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A new hybrid method for the analysis of diffractive optical elements, which combines fully vectorial and scalar
theories, is presented. It is suitable for use with elements of arbitrary large zone, even when the local feature
size is of the order of the wavelength. To assess its applicability, we have performed cross-checking tests. The
model is shown to accurately predict many optical properties of diffractive optical elements based on two-
dimensional artificial dielectrics, like the useful energy diffracted into the order of interest or the deterministic
loss into high diffraction orders for an illumination with a wavelength different from the design wavelength or
for highly oblique incidence. © 2007 Optical Society of America

OCIS codes: 050.1380, 050.1970, 050.1950, 230.1950.

1. INTRODUCTION

Many theoretical tools are available for the analysis and
the design of diffractive optical elements (DOEs). The
most accurate description of diffraction can be achieved
with fully vectorial computation methods. Solving Max-
well’s equations requires a large amount of computing
time, which limits the usefulness of fully vectorial meth-
ods with respect to design algorithms based on iterative
techniques. Therefore approximations have to be incorpo-
rated. One of the most practical approaches makes use of
Kirchhoff ’s approximation [1]. Within this approach, one
assumes that the DOEs can be treated as infinitely thin
diffraction screens that modulate the transverse scalar
amplitude distribution of the incident wave field. Absorb-
ing elements are then described as amplitude modula-
tions of the incident wave field, refractive index distribu-
tions are described as phase-only modulations, and the
phase delay is obtained by classical ray-tracing methods.
For many applications, such as échelette-type elements or
binary elements with local periodicities much larger than
the wavelength of the incident wave, this approach and
further extensions to incorporate finite-thickness effects
[1,2] or other refinements [3,4] provide sufficient accu-
racy.

One of the greatest problems in the analysis of DOEs
arises when one combines large Fresnel zones and small
structural features. However, developments in microli-
thography and associated technologies enable the manu-
facture of large-area DOEs that are locally composed of
tiny subwavelength features, providing interesting poten-
tialities. On one side, one finds DOEs that are locally op-
timized through fully vector theory treatments. This ap-
proach has been proved fruitful [5,6] for applications
relying on plane wave illuminations at a single wave-
length and at a given incidence angle. On the other side,
one finds a variety of components with operations that

rely on the analogy between subwavelength binary fea-
tures and artificial media. Within this approach, new
properties or performances that cannot be achieved with
conventional échelette DOEs become accessible to the op-
tical designer. For instance, highly efficient blazing occurs
in a broadband spectrum [7,8] or in a broad range of inci-
dence angles, even for DOEs with zone widths of only a
few wavelengths [9]. The efficiency of the scalar-domain
limit may be broken [10–12]. Recent examples of compo-
nents relying on the artificial-medium analogy can be
found in [13–16].

The fabrication constraints require a characteristic size
comparable with the incident wavelength for the current
smallest features. Since homogenization theories do not
strictly apply, the design and analysis must combine sca-
lar and vector theories. The purpose of the present work
is to derive a simple tool that permits the analysis of
DOEs made of large Fresnel zones, each composed of thin
subwavelength structural details. We show that these el-
ements can be fully analyzed by simple local vector theory
calculations and that many important effects can be
quantitatively predicted, like the impact of oblique illumi-
nation, the distribution of the light scattered into the spu-
rious diffracted orders, and the effect of the illumination
wavelength, especially when it differs from the nominal
one. In Section 2, the hybrid model so-called unwrapped-
phase-extension method (UPEM) is presented. It relies on
the unwrapped phase functions associated with the DOE,
contrary to previous works based on a spatial sampling
[17]. The phase expansion allows for an intuitive interpre-
tation of the intricate pattern generated by the superpo-
sition of all diffracted orders. Actually, within this repre-
sentation, the transmittance is shown as a coherent
superposition of scalar waves, the different orders of the
DOE, with weighted amplitudes that are proportional to
the square root of the diffraction efficiencies and that are
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calculated with fully vectorial tools. Section 3 describes
numerical aspects relative to the calculation of the effi-
ciency into all diffracted orders, and especially high or-
ders. In Section 4, we apply the model to several DOEs
that have been recently proposed in the literature. The
performance of the model is illustrated by fully character-
izing the optical properties of the scattered waves. Section
5 summarizes the contribution.

