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We study the competition between one-body and two-body couplings in weakly-interacting two-
component Bose gases, in particular as regards field correlations. We derive the meanfield theory
for both ground state and low-energy pair excitations in the general case where both one-body and
two-body couplings are position-dependent and the fluid is subjected to a state-dependent trapping
potential. General formulas for phase and density correlations are also derived. Focusing on the
case of homogeneous systems, we discuss the pair-excitation spectrum and the corresponding exci-
tation modes, and use them to calculate correlation functions, including both quantum and thermal
fluctuation terms. We show that the relative phase of the two components is imposed by that of
the one-body coupling, while its fluctuations are determined by the modulus of the one-body cou-
pling and by the two-body coupling. One-body coupling and repulsive two-body coupling cooperate
to suppress relative-phase fluctuations, while attractive two-body coupling tends to enhance them.
Further applications of the formalism presented here and extensions of our work are also discussed.

PACS numbers: 03.75.Mn, 03.75.Hh, 03.75.Lm

I. INTRODUCTION

Multi-component (spinor) quantum fluids underlie a
variety of physical systems, such as 3He-4He mixtures
in three-fluid models [1], Bose-condensed spin-polarized
Hydrogen gases in the two lowest-energy states [2–
4], optically-excited excitons in high-quality Cu20 crys-
tals [5, 6], as well as gaseous Bose-Einstein condensates
either in two overlaped atomic hyperfine states [7–9] or in
adjacent traps coupled by tunnel effect [10]. The dynam-
ics of spinors sparks a variety of physical effects, including
quantum phase transitions, topological defects, and spin
domains, governed by the complex interplay of particle-
particle interactions, exchange coupling, magnetic-like
ordering, and temperature effects. Early studies focused
on the possibility of observing Bose-Einstein conden-
sation [11], as well as stability conditions [1, 12, 13],
phase separation [8, 14–20], and spontaneous symme-
try breaking mechanisms [21–24] in two-component Bose-
Einstein condensates. Two-component Bose gases have
also been used to study phase coherence [25], Josephson
like physics [26–30], the dynamics of spin textures [31–
34], random-field-induced order effects [35, 36], and twin
quantum states for quantum information processing [37–
39].

In the context of ultracold gases the combination of
optical and magnetic fields designed to manipulate the
internal states of alkali atoms offer a wide range of possi-
bilities to accurately engineer multi-component quantum
fluids. Such systems offer a new tool to study quantum
coherence in various contexts [9, 25, 27, 30]. For instance,
measurement of the relative-phase correlation function of
a coupled binary Bose gas in one dimension was reported
in Ref. [30]. In the later case, the coupling was of the
Josephson (one-body) type.

In this paper, we consider a two-component Bose gas
with both one-body (field-field) and two-body (density-

density) couplings, and focus our analysis on the pair-
excitation spectrum and the relative phase correlation
function at both zero and finite temperature. The most
general case can be realized in ultracold-atom gases by
using a mixture of atoms in two different internal hyper-
fine states (noted 1 and 2) of the same atomic species.
The two-body interaction with coupling constant g12 re-
sults from short-range particle-particle interactions be-
tween atoms in different internal states, while the one-
body interaction can be implemented by two-photon Ra-
man optical coupling, which transfers atoms from one in-
ternal state to the other (see schematic view on Fig. 1).
In Sec. II, we present the model and derive the mean-
field theory of the coupled two-component Bose fluid
for both ground state and low-energy pair excitations.

FIG. 1. Coupled two-component Bose gas. The gas is made
of bosonic particles of a single atomic species, which can be in
two different internal states (labeled 1 and 2). It is described

