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We provide a self-consistent electromagnetic theory of the coupling between dipole emitters and

dissipative nanoresonators. The theory that relies on the concept of quasinormal modes with complex

frequencies provides an accurate closed-form expression for the electromagnetic local density of states of

any photonic or plasmonic resonator with strong radiation leakage, absorption, and material dispersion. It

represents a powerful tool to calculate and conceptualize the electromagnetic response of systems that are

governed by a small number of resonance modes. We use the formalism to revisit Purcell’s factor. The new

formula substantially differs from the usual one; in particular, it predicts that a spectral detuning between

the emitter and the resonance does not necessarily result in a Lorentzian response in the presence of

dissipation. Comparisons with fully vectorial numerical calculations for plasmonic nanoresonators made

of gold nanorods evidence the high accuracy of the predictions achieved by our semianalytical treatment.

DOI: 10.1103/PhysRevLett.110.237401 PACS numbers: 78.67.Bf, 42.50.Pq, 42.70.Qs, 78.66.Bz

The modification of the spontaneous decay (SD) rate
of a quantum emitter induced by an electromagnetic reso-
nance, the so-called Purcell effect [1], is one of the very
fundamental effects in quantum electrodynamics. With the
advent of nanotechnologies, this effect is nowadays revis-
ited at deep-subwavelength scales with new applications in
nano-optical spectroscopy [2–5], nanolasers [6], coherent
generation of plasmons [7–9], or broadband single-photon
sources [10,11]. In his landmark note [1], Purcell intro-
duced two important quantities, the quality factorQ and the
mode volume V, to quantify the maximum SD acceleration
that may be achieved by coupling an emitter with a cavity
in the weak-coupling regime F ¼ 3=ð4�2Þð�0=nÞ3Q=V,
with �0=n the resonance wavelength in the material sur-
rounding the emitter.

The Purcell factor F represents the maximum accelera-
tion for an ideal coupling between the emitter and the cavity
mode, i.e., a perfect spectral, spatial, and polarization
matching. Once the mode field distribution is known, any
deviation from perfect coupling can be calculated analyti-
cally. For instance, a spectral mismatch between the dipole
frequency! and the cavity resonance!0 reduces the decay
rate � according to the usual Lorentzian line shape [12]

�

�0

¼ F
!2

0

!2

!2
0

!2
0 þ 4Q2ð!�!0Þ2

; (1)

with �0 the decay rate in the bulk material. The volume
initially introduced by Purcell was a geometrical volume
representing the spatial extent of the (microwave) resona-
tor, but with the large amount of work devoted to optical
microcavities in the 1990s, the mode volume definition has
evolved to the usual expression [12,13]

V ¼ 1

�0n
2

Z
�ðrÞjEðrÞj2d3r; (2)

where �0 is the vacuum permittivity, �ðrÞ is the permittivity
of the resonator, and E is the cavity mode normalized such
that its norm is unity at the antinode of the electric field.
Although the mode volume is a purely electromagnetic
quantity, its definition lacks a precise argument. Actually,
V is difficult to define for dissipative (non-Hermitian)
systems, even for dielectric cavities where the energy dis-
sipation simply arises from radiative leakage [13–15]. This
theoretical difficulty has recently been underlined (without
being solved) in the literature on metallic nanoresonators,
for which absorption and dispersion have to be handled in
addition to radiative leakage [16–18].
In this work, we abandon the usual description based

on the electromagnetic energy in lossless and nondisper-
sive media. From first-principles calculations based on
Maxwell’s equations and Fermi’s golden rule, we propose
a self-consistent classical theory for the emitter-cavity
coupling. We derive a closed-form expression for the local
density of states (LDOS) and a generalized Purcell formula
that are valid for any nanocavity with radiative leakage,
absorption, and material dispersion, including the impor-
tant case of plasmonic nanoantennas [3–9,19]. In particu-
lar, we show that a cavity mode may decelerate the total
SD, even when it is spectrally and spatially matched with
the emitter. We also evidence that a spectral mismatch
does not necessarily result in a Lorentzian line shape as
in Eq. (1). In fact, Eqs. (1) and (2) appear as a specific case
of the present theory, valid in the limit Q ! 1, i.e., when
leakage, absorption, and thus dispersion can be neglected.
Our theory is carefully validated by comparison with fully
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vectorial numerical results obtained for plasmonic nano-
antennas made of gold nanorods.

