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Abstract:   We design compact (a few wavelength long) and efficient 
(>99%) injectors for coupling light into slow Bloch modes of periodic thin 
film stacks and of periodic slab waveguides. The study includes the 
derivation of closed-form expressions for the injection efficiency as a 
function of the group-velocity of injected light, and the proof that 100% 
coupling efficiencies for arbitrary small group velocities is possible with an 
injector length scaling as log(c/vg). The trade-off between the injector 
bandwidth and the group velocity of the injected light is also considered. 
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1. Introduction  

In recent years, faster optical telecommunication and data processing have motivated research 
towards solutions to try to minimize the involvement of electronics in signal manipulation and 
to keep signals in the optical domain as long as possible. For true all-optical signal processing, 
one has to use optical non-linearities. Unfortunately, these non-linearities are extremely weak, 
thus requiring large interaction lengths or huge operational powers. Different approaches may 
be used to reinforce light-matter interactions including the elaboration of new materials [1] or 
of new structural geometries like coupled-resonator optical waveguides [2-3] or photonic-
crystal (PC) microcavities [4-5]. In the quest for ultimate miniaturization, slow waves 
obtained by introducing a periodic corrugation along the z-axis of a waveguide appears as a 
promising approach [6-7]. Clearly, a crucial issue for integrated circuits using slow-wave 
waveguides is the realization of efficient light injectors between uniform z-invariant 
waveguides and slow-wave z-periodic waveguides. 

Although it is indeed related to that of synthesizing apodized filters [8-10], the problem of 
designing efficient injectors has only been weakly addressed in the literature. Vlasov and his 
colleagues have experimentally investigated the impact of a fine variation of the termination 
of single-row defect PC waveguide [11]. The injection efficiency has been shown to depend 
on the exact shape of the termination, but efficient slow light couplings have not been 
observed. A natural approach for producing this crucial optical functionality consists in using 
adiabatic tapers that implement a progressive light slowdown through a continuous change of 
the waveguide geometry. This has been studied in Ref. [12] for periodic ridge waveguides 
incorporating teeth in the side of the waveguide. Remarkably efficient injectors with 
reflectivity as small as 0.001% have been designed with this approach, but this has been 
achieved with taper lengths of 50 periodicities and only for rather large group velocities close 
to 0.1c. It can be easily shown that the length of tapers operating without any back-reflection 
in the taper sections (only forward-propagating Bloch modes are involved in the tapering 
process) rapidly increases as the group-velocity is reduced. Using a scaling factor of (c/vg)

3 
[12], it implies that such an approach would lead to taper lengths of ≈ 5000 periods for 
coupling light into a slow wave with vg=0.01c. 

In contrast, we hereafter consider slow-wave injectors that operate as interference filters 
(both backward and forward Bloch modes participate in the tapering process) and that can 
provide efficient injection in an ultra-compact way. Typically, we report on the design of 
efficient injectors with characteristics lengths of a few wavelengths. In Section 2, we start 
with the Bloch modes of periodic layers and analytically study the group-velocity impedance-
mismatch problem arising at an interface between a uniform medium and a z-periodic layer 
stack. In particular we derive closed-form expression for the injection efficiency as a function 
of the group-velocity of injected light. This preliminary study is motivated by the fact that the 
injection problem is in essence one-dimensional and that simple intuitive analysis have not yet 
been presented for the back-reflection resulting at the interface between z-invariant and z-
periodic media, despite its importance for our problem. Section 3 is devoted to the study of 
light injection at a single frequency. We show that injectors can be designed as simple Bragg 
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mirrors that allows 100% coupling efficiencies for arbitrary small group velocities and that the 
injector length scales as log(c/vg). In Section 4, we consider more realistic geometries 
composed of slits etched into a slab waveguide. Since radiation loss into the cladding is 
included into this problem, this geometry represents a test bed for even more realistic three-
dimensional geometries, like PC waveguides, while preserving computational requirements at 
a moderate level. Using a combination of fully-vectorial methods [13] and of optimisation 
techniques, we design efficient and wavelength-long injectors that couple light into slow 
waves (vg/c=0.1-0.001) with bandwidths of the order of 250 GHz at -1 dB. Section 5 
summarizes the results. 