2. HYBRID MODEL

In the design of modern optical systems, DOEs are incor-
porated to correct both chromatic and field aberrations. At
the initial stage of the design, DOE profiles are calculated
so as to implement a target unwrapped phase function
��x ,y�, where x and y are the coordinates of a point in the
planar Cartesian system associated with the diffractive
element. The phase ��x ,y� will play a key role in the fol-
lowing analysis. It may be arbitrary. For instance, ��x ,y�
may exhibit an intricate dependence on the space vari-
ables, as is the case for kinoforms [18]. For hybrid lens
doublets defined for chromatic-aberration correction,
��x ,y� includes the spherical phase of a slow lens with a
focal length much larger than that of the doublet and
eventual phase corrections for other geometric aberra-
tions.

The model relies on two assumptions. First, it assumes
that the unwrapped phase function is slowly varying at
the wavelength scale. This implies that the model cannot
take into account shadowing effects [19] that prevent the
realization of 100% efficiencies. But for components with
a characteristic size larger than �10�, the model predic-
tions remain accurate. The second assumption concerns
the design of the DOE. We assume that, wherever the un-
wrapped phase function is equal to a given value �

modulo 2�, the DOE locally presents the same geometry,
denoted g hereafter. In other words, we assume that it is
possible to define a 2�-periodic calibration function F so
that

F:� → g = F�����2��, �1�

as illustrated in Fig. 1(a). The choice of the local geometry
g, or equivalently of the function F, is the art of the design
and encompasses many different situations. In classical

designs relying on continuous échelette-type profiles or
staircase multilevel binary profiles, the local geometry
consists of a thin layer with a given thickness. However, it
can be also more complex patterns either in metallic or di-
electric material, like subwavelength grooves [21], ridges
[22,23], holes [24], micropillars [10], or pie slices [15], as
illustrated in Figs. 1(b) and 1(c). Although it precludes the
analysis of fast lenses, the first hypothesis is not very re-
strictive. For instance, slow lenses or hybrid lenses used
for aberration correction can be analysed. The second hy-
pothesis does not represent a restriction. It is classical, in
fact, since all DOEs fabricated so far rely on a periodic
calibration function to our knowledge.

For the sake of simplicity, we only consider the DOE re-
sponse in transmission, the response in reflection being
obtained in a similar way. As any incident wave field can
be expanded as a superposition of plane waves, it is suf-
ficient to study the optical response of the DOE for a
single plane wave. The angles � and � are arbitrary (Fig.
2). We denote by Wi a 6�1 vector formed by the electric
and magnetic field vectors of the incident plane wave, and
by ki its wave vector. Because the unwrapped phase func-
tion is assumed to vary slowly at the wavelength scale,
the wave field transmitted through the DOE is weakly
modulated in amplitude and in phase. It is a quasi plane
wave Wt, whose wave vector kt is related to ki by Snell’s
law.

The incident electromagnetic field can be written as a
superposition of two linearly polarized plane waves Wi

=�WTE,i+�WTM,i, where � and � are two given complex
coefficients. WTE,i is a TE-polarized (electric field vector
perpendicular to the plane of incidence) plane wave with
a unitary Poynting vector z component. Similarly, WTM,i

denotes the corresponding TM-polarized (electric field
vector parallel to the plane of incidence) plane wave. The
transmitted wave field Wt can also be written as a super-
position of two linearly-polarized plane waves, Wt

=	WTE,t+
WTM,t, where 	 and 
 are two given complex

Fig. 1. Different calibration functions, F:g=F���, corresponding
to different geometries g. (a) Sketch of the 2� periodicity of F. (b)
Examples of DOEs that can be analyzed with the model. From
top to bottom: échelette-type DOEs replicated with their moth-
eye-type antireflection coating [20], blazed-binary element, and
blazed area-coded effective-medium structure [15]. (c) Corre-
sponding local geometries g.