It is instructive to first examine what are the issues
behind the definition of V for dissipative cavities. The
cavity modes are the electromagnetic field distributions

(~Em, ~Hm) that are solutions of Maxwell’s equations

in the absence of a source r� ~Em ¼ i ~!m� ~Hm and

r� ~Hm ¼ �i ~!m�ðrÞ~Em and that satisfy outgoing wave
boundary conditions (the Sommerfeld radiation condition
as jrj ! 1). The tilde is related to modal quantities here-
after. Because the energy leaks out or is absorbed, the
modes possess a finite lifetime �m. The eigenfrequency
~!m is thus complex with Imð ~!mÞ ¼ �1=�m. Consistently
with the literature on open systems for which the time-
evolution operator is not Hermitian [13,14], we refer to
these eigenmodes as quasinormal modes (QNMs), rather
than normal modes, to emphasize that they are modes of a
nonconservative system.

The definition of the quality factor does not raise
any issue Q ¼ �Reð ~!mÞ=ð2 Imð ~!mÞÞ, an expression that
is related to energy balance arguments [20]. However,
a problem arises with the definition of V. Actually, as
Imð ~!mÞ< 0, electromagnetic fields are amplified as they
propagate (wave vectors become complex with a negative
imaginary part). Thus, the QNM field diverges exponen-
tially as jrj ! 1 [see Fig. 1(a)], and the volume integral in
Eq. (2) is also exponentially diverging. This problem has
been well known since the early studies on optical micro-
cavities [12–15]. It has been bypassed by calculating V for
empirically related field distributions defined by Born–von

Kármán periodic boundary conditions [12,14]. For high-Q
cavities, the field that leaks in the clads is small compared
to the field inside the cavity, and the difference between the
volumes of the empiric ‘‘mode’’ and of the actual QNM is
negligible [12,15]. For plasmonic nanocavities whose Q’s
rarely exceed a few tens, the definition of V is even more
critical, as was recently underlined [17,18]. Not only does
the trick used for high-Q dielectric cavities become largely
unsubstantiated, but in addition, material dispersion and
Ohmic losses have to be correctly handled. The lack of a
sound theoretical framework is all the more detrimental, as
the coupling between a quantum emitter and a plasmonic
resonance is at the heart of important new paradigms, such
as the stimulated generation of plasmons in volumes much
smaller than the wavelength [7–9] or the loss compensation
in metamaterials [21].
We consider a single emitter located at r ¼ r0 in the

vicinity of absorptive, dispersive, and anisotropic nano-
structures with open boundaries. The system is character-
ized by the position- and frequency-dependent permittivity
and permeability tensors �ðr; !Þ and �ðr; !Þ. We assume
that the materials are reciprocal � ¼ �T and � ¼ �T ,
where the superscript denotes matrix transposition. In the
weak-coupling regime, the SD rate � can be derived from
Fermi’s golden rule and the electric Green tensor [22].
For an electric-dipole transition at the frequency ! with
a dipole moment p, � takes the form

� ¼ 2

@
Im½p� �Eðr0Þ�; (3)

where E is the total electric field that satisfies Maxwell’s
equations in the presence of the dipole, r�E ¼
i!�ðr; !ÞH, and r�H¼�i!�ðr;!ÞE�i!p�ðr�r0Þ,
with � the Dirac distribution.
We now make the sole assumption of this work by

considering that the electromagnetic field ðE;HÞ radiated
by the dipole can be expanded onto a small set of QNMs

Eðr; !Þ � XM
m¼1

�mð!Þ~EmðrÞ; (4)

where �m are complex coefficients to be determined.
A similar expression with the same �m’s holds for the
magnetic field. The number of QNMs is determined by
increasing M until convergence is reached (M ¼ 1 in
Fig. 2, and M ¼ 2 in Fig. 3). If the system supports
degenerate modes, they all have to be included in the
expansion. The validity of Eq. (4) is questionable only
when the expansion onto a small set of discrete modes
neglects important decay channels [17]. For instance, an
emitter located outside the cavity in the evanescent field is
only weakly coupled to the resonance and mainly decays
in the free-space continuum [23]. Hereafter, we first show
that the �m’s can easily be calculated without any approxi-
mation by solving a linear system. In a second step, we
provide an approximate analytical expression for �m from

(b)

(a)

( )2

( )1

FIG. 1 (color online). The quasinormal mode (QNM) of an
open cavity. (a) QNMs are electromagnetic field distributions
that satisfy Maxwell’s equations for a complex frequency. The
field is stationary inside the resonator and exponentially diverg-
ing outside. Because of the divergence, QNMs are not compat-
ible with the usual expression of the mode volume in Eq. (2),
which relies on the electromagnetic energy. (b) QNM bounded
by a perfectly matched-layer (PML) region shown with the
bluish rectangular area (�2). The latter has two crucial impacts.
It allows us to suppress the divergence while preserving outgoing
wave boundary conditions and to calculate the mode volume by
integrating over the whole domain ð�1Þ [ ð�2Þ [23].
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which we define a generalized Purcell formula for absorp-
tive and dispersive nanocavities.