2. Group-velocity impedance mismatch problem 

We start with the scattering problem defined in Fig. 1(a). An incident plane wave in a uniform 
medium (refractive index n) is normally incident onto a semi-infinite periodic thin-film stack 
composed of lossless alternate layers with refractive indices nH and nL. Hereafter, we denote 
by a the periodicity constant of the thin film stack and by f (the fill factor) the fraction of 
material with refractive index nH. 

2.1 Injection efficiency 

This scattering problem can be solved by considering the modes of the two semi-infinite 
media at a given frequency ω. We denote by k = ω/c the modulus of the free-space wave 
vector. The modes in the uniform medium are the forward- and backward-propagating plane 
waves, denoted |P+> exp(jknz) and |P-> exp(-jknz), with a unitary Poynting vector 
|P+> = [Ex, Hy] = [(2/n)1/2,(2n)1/2] and |P-> = [(2/n)1/2,-(2n)1/2]. The modes of the periodic 
medium are the Bloch modes, |B+(z)> exp(jkneff z)  and |B-(z)> exp(-jkneff z), with |B-> and 
|B+> two periodic functions of the z-coordinate and with neff the Bloch-mode effective index. 
|B+> and |B-> are calculated as the eigenstates of the unit-cell transfer matrix of the periodic 
medium and neff as the associated eigenvalues [14]. 

The bi-layer stack possesses a mirror-symmetry relatively to transversal planes in the 
layers of refractive index nH, represented by the dashed vertical lines in Fig. 1(a) and located 
at planes z=z0+pa, with p an integer. Similar planes exist for the layers of refractive index nL. 
In every layer of the periodic structure, the functions |B+> and |B-> can be expanded as a 
superposition of two counter-propagative plane waves. We will denote by AH and BH, the 
modal coefficients of this decomposition in the transversal plane z=z0, AH referring to the 
forward plane wave and BH to the backward plane wave. Thus, we have 

 |B+(z=z0+pa)> = AH |P+> + BH |P->, (1) 

The ratio u=BH/AH between the backward- and forward-modal coefficients is an important 
parameter which describes the stationary character of the Bloch mode. Inside the photonic gap 
and at the band edges where vg=0, |u|=1. Outside the photonic gap, u is real for lossless 
materials and using the analytical expressions obtained in [14-15], it can be further shown that 

  0<u<1, (2a) 
 -1<u<0, (2b) 

for the valence and conduction bands, respectively. Similarly, the backward-propagating 
Bloch mode can be denoted by 

 |B-(z=z0+pa)> = A'H |P+> + B'H |P->, (3) 

Note that in general, there is no relation between |B-> and |B+>, except if the periodic stack is 
composed of lossless materials or if it possesses a mirror-symmetry with respect to a 
transverse plane [15]. In this case, B'H=AH and A'H=BH showing that the u-factor of |B-> is 
simply the inverse of that of |B+> for the bi-layer stack. 

After this few statements on Bloch modes, let us now go back to the scattering problem of 
Fig. 1(a). The total field in the uniform medium (z < 0) can be expressed as 
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|P+> exp(jknz) + r |P-> exp(-jknz), where r is the modal reflectivity coefficient. Similarly, the 
field in the periodic medium is simply t|B+>exp(jkneff z), in the absence of illumination from 
the right side. By satisfying the boundary condition at z = 0 (continuity of Ey and Hx), one 
obtains 

 r = [(n-nH)+u(n+nH)exp(jφ)] / [(n+nH)+u(n-nH)exp(jφ)], (4) 