Fig. 2. Scattering of a DOE with a slowly varying unwrapped
phase function. The DOE is illuminated by an unpolarized plane
wave incident from medium 1 at arbitrary azimuthal ��� and in-
cidence ��� angles. The transmitted wave field is weakly diver-
gent and is contained in a small solid angle � centered around
the wave vector kt of the weakly modulated plane wave propa-
gating in medium 2. Similarly, the reflected wave field is con-
tained in a small solid angle �� centred around the wave vector
kr.
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coefficients and WTE,t �WTM,t� represents a TE (TM) plane
wave with a unitary Poynting vector z component. Be-
cause Maxwell’s equations are linear, the expansion coef-
ficients �� ,�� and �	 ,
� on both sides of the DOE are
linked by a Jones-type matrix:

�	



� = T�x,y���

�
� . �2�

The matrix T�x ,y� fully characterizes the DOE and de-
fines the local complex transmittance of the DOE at every
�x ,y� point of the component. The matrix T�x ,y� provides
a spatial representation that can be directly used to ana-
lyze the light scattered by the DOE, as it is the case for
the so-called field-stitching approach [18], for instance. In
contrast to direct sampling approaches in real space,
which suffer [18] from the lack of a sound definition for
the size of the local area to be considered for calculating
the local T�x ,y� matrices, we examine the scattering pro-
cess in the phase space. This allows arbitrary 2D phase
functions to be handled easily. Introducing the un-
wrapped phase function, Eq. (2) can be rewritten as

�	



� = T�����

�
� = �t11��� t12���

t21��� t22������

�
� , �3�

where T��� is now the transmittance Jones’ matrix asso-
ciated with the geometry g=F���. In general, the set of
matrices T��� depends on the wavelength � of the inci-
dent plane wave and on the angles � and �, but we omit
making these dependences explicit for the sake of nota-
tional simplicity. First, according to the first hypothesis,
the geometry can be locally seen as a periodic structure,
see Fig. 1(c), and the T��� matrix can be computed with a
grating solver. More details will be provided in Section 3.

Then, as the DOE design uses the same local geometry
wherever the unwrapped phase function is equal to a
given value � modulo 2�, the T��� matrix is also 2� peri-
odic. Thus it can be expanded into a Fourier series

T��� = �
m=−�

m=�

C
m exp�jm��, �4�

with

C
m = �c11

m c12
m

c21
m c22

m� =
1

2�
�

0

2�

T���exp�− jm��d�. �5�

According to Eq. (4), the transmitted wave field is seen
as a superposition of elementary wave fields, the
exp�jm��, weighted by the Cm matrix coefficients. Each
wave field represents a spurious diffraction order [25]
that is fully specified by the known unwrapped phase
function ��x ,y�. Considering, for instance, periodic DOEs,
like Damman gratings [26], the elementary wave fields
consist of plane waves. For hybrid refractive–diffractive
lenses designed for chromatic-aberration compensation,
the wave fields are out-of-focus spherical waves.

The Cm matrix coefficients, which take into account all
polarization effects, are related to the diffraction efficien-
cies of the different orders. Because of our specific choice

for the energy normalization of the linearly polarized
plane waves WTE,i, WTM,i, the diffraction efficiencies, m

TE

and m
TM, into the mth diffracted order, are simply given

by

m
TE = �	c21

m 	2 + 	c11
m 	2�, �6�

m
TM = �	c22

m 	2 + 	c12
m 	2� �7�

for an incident plane wave with TE and TM polarizations,
respectively. For unpolarized light, the efficiency m into
the mth diffracted order is m=1/2�m

TE+m
TM�. These effi-

ciencies are absolute efficiencies that include intrinsic
Fresnel reflection losses at the DOE interface.

In practice, it might be useful to know relative efficien-
cies (normalized to the total energy diffracted in all trans-
mitted orders) to finely predict the impact of these losses.
To avoid fastidious calculations of the efficiencies into all
diffracted orders, we use the Parseval relation, and the to-
tal energy diffracted in all transmitted orders is ex-
pressed as

�
m

m
TE =

1

2�
�

0

2�

�	t21���	2 + 	t11���	2�d� �8�

for a TE-polarized incident wave. A similar expression is
straightforwardly obtained for TM polarization. Equation
(8) allows us to get rid of the rapidly oscillating exponen-
tial terms encountered in the expressions of m

TE and m
TM

for large m values.
In general, DOEs are designed to be blazed into a spe-

cific order (often the first one), at a given wavelength and
at a given angle of incidence. In principle, 100% of the in-
cident energy should be diffracted into this order, and 1

is equal to 1. When the DOEs are illuminated at another
wavelength or at another incidence, the first-order effi-
ciency drops �1�1�. The efficiencies m �m�1� into the
other diffraction orders then carry some energy. This in-
evitable and deterministic loss contributes to the forma-
tion of background noise in the image plane, which de-
grades the image quality and affects the DOE optical
transfer function [27]. We believe that the Fourier series
expansion of Eq. (4) is an intuitive and meaningful repre-
sentation of the background noise, especially when only
the few highest-efficiency orders are considered. This
quantitative approach cannot be obtained by other mod-
els relying on space expansions, as in Eq. (2).