By applying the unconjugated form of Lorentz
reciprocity [23] to the total field (E, H) created by the

dipole at the frequency ! and to the nth mode (~En, ~Hn),

we obtain
RfE � ½!�ð!Þ � ~!n�ð ~!nÞ�~En �H � ½!�ð!Þ �

~!n�ð ~!nÞ� ~Hngd3r ¼ �!p � ~Enðr0Þ. We then use the
modal expansion of Eq. (4) and obtain a linear system of

M equations
P

mBnmð!Þ�mð!Þ¼�!p� ~Enðr0Þ, where the

unknowns are the �m’s and Bnmð!Þ ¼ Rf~Em � ½!�ð!Þ�
~!n�ð ~!nÞ�~En � ~Hm � ½!�ð!Þ � ~!n�ð ~!nÞ� ~Hngd3r.
Let us first examine these equations for nondispersive

materials. In this specific case, � and � are frequency

independent and the coefficients Bnm become Bnmð!Þ ¼
ð!� ~!nÞ

Rð~Em � �~En � ~Hm �� ~HnÞd3r. By using the or-
thogonality of the QNMs of nondispersive systems [23],
we get Bnmð!Þ ¼ 0 for n � m and Bnnð!Þ ¼ ð!� ~!nÞ�Rð~En � �~En � ~Hn �� ~HnÞd3r. Therefore, in the absence of
dispersion, the linear system of equations is diagonal and

we trivially obtain �nð!Þ ¼ �!p � ~Enðr0Þ=½ð!� ~!nÞ�Rð~En � �~En � ~Hn �� ~HnÞd3r�. Note that �n has a pole

for ! ¼ ~!n; the system resonates whenever the exciting
frequency ! is close to one of the eigenfrequencies ~!n.

In the general case of dispersive media, the QNMs are
not orthogonal and the off-diagonal coefficients Bnmð!Þ
are not equal to zero. One thus has to solve a small linear
system of M equations. To guarantee a safe and accurate
numerical implementation, we note that Bnmð!Þ is null for
! ¼ ~!m and for any n orm as shown in [23], and we write
Bnmð!Þ¼ð!� ~!mÞAnmð!Þ, with Anmð ~!mÞ�0. The linear
system of equations can thus be rewritten as

X
m

Anmð!Þxmð!Þ ¼ �!p � ~Enðr0Þ; (5)

where the unknowns are now xmð!Þ ¼ ð!� ~!mÞ�mð!Þ
and the coefficients Anmð!Þ are given by

Anmð!Þ ¼ 1

!� ~!m

Z
f~Em � ½!�ð!Þ � ~!n�ð ~!nÞ�~En

� ~Hm � ½!�ð!Þ � ~!n�ð ~!nÞ� ~Hngd3r; (6)

with Anmð ~!nÞ ¼ 0 for n � m and Annð ~!nÞ¼R½~En �ð@ð!�Þ=@!Þ~En� ~Hn �ð@ð!�Þ=@!Þ ~Hn�d3r. In this

form, the system of equations is not singular and it can
be easily solved for the xn’s. We get around the difficulty
associated with the divergence of the QNMs by consi-
dering the field calculated in perfectly matched layers
surrounding the resonator (see Fig. 1 and [23]). Then,
the total decay rate is obtained from Eqs. (3) and (4),

� ¼ ð2=@ÞIm½Pm�mp
� � ~Emðr0Þ�. Equations (5) and (6)

constitute the major result of this work, together with the
approach developed for calculating the Anm’s [23]; they
form an accurate and efficient tool to calculate the SD rate
of an emitter placed in any complex nanocavity.

For dispersive materials, the linear system is not diago-
nal, and it is not possible in general to derive a closed-form
expression for the SD rate. However, we can still show
that �nð!Þ has a pole and use this property to derive an
approximate analytical expression. For ! ¼ ~!n , since
Anmð ~!nÞ ¼ 0 for n � m, the nth line of the system in

Eq. (5) simply becomes Annð ~!nÞxnð ~!nÞ¼� ~!np� ~Enðr0Þ.
Since xnð!Þ ¼ ð!� ~!nÞ�nð!Þ, we obtain that �nð!Þ
has a pole for ! ¼ ~!n, whose residue is given by

� ~!np � ~Enðr0Þ=Annð ~!nÞ. Therefore, we can write

�nð!Þ ¼ �!p � ~Enðr0Þ
ð!� ~!nÞ

R½~En � @ð!�Þ
@!