by the two field operators ψ̂1(r) and ψ̂2(r), corresponding
to each component. In this work, we assume that the two
components are coupled by one-body and/or two-body inter-
actions of coupling constants Ω and g12, respectively. In the
most general case, the two coupling constants can be position
dependent.
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The theory is formulated in the most general case, where
both one-body and two-body couplings are position de-
pendent and the fluid is subjected to a state-dependent
trapping potential. In addition, we use the phase-density
Bogoliubov-Popov approach, which allows us to treat
true condensates and quasi-condensates on equal foot-
ing [40, 41]. General formulas for phase and density cor-
relations are derived. In Sec. III, we focus on the case of
homogeneous systems, which allow considerable simpli-
fication of the formalism and contain most of the phys-
ical effects. After rewriting the general meanfield equa-
tions for homogeneous systems (III A), we discuss the
pair-excitation spectrum and the corresponding fields,
and use them to calculate the correlation functions in-
cluding both quantum and thermal fluctuation terms.
We distinguish three cases: (i) two-body coupling alone
(Sec. III B), (ii) one-body coupling alone (Sec. III C), and
(iii) both one-body and two-body couplings (Sec. III D).
The analysis of these cases leads to the following con-
clusions: The phase of the one-body coupling term im-
poses alone the relative phase of the two components at
the meanfield background level. Then, the fluctuations
of the relative phase are determined by the interplay of
the modulus of the one-body term and by the two-body
term. On the one hand, the one-body coupling always
favors local mutual coherence of the two components but
the correlation length decreases when the modulus of the
one-body term increases. On the other hand, repulsive
two-body coupling cooperates with one-body coupling to
further suppress relative-phase fluctuations, while attrac-
tive two-body coupling competes with one-body coupling
to enhance relative-phase fluctuations. These results are
summarized in more detail in Sec. IV, where we also dis-
cuss further possible applications of the formalism pre-
sented here.

II. MEAN-FIELD THEORY OF A
TWO-COMPONENT BOSE GAS

Consider a two-component Bose-Bose mixture at ther-
modynamic equilibrium at temperature T , and in the
weakly interacting regime. We assume that the two com-
ponents (labelled by σ ∈ {1, 2}) interact with each other
and can exchange atoms to maintain chemical equilib-
rium. The average total number of atoms, N = N1+N2,
is conserved but the average number of atoms in each
component, Nσ, is not. The physics of this system is
governed by the grand-canonical Hamiltonian

Ĥ ≡ Ĥ − µN̂ = Ĥ1 + Ĥ2 + Ĥ12 , (1)

where Ĥ is the many-body Hamiltonian and N̂ = N̂1+N̂2

is the total number operator, with N̂σ =
∫

dr ψ̂†
σ(r)ψ̂σ(r)

and ψ̂σ(r) the (bosonic) field operator of component σ.
Assuming two-body contact interactions, the Hamilto-
nian associated the the sole component σ (written in the
grand-canonical form for the chemical potential µ of the

mixture) is

Ĥσ =

∫

dr ψ̂†
σ

[

−~
2∇2

2m
+ Vσ − µ+

gσ(r)

2
ψ̂†
σψ̂σ

]

ψ̂σ

(2)
and the coupling Hamiltonian is

Ĥ12 =

∫

dr

[

g12(r)ψ̂
†
1ψ̂

†
2ψ̂1ψ̂2 +

(

~Ω(r)

2
ψ̂†
2ψ̂1 +H.c.

)]

.

(3)

The single-component Hamiltonian Ĥσ contains (i) a ki-
netic term (m is the atomic mass), (ii) a potential term,
Vσ(r), both associated with single-particle dynamics, and
(iii) an intra-component interaction term of coupling pa-

rameter gσ. The coupling Hamiltonian, Ĥ12, contains
(i) a term originating from elastic contact interaction
between two atoms in different components character-
ized by the inter-component coupling constant g12, and
(ii) an exchange term proportional to Ω, which trans-
fers atoms from one component to the other and in
particular permits chemical equilibrium. In ultracold-
atom systems, the exchange one-body term can be re-
alized by two-photon Raman or radio-frequency cou-
pling [7] or by Josephson coupling between two adjacent
traps [26, 30, 42–44], whereas the two-body coupling can
be controlled by Feshbach resonance techniques [45]. In
the most general case, all coupling terms g1, g2, g12,
and Ω can be position-dependent. Hereafter, we write
Ω(r) ≡ Ω0(r)e

−iα(r), with Ω0 = |Ω| and α(r) the phase
of the exchange coupling, for convenience.
In the following, we first reformulate the above Hamil-

tonians into the phase-density formalism, which is more
appropriate for our study. We then apply the Gross-
Pitaevskii approach, which describes the meanfield quasi-
condensate background of the two-component Bose-Bose
mixture, and develop the Bogoliubov-de Gennes theory
for the mixture, which provides the spectrum of col-
lective excitations and can be used to describe finite-
temperature effects. We finally write down the general
expressions for the density and phase correlation func-
tions, which will be calculated in the next sections. Al-
though the process we follow is standard, we generalize
previous work to the case where their couplings can be
position-dependent. We thus detail the derivation of the
main equations.