3. COMPUTATION OF THE DIFFRACTION
EFFICIENCIES

In this section we describe several aspects relative to the
technical implementation of the model. For the sake of il-
lustration, a test structure is examined. We consider a
relatively intricate geometry, a blazed-binary DOE com-
posed by the association of subwavelength holes and pil-
lars, each defined on a sampling period �s; see Fig. 3(a).
In this design, the hole diameters and pillar sizes are cho-
sen to implement a monotonic variation of the phase de-
lay between 0 and 2�. The variation provides a nearly
100% first-order diffraction efficiency at the nominal
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wavelength �0. More details concerning the design and
the beneficial impact of combining two different subwave-
length geometries for achieving broadband blazing can be
found in [8].

The optical properties of the DOE are fully character-
ized by the Fourier series expansion of Eq. (4). This ex-
pansion requires the calculation of single variable-
integrals of the form

ci,j
m =

1

2�
�

0

2�

ti,j���exp�− jm��d�. �9�

For the numerical calculation of the ci,j
m coefficients in Eq.

(9), we use a two-step procedure.
The first step consists in computing the local complex

transmittance coefficients ti,j��� for all � in the interval
[0; 2�]. This calculation is performed with fully vector
theory software [28] relying on the rigorous coupled-wave
analysis [29] and on its further improved versions
[30–32]. It consists mainly in computing the transmitted
zero-order amplitude coefficients of a 2D grating com-
posed of artificial dielectric materials with a periodicity of
the order of the wavelength. This vector theory step does
not raise any difficulty, and we estimate that it could be
performed with sufficient accuracy. Figure 3(b) shows the
imaginary and real parts of t���= t11���= t22��� for a nor-
mally incident illumination at �=0.62�0. For this wave-
length that strongly differs from the nominal one and that
is close to the separation distance �s, the component is no
longer blazed, and the ti,j’s are discontinuous at the tran-
sition ��=0.25�� between the pillar and hole zones.

Once the functions ti,j��� are known for all �, the sec-
ond step of the analysis consists in computing the integral
in Eq. (9). Numerical problems are anticipated for large m

values because of the presence of a rapidly oscillating ex-
ponential term in the integral. To fully overcome these
problems, we perform the integration analytically. First
the [0; 2�] interval is decomposed into a sequence of M

subintervals, denoted Ip, Ip= 
�p−1 ;�p�. In each subinter-
val Ip, ti,j��� is locally approximated by a second-order
polynomial Pp���=ap�2+bp�+cp, where the coefficients
ap, bp, and cp are obtained from the ti,j��� values at three

points, �p−1, ��p−1+�p� /2, and �p. After an analytical inte-
gration step, we easily obtain the discrete summation

�
0

2�

ti,j���exp����d� = �
p=1

M

Gp��p�exp���p�

− Gp��p−1�exp���p−1�, �10�

where

Gp��� = �ap/��2�2 + �bp/� − 2ap/�2�� + �2ap/�3 − bp/�2

+ cp/��. �11�

The discrete summation in Eq. (10) is straightforwardly
calculated. In Fig. 4, we illustrate the accuracy of the ap-
proach for the DOE of Fig. 3 and for a normal incidence
plane wave illuminating the element from the substrate
at �=0.62�0. We first calculate the diffraction efficiencies
m of the N first diffracted orders, from m=−500 to m

=500, using Eqs. (10) and (11). The thin curves in Figs.
4(a) and 4(b) represent the total energy diffracted into the
N first orders, �N�=�m=−N

N m, for the reflected and trans-
mitted light, respectively, as a function of N. Then, we
compare these calculated results with those obtained for
the total reflected and transmitted efficiencies, R and T,
calculated by using the Parseval relation of Eq. (8). The
total efficiency values, R�0.190 and T�0.525, are deter-
mined with an excellent accuracy by using the Simpson
integration method [33] for 600 sampling phase points. As
N increases, the difference between the �N� and the val-
ues obtained with the Parseval relation (horizontal bold
lines) vanishes. For N=500, the deviation is smaller than
4�10−5 for both plots. This demonstrates the accuracy of
the analytical integration approach, even for computing
diffracted energies of orders as high as 500.