where φ = knHfa is the phase delay associated to the propagation through the layers with a 
refractive index nH. The previous equation shows that the reflectance |r|2 and the injection 
efficiency, equal to T=1-|r|2 in the absence of loss, depend on Fresnel-type back-reflections 
through the ratio (n-nH)/(n+nH), on the phase delay and on the u-factor of |B+>. Note that for 
n=nH, r is simply given by r=u exp(jφ) and the high reflectance |r|2 close to the band-gap edges 
is purely due to the stationary character of |B+> (|u| ≈ 1). Using the 2x2 transfer-matrix 
formalism in Ref. [14], φ and u can be implicitly calculated as a function of the group-velocity 
vg of |B+>. The injection efficiency T=1-|r|2 (i.e. the coupling efficiency into |B+>), in the 
vicinity of the band-edges of the first valence and conduction bands, is shown in Fig. 1(b), for 
0.1<f<0.9. 

vg/c

CB

VB

z

n

Incident

Plane wave

fa

x

nH nH nHnL nL

(a)

(b)(b)

z=z0

(c)

fil
lfa

ct
or

n=1.5, nH=1.5, nL=1.4

n=1, nH=3.495, nL=1

 
Fig. 1. Impedance mismatch problem. (a): Scattering at an interface between a uniform medium 
(refractive index n) and a semi-infinite bi-layer periodic stack (refractive indices nH and nL). (b) 
and (c): Injection efficiency T as a function of the group-velocity of the periodic-stack Bloch 
mode for different fill factors (0.1<f<0.9). Colormaps and white curves are exact numerical 
results obtained with the 2x2 transfer-matrix method in [14], and the superimposed solid-red 
curves are obtained using the approximate closed-form expressions. (b): data obtained in the 
vicinity of the valence band edge of a weak-modulation (nH=1.5 and nL=1.4) stack for n=nH. 
(c): data obtained in the vicinity of the conduction band edge of a strong-modulation stack 
(nH=3.495 and nL=1) for n=nL. 
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2.2 Approximate closed-form expression for the injection efficiency 

In order to get a better insight into the group-velocity impedance mismatch illustrated in 
Fig. 1(b), it is important to have at one’s disposal simple expressions for the reflectance as a 
function the vg for the different optical (n, nH and nL) and geometrical (f) parameters of the 
problem. According to Eq. (5), one needs to express u=AH/BH and φ as a function of vg. For 
that purpose, we use the fact that vg is the velocity of the energy propagation, vg=aP/Em, with 
P the power flow and with Em=1/2 ∫Cellε(z)|E(z)|2dz, a quantity related to the mode volume of 
B+>. P is simply equal to |AH|2-|BH|2 and Em can be expressed as a function of AH and BH. We 
do not repeat the lengthy calculation here (a copy of a hand-written derivation could be 
provided on request), and we obtain for a bi-layer system 

 (vg/c) [α(1+u2)+2βu] = 2nH(1-u2), (5) 

with α=(1+f) 2
Hn +(1-f) 2

Ln  and β=(1-f) cos(φ) ( )2
L

2
H nn − . Equation (5) is exact and provides a 

general relationship between the free-space wavevector k (β depends on k through φ), the 
group velocity vg and the stationary ratio u. To express φ as a function of vg, one may expand 
it in a power series of vg/c, φ=φ(0)+Ο(vg/c), and by retaining only the first term φ(0), Eq. (5) can 
be solved for u(vg) 

 uVB = 1- ⎟
⎠

⎞
⎜
⎝

⎛ +α

H

VB
n2
β

vg/c + Ο(vg/c)2, and (6a) 

 uCB = -1+ ⎟
⎠

⎞
⎜
⎝

⎛ β−α

H

CB
n2

vg/c + Ο(vg/c)2, (6b) 

where βVB and βCB correspond to β(φ = φ(0)) at the valence and conduction band edges, 
respectively. For quarter-wave periodic stacks, f = (1+nH/nL)