A. Phase-density formalism

The complete grand-canonical Hamiltonian Ĥ is in-

variant under the gauge transformation {ψ̂1(r), ψ̂2(r)} →
eiθ0{ψ̂1(r), ψ̂2(r)} for any value of θ0 ∈ R, as can be easily
checked in Eqs. (2) and (3). More precisely, if Ω(r) ≡ 0,
the phases of the two components are independent and
Ĥ is invariant under the more general transformation

{ψ̂1(r), ψ̂2(r)} → {eiθ10 ψ̂1(r), e
iθ20 ψ̂2(r)} for any values of

θ10, θ
2
0 ∈ R. If however Ω(r) 6≡ 0, the phases of the two

components are coupled via the last term in Eq. (3) and
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the relative phase is a determined quantity. In both cases,

the phases of the field operators ψ̂σ(r) are not fully de-
termined and it is useful to turn to the phase-density
formalism. We write the field operator for each compo-
nent in the form

ψ̂σ(r) = eiθ̂σ(r)
√

n̂σ(r), (4)

where the density (n̂σ) and phase (θ̂σ) operators satisfy

the Bose commutation rule [n̂σ(r), θ̂σ′ (r′)] = iδσσ′δ(r −
r
′). Replacing ψ̂σ by expression (4) into Eqs. (2) and (3),
we find

Ĥσ =

∫

dr
√
n̂σ

[−~
2

2m

(

∇2−|∇θ̂σ|2
)

+Vσ−µ+
gσ
2
n̂σ

]√
n̂σ

(5)
and

Ĥ12 =

∫

dr
[

g12n̂1n̂2+

{

~Ω

2

√

n̂2e
i(θ̂1−θ̂2)

√

n̂1 +H.c.

}

]

.

(6)
Expressions (5) and (6) determine the complete Hamil-
tonian (1) in terms of density and phase operators [81].
This form is particularly suitable for perturbative expan-
sion in the condensate or quasi-condensate regime, where
the density fluctuations are suppressed by strong-enough
repulsive interactions but the phase fluctuations can be
large [40, 41, 47–49].

B. Meanfield background: Gross-Pitaevskii theory

The zeroth-order term in quantum and thermal fluc-
tuations corresponds to the meanfield background. The
latter is determined using the Gross-Pitaevskii ap-
proach [50, 51], adapted to the two-component mix-
ture. It amounts to minimize the grand-canonical energy
functional EMF ≡ 〈ψMF|Ĥ|ψMF〉 with the two-component
Hartree-Fock ansatz

|ψMF〉 =
(â†1)

N1

√
N1!

(â†2)
N2

√
N2!

|vac〉 , (7)

where â†σ creates an atom in component σ with a spa-

tial wave function ψσ(r) ≡ eiθσ(r)
√

nσ(r). At this stage,
the number of atoms in each component, Nσ, and the
corresponding phase [θσ(r)] and density [nσ(r)] fields are
unknown variational quantities. Here, we use the nor-
malization condition

∫

dr nσ(r) = Nσ and we recall that
the chemical potential µ is determined implicitly by the
relation

∫

dr [n1(r) + n2(r)] = N .
Proceeding in the standard way, we evaluate the

complete grand-canonical Hamiltonian (1) within the
Hartree-Fock ansatz (7) and find

EMF = 〈Ĥ1〉MF + 〈Ĥ2〉MF + 〈Ĥ12〉MF (8)

where 〈Ĥσ〉MF and 〈Ĥ12〉MF are given by Eqs. (5) and

(6) with the phase θ̂σ(r) and density n̂σ(r) operators

replaced by the corresponding Hartree-Fock fields θσ(r)
and nσ(r). Then, minimizing EMF with respect to θσ(r)
and nσ(r) yields the following coupled Euler-Lagrange
equations:

0 = − ~
2

2m

(∇2√nσ√
nσ

− |∇θσ|2
)

+ Vσ − µ+ gσnσ + g12nσ̄

+
~Ω0

2

√

nσ̄
nσ

cos(θ − α) (9)

0 =
~
2

m
∇(nσ∇θσ)± ~Ω0

√
n1n2 sin(θ − α) , (10)

where θ(r) ≡ θ1(r) − θ2(r) is the relative phase between
the two components, σ̄ is the conjugate of σ [i.e. σ̄ = 2
(resp. 1) for σ = 1 (resp. 2)], and the ± sign in Eq. (10)
is + (resp. −) for σ = 1 (resp. 2).