We have also performed many other direct tests of the
model showing its effectiveness and accuracy. For in-
stance, we have considered échelette-type DOEs, for
which closed-form expressions are available for the dif-
fraction efficiencies into arbitrary orders under normal in-
cidence [25]. The agreement between the model predic-
tions and the closed-form expressions was excellent in all
studied cases: the difference did not exceed 10−6 for five
wavelengths chosen in the interval 0.5�0���2�0 and for
the 500 first reflected and transmitted orders. Addition-
ally, we have performed tests for 1D blazed-binary grat-
ings illuminated at �0 under TM and TE polarizations, for

Fig. 3. (a) DOE composed of tiny pillars and holes etched into a
Si3N4 substrate �n=2.1� for a nominal operation at �0=0.8 
m.
The sampling period is �s=0.5�0, and the etching depth is h
=1.9�0. (b) Real (solid curve) and imaginary (dashed-dotted
curve) parts of the transmitted zero-order coefficient t= t11= t22 as
a function of the unwrapped phase �. The vertical dashed line
shows the transition between the pillars ���0.25�� and the
holes ���0.25��. The calculation has been performed for a nor-
mally incident plane wave at �=0.62�0.

Fig. 4. Illustration of the accuracy achieved by the numerical
technique developed to calculate the diffraction efficiencies into
high orders. The bold horizontal lines, calculated with the Parse-
val relation, represent the total energy diffracted into all orders.
The thin-solid curves, computed with Eqs. (10) and (11), repre-

sent the energy �N� diffracted into the N first orders, from −N to
+N. (a) Reflectance. (b) Transmittance. All results are obtained
for the pillar–hole geometry of Fig. 3 at �=0.62�0.
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which the 20 first-order diffraction efficiencies of gratings
with periods as large as 50� can be accurately calculated
with the rigorous coupled-wave analysis. Again quantita-
tive agreement between the model predictions and the
rigorous coupled-wave analysis computational data has
been achieved; the deviation ��0.005� is comparable with
the estimated uncertainty of the vector theory data.

All these tests show that the model is able to provide
highly accurate data for the reflected and transmitted dif-
fraction efficiencies, even into high-order background
wave fields.

4. APPLICATIONS

In this Section, we apply the UPEM to the analysis of sev-
eral types of DOE composed of subwavelength patterns in
a dielectric material. Provided that the subwavelength
patterns are small enough compared with the wavelength
of the incident light, they are not resolved by the light (in
the sense of the far-field diffraction). Thus the heteroge-
neous structure behaves as an artificial material with an
effective refractive index. By controlling the local fraction
of etched material, it is possible to implement a gradual
variation of the effective index, and in turn to design
DOEs with an efficient blazing. Because the electromag-
netic response of the subwavelength patterns strongly de-
pends on the incident wavelength (the artificial dielectric
is dispersive) and on the incidence angle, the analysis
cannot be performed with scalar theories only, and hybrid
models like the present one are required.

A. Optical Performance Analysis of Blazed-Binary
Diffractive Optical Elements
In this subsection, we show that the UPEM may be used
for fully analyzing the optical properties of blazed-binary
DOEs, including the prediction of the background-order
efficiencies at oblique incidence. For the sake of illustra-
tion, we consider the DOE previously considered in Fig. 3.
We emphasize that the optical properties of this type of
DOE cannot be analyzed with fully vectorial theories, for
zone widths larger than a few wavelengths. This is espe-
cially stringent for the general case of oblique incidence,
for which no symmetry can be used to lower the compu-
tational loads. With the UPEM, since it has to be per-
formed only for elementary subwavelength geometries,
the 3D fully vectorial treatment can be achieved at low
computational loads.

Figure 5 summarizes the main optical properties of the
blazed-binary DOE composed of subwavelength holes and
pillars. All curves are normalized to the total energy dif-
fracted into all transmitted orders, and all results hold for
an illumination incident from the substrate. Details con-
cerning the geometrical parameters (hole diameters, pil-
lar size…) and the design at the blaze wavelength can be
found in the caption of Fig. 3.