-1, a closed-form expression for 

the phase delay φ(0) exists [14], φ(0) = π/2 ± asin ⎟
⎠

⎞
⎜
⎝

⎛
+

−

LH

LH
nn
nn

, the plus and minus signs holding 

for the conduction and valence bands. However for arbitrary f values, the calculation of φ(0) 
requires to solve for a transcendental equation, see Section 6.2 in Ref. [14]. To retrieve full 
analyticity, one may use the classical coupled-wave method [16], assuming that the Bloch 
modes of the periodic media is described by only two counter-propagative slowly-varying z-
functions that are coupled at the band edges by the first-Fourier coefficient of the relative-
permittivity modulation, ε1=(nH

2-nL
2) f sinc(πf). Within this approach that is all the more 

accurate as nH-nL is small, we have 

 φ(0) ≈ πfnH [1±ε1/(2ε0)]/ε0
1/2, (7) 

where ε0= f nH
2+(1-f) nL

2 is the DC-component of the Fourier coefficients of the relative 
permittivity, the plus and minus signs holding for the conduction and valence bands. By 
substituting Eqs. (7) and (6) into Eq. (4), one easily obtains a closed-form expression for the 
injection efficiency T=1-|r|2 as a function of the dielectric material properties nH, nL and n and 
of the fill factor f in the limit of small group velocities. As noted before, for n=nH, the 
expressions largely simplifies and one obtains 

 TVB  = ⎟
⎠

⎞
⎜
⎝

⎛ +α

H

VB
n
β

vg/c, TCB = ⎟
⎠

⎞
⎜
⎝

⎛ β−α

H

CB
n

vg/c. (8) 

The predictions of the coupled-wave model are shown by the superimposed solid-red 
curves in Figs. 1(b) and 1(c) for a low- and high-index contrasts, respectively. Despite the 
large refractive-index modulation used in Fig. 1(c), which is likely not to be accurately 
described by the two-first Fourier coefficients of the relative permittivity, the agreement with 
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the transfer-matrix results is quantitative. As we checked with computational results obtained 
by solving the transcendental equation for the phase delay φ(0) at the band edges, the deviation 
in Figs. 1(b) and 1(c) mainly results from the coupled-wave-method approximation used to 
derive Eq. (7).  

For small-index contrasts, β is much smaller than α, and the injection efficiencies in 

Eq. (8) are almost identical, TVB≈TCB. Additionally, since α≈ 2
Hn + 2

Ln , the injection efficiency 

weakly depends on f, as illustrated in Fig. 1(b). For large index contrasts, β cannot be 
neglected and for n≠nH, Eq. (4) instead of Eq. (8) has to be used. Both situations result in a 
dependence of the injection efficiency with the fill factor through the phase delay φ in Eq. (4) 
or directly through the coefficients α and β. This is illustrated in Fig. 1(c), which holds for 
nH/nL=3.495 and for n≠nH. 

Finally, note that the expressions in Eq. (8) largely differ from the usual ansatz [17-18], 
r=(vg1-vg2) / (vg1+vg2), where vg1 and vg2 are the group-velocities of the incident and 
transmitted waves. For vg2<<vg1, the ansatz, which leads to T=4vg2/vg1, completely ignores the 
difference of injection efficiencies at the two band edges, which is predicted by the transfer-
matrix computational results or by the approximate formula of Eq. (8). 

3. Slow-mode injectors 

The group-velocity impedance mismatch problem illustrated in Fig. 1 evidences the necessity 
of designing injectors for efficiently coupling light into slow modes. Indeed injectors are 
crucial for successful implementation or characterisation of systems relying on slow-mode 
field enhancements. In this Section, we show that, by engineering the interface between the 
uniform medium and the periodic stack, injectors with very-short length can be designed even 
for small group velocities. This result is established for 1D thin-film stacks and 2D periodic 
waveguides composed of slits in a slab waveguide. 