~En � ~Hn � @ð!�Þ
@!

~Hn�d3r
þ fnð!Þ; (7)

where fnð!Þ is a nonresonant background that is negligible
for ! � ~!n. We thus obtain an approximate closed-form
expression for �n valid in the vicinity of ~!n.

For a dipole essentially coupled to a single resonance ~E
(an important case in practice [3,4,19]), the SD rate is

� ¼ ð2=@ÞIm½�p� � ~Eðr0Þ�. Simple derivations lead to

�

�0

¼F
!2

0

!2

!2
0

!2
0þ4Q2ð!�!0Þ2

�
1þ2Q

!�!0

!0

ImðVÞ
ReðVÞ

�
;

(8)

with !0 ¼ Reð ~!Þ and �0 ¼ !3jpj2n=ð3��0@c3Þ the SD
rate in a bulk material with a refractive index n. In Eq. (8),
F and V are the generalized Purcell factor and mode
volume

V ¼
R½~E � @ð!�Þ

@!
~E� ~H � @ð!�Þ

@!
~H�d3r

2�0n
2½~Eðr0Þ � u�2

; (9)

F ¼ 3

4�2

�
�0

n

�
3
Re

�
Q

V

�
: (10)

Note that we have considered a linearly polarized dipole
p ¼ pu, with u a unit vector. The volume integral in
Eq. (9) extends over the whole domain ð�1Þ [ ð�2Þ and
does not diverge despite the QNM divergence; see Fig. 1
and [23]. The generalized Purcell factor in Eq. (10) takes
exactly the same form as the usual factor introduced by
Purcell, except that V is now a complex quantity, whose
real and imaginary parts impact the SD rate on and off
resonance. The mode volume in Eq. (9) explicitly consid-
ers material dispersion, as evidenced by the derivatives
@ð!�Þ=@! and @ð!�Þ=@! taken at the complex frequency
~!. We emphasize that Eqs. (8)–(10) are valid for any
dissipative system, even with large absorption.
For a conservative (closed and lossless) cavity, the QNM

field is real, and Eqs. (8)–(10) reduce to the usual expres-
sions, which then appear as valid in the limit of large Q’s.
Energy dissipation results in the appearance of an imagi-
nary part in the QNM field, and thus in V. A comparison
between Eqs. (1) and (8) evidences the stringent difference
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between a conservative and a dissipative (open and/or
lossy) system: in general, the SD rate of spectrally detuned
dipoles is not described by a Lorentzian line shape,
especially if ImðVÞ=ReðVÞ � 1=Q.

The present formalism is not only capable of accurately
predicting the total decay rate but also the radiative (�R)
and nonradiative (�NR) decays. �NR is due to absorption
and is predicted by integrating the intensity over the lossy
region

�NR ¼ 2

@
j�ð!Þj2

Z
Imð�Þj~EðrÞj2d3r; (11)

and the radiative decay rate is simply obtained by energy
conservation �R ¼ �� �NR.

We validate the present theory by carefully testing its
predictions against fully vectorial calculations for plas-
monic nanoantennas made of metallic nanorods. We first
consider a single gold nanorod (see Fig. 2), which has
received considerable attention to control the spontane-
ous emission [3,4,19,24]. In the spectral range of interest,
a single QNM is dominant, namely, the dipolelike mode
of the nanorod shown in Fig. 2(a). We have used this
mode in Eqs. (8) and (11) to calculate the total and
nonradiative decay rates for an on-axis dipole oriented
parallel to the nanorod and located at a distance d ¼
10 nm from the metal surface. As shown in Fig. 2(b), the
predictions of our theory (solid curves) are in excellent
agreement with fully vectorial numerical data (circles
and squares) calculated with the aperiodic Fourier modal
method [25] implemented in cylindrical coordinates [26].