The wavelength dependence of the first-order efficiency
1 as a function of the normalized wavelength � /�0 is
shown in Fig. 5(a). For the calculation, we have assumed
a normal incidence and a nondispersive material �n
=2.1�, but the material properties can be easily incorpo-
rated into the model, since all computations are per-

formed in the spectral domain. A remarkable blazing ef-
fect over more than one octave �1�0.95� is predicted. For
the sake of comparison, we also show the first-order dif-
fraction efficiency (dashed curve) of an échelette-type
DOE in Si3N4 designed for blazing operation into its first
order at �0. For these types of element, closed-form ex-
pressions are available for the efficiencies m into all or-
ders in the limit of infinitely large échelettes and for nor-
mal incidence, and m is given by [26]

m = sinc2��0/� − m�, �12�

where sinc�x�=sin��x� / ��x�.
Figure 5(b) shows the first-order diffraction efficiency

as a function of the incidence angle �inc (in the Si3N4 sub-
strate) for �=�0. Note that �inc=28.4° corresponds to 90°
in air. For both polarizations, a large plateau �−10° ��

�10° � with nearly 100% blazing is obtained. It is slightly
larger than the plateau predicted for échelette-type DOEs
with the model. We notice that 1 weakly depends on the
polarization of the incident light, the deviation being
smaller than 0.02 for 	�	�13°. We have also performed
similar computations for oblique incidence with a 45° azi-
muthal angle. Almost identical results were obtained, the
difference being smaller than 0.02 for 	�	�15°. As ex-
pected, the use of centrosymmetric subwavelength pat-
terns (circular holes and square pillars) guarantees that
the DOE response is weakly sensitive to the polarization
state.

In Figs. 5(c) and 5(d), we show the diffraction efficien-
cies into the background orders. Figure 5(c) is obtained

Fig. 5. Optical properties of blazed-binary DOE with subwave-
length holes and square pillars etched in a Si3N4 substrate �n
=2.1�, as compared with échelette-type DOEs (dashed curves). (a)
Wavelength dependence of the first-order diffraction efficiency
(solid curve) for normal incidence and for unpolarized light. (b)
First-order diffraction efficiency as a function of the incidence
angle � in Si3N4 for a null azimuthal angle ��=0� at �=�0.
Squares, TE polarization, triangles, TM polarization. (c), (d) En-
ergy scattered into the background orders for normal incidence
and ��0.584�0 (c) and for oblique incidence (�=18° in the sub-
strate) and �=�0 (d). All curves are normalized to the total en-
ergy diffracted in all transmitted orders, and all results hold for
an incident illumination impinging on the DOE from the sub-
strate side.

Ribot et al. Vol. 24, No. 12 /December 2007 /J. Opt. Soc. Am. A 3823



for normal incidence at �=0.584�0, and Fig. 5(d) for �

=18° (18° in the medium corresponding to 40° in air) at
�=�0. For the sake of comparison, we have also plotted
the efficiencies for échelette DOEs with the dashed curve.
These efficiencies are obtained with Eq. (12) for the re-
sults shown in Fig. 5(c) and with the model for the results
shown in Fig. 5(d). It is obvious that the first-order effi-
ciency of the blazed-binary DOE is much larger than the
background-order efficiencies, which scale as �1/N�2 for
large N. Even for wavelengths largely different from the
nominal one and even for large incidence angles, the first-
order efficiency remains almost 2 orders of magnitude
larger than that of the highest background-order effi-
ciency (usually the zero or second order).

Overall, Fig. 5 shows the remarkable performance of
the blazed-binary DOEs with subwavelength pillars and
holes, in comparison with that achieved with a classical
échelette profile. Such results clearly illustrate the UP-
EM’s capacity to quantitatively give access to many im-
portant properties of blazed-binary DOEs with un-
wrapped phase functions that are slowly varying at the
wavelength scale. We are currently pursuing the fabrica-
tion of such elements for thermal-imaging applications.

B. Optical Analysis of One-Dimensional Blazed-Binary
and Area-Coded Effective Medium Diffractive
Optical Elements
As shown in the previous example, the optical properties
of DOEs, with unwrapped phase functions slowly varying
at the wavelength scale, are intrinsically governed by the
subwavelength patterns used for encoding the artificial
dielectric. As we illustrate now, the UPEM can also pro-
vide an intuitive insight into those properties without re-
sorting to extensive computation.