C. Excitations: Bogoliubov-de Gennes theory

The low-energy spectrum of the collective excitations
of the two-component Bose gas is then determined us-
ing the Bogoliubov-de Gennes approach [40, 41, 52–54],
which amounts to perform a perturbative expansion of
Hamiltonian (1) in phase and density fluctuations. We

write n̂σ = nσ + δn̂σ and θ̂σ = θσ + δθ̂σ, with nσ(r)
and θσ(r) given by the mean-field Gross-Pitaevskii the-
ory, and

|δn̂σ| ≪ nσ and |∇δθ̂σ| ≪ mc/~ (11)

where c =
√

µ/m is the velocity of sound in a single-
component Bose-Einstein (quasi-)condensate of chemical
potential µ. These conditions are usually well verified
in weakly-interacting ultracold, two-component gases [7–
9, 55].

1. Weak-fluctuation expansion of the Hamiltonian

Proceeding up to second order in phase and den-
sity fluctuations, it is convenient to define the position-
dependent operators

X̂σ(r) ≡
δn̂σ(r)

2
√

nσ(r)
(12)

and

P̂σ(r) ≡
√

nσ(r)δθ̂σ(r) , (13)

which are canonical conjugates (up to a multiplying fac-

tor of 1/2), i.e.
[

X̂σ(r), P̂σ′ (r′)
]

= iδσ,σ′δ (r− r
′) /2.

Then, inserting
√
n̂σ ≃ √

nσ + X̂σ − X̂2
σ/2

√
nσ and

θ̂σ = θσ + P̂ /
√
nσ into Eqs. (5) and (6), we find

Ĥ ≃ EMF + Ĥ
(2)
1 + Ĥ

(2)
2 + Ĥ

(2)
12 . (14)
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The zeroth-order term, EMF, coincides with the mean-
field energy (8) where the fields nσ and θσ are sub-
stituted to the solutions of the coupled Euler-Lagrange
equations (9) and (10). The first-order term, Ĥ(1) =
∑

σ

{

δn̂σ · ∂Ĥ
∂n̂σ

∣

∣

∣

ψMF

+ δθ̂σ · ∂Ĥ

∂θ̂σ

∣

∣

∣

ψMF

}

, vanishes since the

zeroth-order term minimizes 〈ψMF|Ĥ |ψMF〉 = EMF. The

second-order terms, Ĥ
(2)
1 , Ĥ

(2)
2 and Ĥ

(2)
12 , are found after

some straightforward algebra, which yields

Ĥ(2)
σ =

∫

dr X̂σ

[

− ~
2

2m

(

∇2 − ∇2√nσ√
nσ

)

+ 2gσnσ

]

X̂σ

+

∫

dr P̂σ

[

− ~
2

2m

(

∇2 − ∇2√nσ√
nσ

)]

P̂σ (15)

+

∫

dr
2~2

m
∇θσ ·

(√
nσX̂σ

)

∇
(

P̂σ/
√
nσ

)

,

where some irrelevant constant terms have been dropped,
and

Ĥ
(2)
12 = −

∑

σ

∫

dr
~Ω0

2

√

nσ̄
nσ

cos(θ − α)
[

X̂2
σ + P̂ 2

σ

]

+

∫

dr
[

4g12
√
n1n2 + ~Ω0 cos(θ − α)

]

X̂1X̂2

+

∫

dr ~Ω0 cos(θ − α)P̂1P̂2 (16)

+

∫

dr ~Ω0 sin(θ − α)
[

X̂1P̂2 − X̂2P̂1

]

−
∫

dr ~Ω0 sin(θ − α)

[√
n2√
n1
X̂1P̂1 −

√
n1√
n2
X̂2P̂2

]

.

We now apply the canonical transformation [82] to our
quadratic Hamiltonian [83]

B̂σ ≡ X̂σ + iP̂σ , (17)

such that the operators B̂σ satisfy the Bose commutation
rules

[B̂σ(r), B̂σ′ (r′)] = 0 (18)

[B̂σ(r), B̂
†
σ′ (r

′)] = δσσ′δ(r− r
′) . (19)

Then, summing all contributions of Eq. (15) for σ = 1
and σ = 2 and those of Eq. (16), we find

Ĥ(2) =
1

2

∑

σ

∫

dr
[

B̂†
σAσB̂σ + B̂σA

∗
σB̂

†
σ

+
{

gσnσB̂σB̂σ +H.c.
}]

(20)

+

∫

dr
[

g12
√
n1n2B̂1B̂2 +H.c.