To calculate QNMs, one needs an analytical continuation
of the gold permittivity for complex frequencies.
We have used a Drude model that fits the tabulated data
in [27], � ¼ 1�!2

p=ð!2 þ i!�Þ with !p ¼ 1:26�
1016 s�1 and � ¼ 1:41� 1014 s�1. The mode volume
calculated with Eq. (9) is mostly real and positive
V ¼ ð5� 0:4iÞ�3=104.
We now evidence the accuracy of the theory with a more

complex example where the emission line shape is far from
being Lorentzian. We consider a gap antenna made of two
closely placed gold nanorods [4,28] and calculate the total
SD rate � for an on-axis dipole located in the center of the
gap; see Fig. 3. Fully vectorial calculations show a single
asymmetric resonance (circles), whereas, in this spectral
range, two QNMs are spatially matched with the dipole;
see Fig. 3(a). With the present formalism, � is given by the
sum of the independent contributions �1 and �2 of the two
QNMs, which are calculated with Eq. (8) (solid and dashed
curves). The sum (bold red curve) predicts a total SD rate
in quantitative agreement with fully vectorial calculations.
We emphasize that the contribution �1 to the total decay is
mostly negative, even if the corresponding mode is spec-
trally and spatially matched with the dipole. This effect
related to energy dissipation is accurately predicted by the
present theory; it is formalized by a complex mode volume
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FIG. 3 (color online). Metallic gap resonator. Two gold
cylinders (diameters D1 ¼ 20 nm and D2 ¼ 85 nm, lengths
L1 ¼ 80 nm and L2 ¼ 145 nm) are separated by a small gap
g ¼ 45 nm and embedded in a host medium with n ¼ 1:5.
(a) Electric field distributions of the two dominant QNMs with
complex frequencies 2�c= ~!1 ¼ 933þ 77i nm and 2�c= ~!2 ¼
958þ 108i nm. The left (right) panel compares the real (imagi-
nary) parts of ~Ez1 and ~Ez2. (b) Normalized decay-rate spectrum
for an on-axis z-oriented dipole located in the center of the gap
(red arrow). The vertical dashed lines represent Reð ~!1Þ and
Reð ~!2Þ. The independent contributions �1 and �2 of the two
modes are calculated with Eq. (8) and shown by the solid blue
and dashed green curves. Their sum (bold red curve) predicts a
total decay rate in quantitative agreement with fully vectorial
calculations (black circles).
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FIG. 2 (color online). Single metallic nanorod. A gold cylinder
(diameter D ¼ 30 nm, length L ¼ 100 nm) is embedded in a
host medium of refractive index n ¼ 1:5. (a) Electric field
distribution j ~Ezj of the dipolelike QNM with a complex fre-
quency 2�c= ~! ¼ 920þ 47i nm. (b) Normalized decay-rate
spectrum for an on-axis dipole oriented parallel to the nanorod
(red arrow) and located at d ¼ 10 nm. The circles and squares
are fully vectorial data for the total (�) and nonradiative (�NR)
decay rates. The solid curves are obtained from Eqs. (8) and (11)
for the QNM shown in (a).
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V1 ¼ ð�3� 7iÞ�3=104. In contrast, the contribution �2 is
quasi-Lorentzian with V2 ¼ ð4þ 3iÞ�3=104.

In conclusion, we have revisited the usual Purcell
factor by providing a self-consistent electromagnetic
treatment of the local density of states of dissipative
nanoresonators. The latter possess QNMs with a finite
lifetime that are not orthogonal in the sense of the energy.
Consequently, the contribution of a QNM may decelerate
the total decay, even if it is spectrally and spatially
matched with the source. This unexpected effect is due
to the presence of dissipation and is formalized by the
signed term Reð1=VÞ in the generalized Purcell factor of
Eq. (10). Moreover, for emitter frequencies detuned from
the cavity resonance, the response of the system can be
non-Lorentzian. This second effect is taken into account
by affecting a complex value to the mode volume; see
Eq. (8). This choice may appear to be motivated by
mathematical rather than physical considerations, but
we emphasize that the new definition of V is fully con-
sistent with the usual one in Eq. (2) that is valid in the
limit Q ! 1. The present theory is a powerful tool since
it provides highly accurate semianalytical predictions
for most ultrasmall resonators of current interest in nano-
photonics, including situations with radiation leakage,
absorption, and dispersion. Once a few dominant modes
have been calculated, any variation of the dipole fre-
quency, location, or orientation is treated analytically,
in contrast to full numerical methods. We therefore
believe that the present theory may be useful to engineer
further quantum effects, such as strong coupling in
weakly damped cavities [29], lasing with ultrasmall plas-
monic modes [7–9] or disordered systems [30], or super-
radiance effects in complex media [31]. Furthermore,
we expect that the formalism can be carried out of
nanophotonics back to classical antenna theory and
used to solve the relevant problem of the radiated power
enhancement of electrically small antennas in realistic
environments [32].
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