For that purpose, we consider the blazed area-coded
effective-medium gratings shown in Fig. 1(b) (bottom).
These gratings are composed of a periodic association of
pie slices with a subwavelength transverse periodicity
and have been recently fabricated with an electron-beam
lithography tool in quartz for operation at 633 nm [16].
The reported experimental efficiencies ��70% � have been
found to be in very good agreement with theoretical pre-
dictions. Using the UPEM, we aim at showing that, al-
though they are apparently fully different, blazed area-
coded effective-medium DOEs and 1D blazed-binary
DOEs provide identical performances.

For that purpose, in Fig. 6(a), we show a top view of an
area-coded grating with a period L along the x direction
and with a subwavelength periodicity �s along the trans-
verse y direction. In Fig. 6(b), we consider a 1D blazed-
binary grating with the same period L and with a sam-
pling period, defined as the separation distance between
the subwavelength ridges, equal to the transverse period-
icity �s of the area-coded element. Figures 6(c) and 6(d)
show the associated local geometries. For both cases, the
geometries are identical subwavelength lamellar grat-
ings, which are rotated by � /2 from each other. Thus, pro-
vided that the blazed-binary and the area-coded gratings
are fabricated in the same material using the same cali-
bration function g=F���, the associated local geometries
of both gratings are strictly identical. In the limit of infi-

nitely large periods, within the model framework based
on the exploitation of the local transmittance, this implies
that the optical properties of both gratings are strictly
identical provided that the plane of incidence, defined by
the azimuthal angle � in Figs. 6(c) and 6(d), is rotated by
� /2. More specifically, the diffraction efficiencies in all or-
ders, including the first order and the background orders
as well, are the same for any polarization and for any
angle of incidence. As illustrated in Fig. 6(e), this addi-
tionally implies that different area-coded gratings that
apparently possess different geometries with an identical
local fraction of dielectric material have identical optical
responses.

Clearly these conclusions only hold in the limit of large
periods, i.e., in the limit of slowly varying unwrapped
phase functions. In the resonance domain and for periods
that are not much larger than the wavelength of the inci-
dent illumination, the optical responses of all these grat-
ings may largely differ from one to another. However,
from the vector theory calculations reported in [15,34] for
area-coded and blazed-binary gratings, similar optical re-
sponses with only few percent differences into the first
diffracted order may be anticipated for zone widths as
small as 10�. It is therefore anticipated that even in the
resonance domain, area-coded gratings, like blazed-
binary gratings with subwavelength ridges, may suffer
from form-birefringence effects that prevent the realiza-
tion of efficient blazes for unpolarized applications
[11,22]. This does not represent a limitation for blazed-
binary DOEs composed of subwavelength centrosymmet-
ric elements like pillars or holes [24,35].

Fig. 6. Equivalence in the long-period limit between area-coded
effective medium gratings and blazed-binary gratings composed
of subwavelength ridges. (a), (c) Area-coded effective-medium
grating and the associated local geometry. (b), (d) Blazed-binary
grating with subwavelength ridges and the associated local ge-
ometry. Note that the subwavelength transverse period �s in (a)
is equal to the sampling period of the blazed-binary element in
(b). The local geometries in (c) and (d) are identical, except for a
� /2 rotation marked by the azimuthal angle �. (e) Three differ-
ent area-coded gratings with identical optical properties in the
long-period limit. Note that the local fraction of high-index ma-
terial f is the same in all figures.
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5. CONCLUSIONS

We have presented a hybrid scalar–vector method for the
analysis of DOEs with slowly varying phase functions.
The model fully relies on the target unwrapped phase
function that the optical designer needs to encode for cor-
recting the aberrations of the optical system. The far-field
DOE response is then represented as a coherent superpo-
sition of different elementary wave fields, each wave field
corresponding to a diffraction order that is fully repre-
sented by the known unwrapped phase function. This su-
perposition provides an intuitive and meaningful repre-
sentation of the background noise, especially when only
the few highest-efficiency background orders are consid-
ered. The method can be applied to various DOEs com-
posed of different features, such as classical échelettes, or
more complex patterns formed with subwavelength holes,
grooves, or pie slices. For all of these cases, we showed
that with moderate computational loads, the DOE optical
response can be fully evaluated as a function of the inci-
dence angle or of the illumination wavelength. Such
analysis leads to the prediction of the energy diffracted
into the targeted order and of the deterministic loss into
all background diffraction orders. We believe that this
new tool will be helpful for larger integration of DOEs in
tomorrow’s optical systems, as it provides accurate perfor-
mance predictions that may be used for efficient design
and optimization of a large variety of DOE structures.
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