]

+

∫

dr

[{

g12
√
n1n2 +

~Ω

2
eiθ

}

B̂†
2B̂1 +H.c.

]

where we have used the coupled Euler-Lagrange equa-
tion (9) to simplify a couple a terms, and have introduced

the super-operator

Aσ = − ~
2

2m

(

∇2 + 2i∇θσ · ∇ − |∇θσ|2
)

+ Vσ − µ

+2gσnσ + g12nσ̄ . (21)

Finally, the Hamiltonian (20) can be written in a more
compact form by introducing the four-component opera-
tors

B̄ ≡
[

B̂†
1,−B̂1, B̂

†
2,−B̂2

]

and B ≡









B̂1

B̂†
1

B̂2

B̂†
2









(22)

so that

Ĥ(2) =
1

2

∫

dr B̄(r)M(r)B(r) + const (23)

where M(r) is the 4× 4 super-operator defined by

M ≡
[

LGP

1 Γ
Γ∗ LGP

2

]

(24)

with

LGP

σ =

[

+Aσ +gσnσ
−gσnσ −A

∗
σ

]

(25)

and

Γ =

[

+g12
√
n1n2 +

~Ω∗

2 e−iθ +g12
√
n1n2

−g12
√
n1n2 −g12

√
n1n2 − ~Ω

2 e
+iθ

]

.

(26)

2. Bogoliubov transformation

The second-order term (23) in the expansion of the
many-body Hamiltonian (1) governs the low-energy ex-
citations of the two-component Bose gas. Its quadratic
form is convenient for diagonization via the usual Bo-
goliubov method [40, 41, 52, 53], adapted to the two-
component Bose gas. Here, we extend previous ap-
proaches [12, 26] to the most general case where the
coupling terms can be position-dependent. Inserting the
modal expansion

B(r) =
∑

ν













u1ν(r)
v1ν(r)
u2ν(r)
v2ν(r)






b̂ν +







v∗1ν(r)
u∗1ν(r)
v∗2ν(r)
u∗2ν(r)






b̂†ν






, (27)

with b̂ν the annihilation operator of an elementary ex-
citation of the coupled two-component Bose gas, into
Eq. (23), we find

Ĥ(2) =
1

2

∑

ν

Eν

(

b̂†ν b̂ν + b̂ν b̂
†
ν

)

, (28)
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provided that the wave functions fulfill the so-called cou-
pled Bogoliubov equations:

[

LGP

1 Γ
Γ∗ LGP

2

]







u1ν
v1ν
u2ν
v2ν






= Eν







u1ν
v1ν
u2ν
v2ν






(29)

and the bi-orthogonality conditions

∑

σ

∫

dr
[

uσν(r)u
∗
σν′(r) − vσν(r)v

∗
σν′ (r)

]

= δνν′ (30)

∑

σ

∫

dr
[

uσν(r)vσν′ (r)− vσν(r)uσν′(r)
]

= 0 . (31)

These modes (indexed by ν), being of bosonic nature,

satisfy the Bose commutation rules [b̂σν , b̂
†
σ′ν′ ] = δσσ′δνν′

and [b̂σν , b̂σ′ν′ ] = 0.

3. Orthogonal field operator

The extended Bogoliubov approach finally requires the
orthogonalization of the field operator B̂σ with respect to
the (quasi-)condensate wave function ψσ(r) ≡ eiθσ

√
nσ

(see Refs. [48, 58]). It amounts to apply the substitution

B̂σ(r) → Λ̂σ(r) with

Λ̂σ(r) ≡ B̂σ(r) −
ψσ(r)

Nσ

∫

dr′ B̂σ(r
′)ψ∗

σ(r
′) . (32)

We then have

Λ̂σ(r) =
∑

ν

[

u⊥σν(r)b̂ν + v⊥∗
σν (r)b̂

†
ν

]

(33)

with

u⊥σν ≡ uσν −
ψσ(r)

Nσ

∫

dr′ uσν(r
′)ψ∗

σ(r
′) (34)

v⊥σν ≡ vσν −
ψ∗
σ(r)

Nσ

∫

dr′ vσν(r
′)ψσ(r

′) . (35)

