even though the process is long, the relative

Fig. 3. Thirty-six grid-correlated vectors �bidimensional topolo-
gy�. Bright parts, 0s; dark parts, 1s.

Fig. 4. Computer simulation: classification of a grid of vectors
with metric discrepancy between readout and writing. �a� Ko-
honen’s algorithm, �b� modified algorithm.
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path difference between the two arms of the inter-
ferometer does not have to be accurately maintained
through time because the holograms are continually
updated. The setup has just to be stable between
two consecutive presentations of the same vector, or
even between those of highly similar vectors, which
means at most a few seconds.

5. Experimental Results

A. Chain-Correlated Vectors

The first set of vectors is a series of 45 binary vectors,
each with 50 components. Six components are in
the ON state, which corresponds to the maximum re-
flectivity of the SLM pixels; the remaining 44 compo-
nents are OFF, i.e., there is no light. Vector N is
defined as follows,

IN � ��N � 1� � 0, 1, 1, 1, 1, 1, 1, �45 � N� � 0��,

so the first vector is correlated with the second one,
the second one with the third one, and so on. Each
vector is thus correlated with several of its neighbors,
but the correlation is greater as the vector numbers
move closer to one another.

During the learning stage, the holograms were re-
inforced for 50 ms at each iteration. However, the
mechanical shutter did not withstand high switching
frequencies; thus the speed was limited to �3 itera-
tions�s. The whole learning process required 2000
vector presentations and lasted for �10 min. The
radius of the disk update area shrank from 100 to 3
neurons. Figure 5 represents the output face of the
crystal as seen by the camera. Each circle is the
winning neuron for one particular vector. These cir-
cles have been linked in order of vector number,
namely, 1–2–3–4–. . . . It can be seen that the sys-
tem has self-organized, because the responses are not
randomly distributed but rather are located accord-

ing to the mutual correlations between vectors. One
can yet note that the circles are grouped into clusters.
This grouping results from the nonuniformity of the
optical system, which tends to favor some areas of the
crystal where there is more light. To reduce this
problem in the following examples, we impose the
condition that the responses for two different vectors
be separated by at least 10 neurons. To do this, we
perform the learning step by looking for the winning
neuron on a grid with a 10-neuron step. The neu-
rons that are not on this grid are not considered as we
seek the maximum response. Moreover, we forbid
one neuron from being the winner for two different
vectors. That is, we memorize the position of the
winning neuron for every vector, and, if the winner
for a vector already happens to be the winning neuron
for one of the other vectors, we discard it and look for
the next-highest response on the grid of allowed win-
ners. This use of a grid does not really reduce the
capacity of the system because there are many more
neurons than vectors to classify anyway. We use the
grid merely to ensure that the whole map will be
used. If we had a larger number of vectors we could
reduce the separation distance to 1 neuron.

Figure 6 gives a classification of 100 vectors with
111 components. These vectors are constructed on
the model described previously, except that 12 com-
ponents are ON for each vector. Although we ob-
tained some local errors, the overall organization is
quite good.

B. Grid-Correlated Vectors

The learning database consists of the same 36 bi-
nary vectors described in Subsection 4.2 �Fig. 3�.
For each vector, 36 of the 121 binary components
are ON at the same time. These vectors are corre-
lated following a bidimensional geometry: Each of
them may be considered one node of a 6 � 6 grid,

Fig. 5. Topological organization with 45 chain-correlated vectors.
Circles, the winning neurons. They are linked by the straight
lines in order of vector number.

Fig. 6. Topological organization with 100 chain-correlated vec-
tors. Circles, the winning neurons. They are linked by the
straight lines in order of vector number.
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and the correlations are all the stronger as the vec-
tors are closer to one other on this grid. The learn-
ing parameters were the same as above. The
result of the self-organization can be seen in Fig. 7:
The system successfully found and reconstituted
the grid.

C. Classification of Animals

This learning database is taken from Ref. 19:
Each of the 16 vectors describes an animal through
a series of physiological and behavioral character-
istics, such as the animal’s size or its number of legs
�Table 1�. The vectors have 13 components, among
which 4–6 are ON at a time. The other parameters
are the same as above. We still imposed the con-
dition that the responses repel each other by for-

bidding that a single neuron be the winner for two
different vectors. Figure 8 gives the locations of
the responses at the end of the learning stage. One
can notice three main groups, which comprise, re-
spectively, herbivorous mammals, carnivorous
mammals, and birds. Moreover, the locations for
predator mammals are close to those for predator
birds. The system has thus correctly classified the
animals according to their similarities. For this
case as well as for the examples above, the classi-
fication is quite robust: The auto-organization is
obtained at every attempt. Of course, because of
the unsupervised nature of the process, the result is
different each time. A few classification mistakes
occur occasionally, but this happens also in
computer-implemented neural networks.