3.1 Perfect injection in 1D thin-film stacks 

We start with one-dimensional problems like in the previous section and we consider the 
geometry shown in Fig. 2(a), where a thin film stack (the injector to be further designed) is 
inserted between a uniform medium and a periodic stack supporting slow modes at the band 
edges. In Fig. 2(b), we sketch a situation corresponding to perfect injection. Under 
illumination from the uniform medium with an unit-amplitude incident normalized plane 
wave, no light is back reflected at plane S1 and all the incident power is coupled into the 
forward-propagating slow Bloch mode of the periodic stack. This slow Bloch mode 
|B+>exp(jkneff z) is defined at plane S2 by its forward and backward-modal coefficients, AH 
and BH, with |AH|≈|BH|>>1 in the slow-mode regime and with |AH|²–|BH|²=1 for the sake of 
normalization. Perfect injection is achieved if |t|=1, t being the complex amplitude injection 
coefficient. 

Although the following derivation can be straightforwardly obtained using time-reversal 
properties of lossless thin film stacks [15], we aim at a more general derivation hereafter, and 
we rather invoke reciprocity arguments that remain valid even for situations potentially 
encompassing out-of-plane scattering, as in periodic waveguides for instance. We additionally 
drop off any argument related to the existence of mirror-symmetry planes. Figure 2(c) depicts 
a reciprocal problem, where the backward-propagating Bloch mode |B->exp(-jkneff z) 
impinging from the periodic stack onto the injector transmits light into the backward-
propagating plane wave |P->exp(-jknz) at plane S1, with a complex transmission coefficient t. 
We denote by A’H and B’H its forward and backward-modal coefficients, and since the 
backward-propagating Bloch mode in (c) possesses the same group velocity as the forward-
propagating Bloch mode in (b), |A’H|≈|B’H|>>1 in the slow-mode regime. Indeed solving the 
synthesis problem of Fig. 2(b) is identical to solving that of Fig. 2(c). As shown now, solving 
the synthesis problem in (c) can be done in an intuitive way. 
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For perfect injection in (b) guaranties that |t|=1 in (c). Thus, no light is back reflected into 
the forward-propagating Bloch mode |B+> in (c) and all waves are shown in (c). Since 
|A’H|≈|B’H|>>1 with |B’H|>|A’H|, Fig. 2(c) evidences that the injector basically acts as a mirror 
for the plane waves, which reflects most of the light with a modal reflectivity coefficient 
rm=A’ H/B’H and which transmits light with a modal transmission |t/B’H|2=1-|rm|2. Thus, 
designing an injector to couple light into a slow mode amounts to synthesize a mirror. In fact, 
the smaller the group velocity, the larger the mirror reflectance is. Figure 2(d) shows the 
general solution of the synthesis problem. The injector is composed of a mirror with 
reflectance |A’H/B’ H|2 and eventually of a phase plate, the latter being used to guaranty that the 
argument of rm strictly matches the argument of the stationary-ratio (A’H/B’H) of the 
backward-propagating Bloch mode |B->. 

z
n nL

L

(a) S1 S2

nLnH

injector

(b) S1 S2

1 |P+>
BH

AH

(d)(c)

A’ H

B’H mirror

ph
as

e 
pl

at
e

S1 S2S1 S2

t |B+>

t |P- >
1 |B- >

 
Fig. 2. A slow-mode injector at a single frequency is basically a mirror. (a) Definition of the 
injector parameters : length L , interface S1 between the coupler and the uniform medium and 
interface S2 between the coupler and the periodic stack supporting a slow Bloch mode. (b) 
Perfect injector at a single frequency for a plane wave incident from the uniform medium. (c) 
Reciprocal problem. The incident illumination is the reciprocal Bloch mode propagating 
towards the negative z-direction. (d) General solution of the synthesis problem : the injector is 
composed of a mirror and of a phase plate. 

Thus, perfect injection into a slow Bloch mode at a single frequency ω/c=2π/λ is made 
possible with a mirror, and this for arbitrary small group velocities. For a mirror designed as a 
quarter-wave stack at the frequency ω, closed-form expressions for the modal reflection 
coefficient rm are available as a function of the number m of alternate layer pairs. For a mirror 
form with the same materials as the periodic stack, it is shown [19] that rm=(1-
(nL/nH)2m)/(1+(nL/nH)2m), which is approximately equal to 1-2(nL/nH)2m for large m. By equally 

the latter expression with the stationary-ratio defined by Eqs. (6a) or (6b), we obtain that 

(nL/nH)2m= ⎟
⎠

⎞
⎜
⎝

⎛ β−α

Hn4
vg/c, where β holds for βVB or βCB. Therefore, the injector length L scales as 

the logarithm of c/vg and we have 

 L=gλ log(c/vg), (9) 

with g a constant parameter that depends on n, nL, nH and f. The length in Eq. (9) largely 
contrasts with those obtained with an adiabatic approach. To check this, we have solved the 
scattering problem shown in Fig. 2(a) with the 2x2 transfer-matrix formalism [14], for a bi-
layer periodic stack with nH=3.495, nL=1 and f=0.5. The injectors are simply quarter-wave 
Bragg mirrors composed of alternated layers with the same refractive indices nH and nL, and 
designed at a Bragg wavelength corresponding to the band edge of the periodic stack. Figure 3 
shows the transmission T into the slow Bloch mode of the periodic stack, as a function of the 
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frequency of the incident plane wave (actually vg on the horizontal axis). The different curves 
are obtained for different m values, ranging from m=1 to m=5. They have been calculated in 
the vicinity of the first valence band, but almost identical curves have been obtained for the 
conduction band. As expected, perfect injection (T=1) is achieved in all cases. Additionally 
we note that the group velocities corresponding to T=1 scale linearly with m (in log scale), as 
predicted by Eq. (9). The horizontal arrows delimitate the 1dB (T=0.8) bandwidth of the 
injector in GHz. Indeed the bandwidth vanishes as (vg)

2, and for very small group velocities of 
≈10-4, it is actually very small, ≈10-2 GHz. Therefore, injectors designed as pure mirrors 
cannot be used for full-optical signal processing applications, but they may find applications 
for single frequency applications and may be incorporated into new architectures in DBR and 
DFB lasers for instance. 
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Fig. 3. Coupling efficiency into the slow-mode of a periodic stack (nH, nL) as a function of the 
group velocity (log scale) of the slow mode. Different injectors are considered. They are all 
composed of Bragg mirrors (nH, nL) with an increasing number of repeated pairs, m=1, …5. 
The results are obtained in the vicinity of the valence band edge of the periodic stack. The 
horizontal arrows indicate the bandwidths in GHz of the different injectors for T=0.8 (-1dB). 

3.2 Broadband injection in 2D periodic waveguides 

So far, we have only considered thin-film-stack geometries and injectors operating at a single 
frequency. In planar integrated systems, the out-of-plane scattering into the claddings is an 
important point of concern that cannot be inferred from 1D calculations. The transverse mode-
profile mismatch between the mirror evanescent Bloch mode, the guided mode of the z-
invariant waveguide and the slow Bloch mode of the periodic waveguide, is expected to lower 
the mirror reflectance [20]. Thus according to the previous analysis, this loss should prevent 
injection at small group velocities, since the latter requires very high reflectance. However, 
we believe that mirrors that incorporate tapers on both extremities [21] may allow reducing 
the mismatch and in turns may be used for efficient injection even at very small group 
velocities. We believe that by combining the mirror-design procedure in Refs. [20-21] and the 
1D analysis of Section 3.1, tapered mirrors with very high injection efficiencies can be 
designed for a single frequency, even for small group velocities. This will be illustrated by the 
results discussed below. Another more specific problem in the present context is the design of 
injectors that achieve a bandwidth broad enough to support high data-rate telecommunication 
signals, while maintaining the losses at a small level. For that important problem, the 1D 
analysis of Section 3.1 performed at a single frequency does not help much, and this is the 
reason why we will rely on numerical optimisation techniques in the following example. 