Fig. 7. Topological organization with 36 grid-correlated vectors.
Straight lines link the winning neurons �circles� that respond to
neighboring vectors in the initial correlation grid.

Fig. 8. Topological organization with 16 vectors that code char-
acteristics of animals.

Table 1. Vector Coding of Characteristics of Animals

Animal

Characteristic

Small Medium Big Two Legs Four Legs Hair Hooves Mane Feathers Hunts Runs Flies Swims

Dove 1 0 0 1 0 0 0 0 1 0 0 1 0
Hen 1 0 0 1 0 0 0 0 1 0 0 0 0

Goose 1 0 0 1 0 0 0 0 1 0 0 1 1
Duck 1 0 0 1 0 0 0 0 1 0 0 1 1
Owl 1 0 0 1 0 0 0 0 1 1 0 1 0

Hawk 1 0 0 1 0 0 0 0 1 1 0 1 0
Eagle 0 1 0 1 0 0 0 0 1 1 0 0 0
Fox 0 1 0 0 1 1 0 0 0 1 0 0 0
Dog 0 1 0 0 1 1 0 0 0 0 1 0 0
Wolf 0 1 0 0 1 1 0 1 0 1 1 0 0
Cat 1 0 0 0 1 1 0 0 0 1 0 0 0

Tiger 0 0 1 0 1 1 0 0 0 1 1 0 0
Lion 0 0 1 0 1 1 0 1 0 1 1 0 0

Horse 0 0 1 0 1 1 1 1 0 0 1 0 0
Zebra 0 0 1 0 1 1 1 1 0 0 1 0 0
Cow 0 0 1 0 1 1 1 0 0 0 0 0 0
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6. Discussion of the Setup’s Capacity

As our reference SLM has 256 � 256 pixels, it is able
to address 256 � 256 points in its Fourier plane,
which in principle allows it to use as many as 256
angularly multiplexed reference beams. However,
we have already explained that to avoid cross talk we
can use only 128 beams. This number is imposed by
the dimensions of the crystal and of the SLM and
cannot be increased easily.

In the learning path, we had to group the pixels 4
by 4 to increase the energy per neuron. This group-
ing is useful because the diffraction efficiency is low.
Moreover, Filter M2 �Fig. 2� causes the diffraction
spot in the crystal to have the same size as the image
of one pixel. We thus have some interpixel cross
talk. This is not too bothersome when a neuron is
made by four pixels because the cross talk is then
weak compared with the response of the neuron and
because Konhonen’s algorithm uses neighbor inter-
actions anyway. However, if the neurons had only
one pixel, the cross talk would become too strong for
the neurons to be considered independent. The
maximum number of neurons is thus 128 � 128.
But we never used all the neurons at the same time.
The reason is that usually one input vector is ex-
pected to activate one output neuron at most. So,
although all the neurons are effectively present and
modified simultaneously, we actually use as many
neurons as we have input vectors. The problem is
that the number of vectors is at present limited to
�100 because of the unwanted erasure of the holo-
grams. Indeed, as we mentioned in Section 3, the
holograms that correspond to one particular vector
are partially erased by the reference beams when the
other vectors are recorded. This erasure depends
both on the total number of vectors and on the power
ratio between the two arms of the interferometer.
However, this ratio cannot be increased indefinitely
because each increase reduces the diffraction effi-
ciency, which is already low.

As we explained above, we use our setup at the
maximum of its capacity. Anyway, with these par-
ticular components �crystal, camera� and a laser, we
could hardly increase the capacity because the con-
trast on the camera �signal ratio between active and
inactive neurons� can be estimated to be already
�1.1. The problem is that the diffraction efficiency
of the crystal is low to begin with and decreases when
the number of vectors increases. Moreover, the off-
set of the camera increases with the exposure time,
which prevents integration of the signal over a long
period.

7. Conclusions

We have designed, built, and demonstrated an opto-
electronic neural network that uses volume holo-
grams in a photorefractive crystal to implement a
Kohonen self-organizing network. We have shown
that the system is able to classify successfully as
many as 100 vectors with more than 100 components
each. As it is designed, the setup provides 128 �

128 neurons �although we have not used them all by
now� and 128 input vector components. Because ap-
proximately three input vectors can be presented
each second, the system is able to perform more than
106 weight updates each second. This result shows
that the setup is among the best optoelectronic neural
networks, in terms of capacity, that have been built.
To improve it, some remaining problems, such as
nonuniformity of the responses, low diffraction effi-
ciency, and unwanted erasure of the holograms dur-
ing exposures, still have to be solved.

The authors are very grateful to Jean-Claude Lau-
nay for providing the BGO:Cu crystal and to Virginie
Luyckx for cutting and polishing it.
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