In order to study the feasibility of such injectors with relatively broadband and lossless 
couplings, we consider a semi-infinite periodic waveguide composed of a silicon (refractive 
index 3.5) 260-nm thick core with air claddings. Above λ = 1.5 µm, the waveguide supports a 
single TE guided mode. The periodic waveguide has a period a=350 nm and is composed of 
185-nm large lamellar grooves etched down to the SiO2 substrate. Because of the low 
cladding refractive indices, the periodic waveguide supports a single truly-guided slow-mode 
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in the vicinity of the band edge (k≈π/a) of the first valence and conduction bands. For 
broadband and lossless couplings, we have optimised injectors consisting of five slits and five 
ridges fully etched trough the waveguide core, the free parameters being the lengths of the 
ridges and grooves. An example of an optimised structure is shown in Fig. 4(a). For the 
optimisation we use the simplex search Nelder-Mead method. This direct method that does 
not use numerical or analytic gradients relies on an iterative simplex-minimization approach 
that progressively reduces the explored volume in the parameter hyper-space [22]. The 
function value used for the optimisation is the weighted sum of the injector efficiency 
calculated for five different wavelengths in the close vicinity of a central wavelength 
corresponding to a targeted small group velocity of the periodic waveguide. In addition, we 
have imposed a firm lower bound on the injection efficiency, T>99% for the central 
wavelength. 

guided
mode

semi-infinite periodic waveguide      injector
(a)

(b)
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Fig. 4. Broadband injection from a planar waveguide to a periodic waveguide near the valence-
band edge (λ=1.65 µm). (a) Injector geometry optimized for coupling at vg/c≈0.01. From left to 
right, the injector slit- and ridge-widths are 84, 143,127, 158, 174 nm and 239, 213, 173, 166, 
166 nm, respectively. The superimposed red curve represents the squared modulus of the 
transverse electric field at optimal coupling. (b) Performance of the injector predicted by fully 
vectorial computational results for the radiation loss L (dashed curve), the modal reflection R 
(blue circles) and the transmission T (actually 1-T is shown with a solid black curve). All 
quantities are displayed in a log scale. Inset: Injection efficiency T as a function of vg with (red) 
and without (blue) injector. The maximum injection efficiency is as large as 0.999. In the 
absence of injector, this efficiency is only 0.25%. 

Because of the strong corrugations, one needs to solve the Maxwell's equations with fully-
vectorial theory for the optimisation. We have used an aperiodic Fourier Modal Method, 
based on an artificial periodization in the transverse direction with perfectly-matched layers at 
the boundary of the supercell [13]. Modal techniques are particularly efficient for performing 
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such optimisations because the integration along the z-direction is analytical. Once the 
eigenmodes of the two-layer system (waveguide and groove) are calculated for the five 
wavelengths, the optimisation just consists in searching the injector geometry by recursively 
computing the scattering matrices associated to various ridge and groove lengths. For the 2D 
injector-design problem (invariant along the slit y-axis) investigated in this work, very high 
accuracy (relative error below 0.1%) is achieved for the transmission, see details in Ref. [13]. 

As initial guesses for the optimisation, we have considered various Bragg mirrors with 
different groove and ridge lengths and different target group velocities. The optimisation has 
revealed that many different injector geometries can be used to inject light efficiently and that 
the most difficult criteria to fulfil is the broadband injection. Although the parameter hyper-
space is likely not to be fully explored by the optimisation procedure, we believe that the set 
of solutions we obtained by repeating the optimisation with various initial guesses is likely to 
provide a good picture of the possible geometries that lead to efficient injection. Figure 4(a) 
shows a typical example of such a solution. This geometry has been obtained for a target 
group velocity of 0.01c in the first valence band. The superimposed red curve represents |E|2 
as a function of the z-coordinate. The field intensity in the periodic waveguide is roughly 40 
times larger than that in the z-invariant waveguide. The optimised injector parameters are 
given in the figure caption. We note that the five slit widths progressively increase, while the 
five ridge widths progressively decrease along the injector. This progressive variation is well 
traditional for tapered mirrors engineered for ultrahigh Q microcavities, and is understood as a 
progressive tranverse-mode-profile matching of the various Bloch modes involved in the 
tapered geometry [21]. This guaranties small scattering losses, and therefore a high injection 
efficiency in the present context. 

Figure 4(b) shows the injector performance as a function of the frequency of the incident 
guided mode, or equivalently as a function of the group velocity of the periodic-waveguide 
Bloch mode. The maximal injection efficiency T (solid black curve) is obtained for vg=0.015 
(λ≈1.65 µm) and is ≈99.9%. As the wavelength deviates from this value, the performance 
degrades. Actually, it is limited by the back-reflection R (blue circles) that rapidly increases, 
while the radiation losses L=1-T-R (magenta dashed curve) remain below 10-3 over almost the 
entire spectral range. The 1dB (T>0.8) bandwidth is determined to be 275Ghz, a value 
approximately 10 times larger than that achieved with purely periodic injectors in Fig. 3. The 
broader bandwidth is a net effect of the large number of degrees of freedom that we have 
intentionally used for the 2D injector. The latter consists in 5 pairs of ridges-slits, while only 
m=2 layer pairs were used for the 1D injector in Fig. 3. 

Similar performances have been obtained for smaller group velocities but with smaller 
bandwidths. For instance, for vg=0.002c, similar computations have shown that efficient 
injectors with a maximum injection efficiency of 99.4% can be designed with a 20 times 
smaller bandwidth. We believe that group velocities in the range of 0.01 that corresponds to a 
slow down factor of ≈40 may represent an interesting regime for on-chip optical processing 
with ≈250 GHz bandwidths. Smaller group velocities are likely to offer prohibitively small 
bandwidths and their associated propagation loss due to various disorders induced by 
fabrication inaccuracies may additionally be a critical issue [23-25]. 

4. Conclusion 

In periodic media, Bloch modes with small group velocities are interference patterns and in 
their simplest form are created by the superposition of a forward- and a backward-propagating 
mode that together form a standing or a slowly-moving mode pattern. When illuminated from 
a z-invariant medium, light is only weakly coupled into the slow Bloch mode. For bi-layer 
periodic structures, we have derived closed-form expressions for the coupling efficiencies in 
the vicinity of the valence and conduction bands. The expressions evidence that the 
impedance mismatch essentially arises from the standing-wave character of the slow Bloch 
mode and that the injection efficiency is proportional to the group velocity of the Bloch mode, 
the proportionality factor being weakly dependant on the actual geometric parameters. 
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To overpass the impedance-mismatch problem, we have explored a new route for injecting 
light efficiently into slow Bloch modes. In contrast to previous works using adiabatic tapers 
that implement a progressive light slowdown through a continuous change of the waveguide 
geometry, the present injectors rely on interference effects, in a way analogue to the classical 
multi-film-stack approach used for AR-coating [26] or impedance matching with quarter-
wave transformers in the transmission line theory [27]. The net benefit is compactness. For 
instance, we have shown that very short couplers whose length are scaling as log(c/vg), may 
provide perfect injection (100% coupling efficiency) at a single frequency for arbitrary-small 
group velocities. For 2D geometries like periodic slab waveguides, we have shown that 
radiation losses into the cladding are not a critical issue. We rather found that high injection 
efficiency together with a broadband injection is indeed difficult to manage both together, 
especially in the slow light regime for vg<c/100. There is a compromise. These conclusions 
have been reached for Bloch modes in thin-film stacks and in periodic slab waveguides, but 
are expected to remain quantitatively valid for other kinds of periodic ridge waveguides. 
Photonic crystal waveguides, like single-row-defect waveguides, deserves a specific study 
because the physical nature of the light confinement is different especially in the slow light 
regime. We expect that this prospective study will be helpful for further investigations in the 
field. 
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