According to Eqs. (18) and (19), the orthogonal field op-

erators Λ̂σ satisfy the modified commutation rules

[Λ̂σ(r), Λ̂σ′ (r′)] = 0 (36)

[Λ̂σ(r), Λ̂
†
σ′ (r

′)] = δσσ′

[

δ(r−r
′)− ψσ(r)ψ

∗
σ(r

′)

Nσ

]

.(37)

The solutions of the non-Hermitian eigenvalue prob-
lem (29), together with the bi-orthogonality condi-
tions (30)-(31) and the orthogonalization process (34)-
(35), determine the excitation spectrum of the two-
component Bose gas in the weakly-interacting regime.
A mode ν describes a coupled two-component elemen-
tary excitation (Bogoliubov quasiparticle) of the mix-
ture. The energy and wave functions of these excitations
are Eν and {u⊥1ν(r), v⊥1ν (r), u⊥2ν(r), v⊥2ν(r)}, respectively.
They can be determined numerically, or analytically in
certain cases. All physical observables can then be con-
structed by expansion on the corresponding basis.

D. Correlation functions

We now consider the correlation properties of observ-
able quantities, namely the phases and the densities of
the two-component Bose gas. These quantities can be
measured independently for each component in experi-
ments with ultracold atoms, using a gaseous mixture of
a single bosonic atom prepared in two different inter-
nal states [7–9, 55] and internal-state dependent imaging
techniques [59]. The density profiles, fluctuations and
correlation functions of each component are then found
directly from the images [60, 61]. The phase fluctuations
and correlation functions of each component are found
by time-of-flight [62, 63] or Bragg spectroscopy [64–66]
techniques. The total and relative density profiles are
then obtained by addition or subtraction of those of each
component, which also provides their fluctuations and
correlation functions. Finally, the correlation function
of the relative phase, θ = θ1 − θ2 can be found using
matter-wave interference techniques [9, 30].
For each component σ, the phase correlation function

is

Gσθ (r, r
′) ≡ 〈θ̂σ(r)θ̂σ(r′)〉 − 〈θ̂σ(r)〉〈θ̂σ(r′)〉

= −〈: (Λ̂σ − Λ̂†
σ)(Λ̂

′
σ − Λ̂†′

σ ) :〉
4
√

nσ n′
σ

, (38)

where the nude (resp. primed) quantities are evaluated
at point r (resp. r′). The operator : : represents nor-
mal ordering with respect to the orthogonal field opera-
tors Λ̂ and Λ̂†, which is used to avoid unphysical diver-
gences [48]. Similarly, the density correlation function
is

Gσn(r, r
′) ≡ 〈nσ(r)nσ(r′)〉 − 〈nσ(r)〉〈nσ(r′)〉

=
√

nσ n′
σ 〈: (Λ̂σ + Λ̂†

σ)(Λ̂
′
σ + Λ̂†′

σ ) :〉 . (39)
Using the expansion of the orthogonal field operator into
the basis of orthogonal Bogoliubov modes, Eq. (33), and
the usual auxiliary wave functions [84]

fp
σν(r) = u⊥σν(r)− v⊥σν(r) , (40)

fm
σν(r) = u⊥σν(r) + v⊥σν(r) , (41)

we then get the following explicit expressions after some
algebraic calculations:

Gσθ (r, r
′) =

1

2
√

nσn′
σ

∑

ν

Re
[

fp
σνf

p′∗
σν Nν−fp

σνv
⊥′∗
σν

]

(42)

and

Gσn(r, r
′) = 2

√

nσn′
σ

∑

ν

Re
[

fm
σνf

m′∗
σν Nν + fm

σνv
⊥′∗
σν

]

,

(43)
where

Nν =
1

exp(Eν/kBT )− 1
(44)
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is the thermal population of mode ν, according to the
Bose-Einstein statistical distribution. Note that ex-
pressions (42) and (43) are symmetric in (r, r′). This
can be checked by noting that the commutation rule
[Λ̂σ(r), Λ̂σ(r

′)] = 0 [see Eq. (36)] implies the relation
∑

ν u
⊥
σν(r)v

⊥∗
σν (r

′) =
∑

ν u
⊥
σν(r

′)v⊥∗
σν (r).

The two-point correlation function of the relative phase
is defined by the same formula as Eq. (38) with θσ re-
placed by θ = θ1 − θ2. The same calculation strategy
yields

Gθ(r, r
′) =

1

2

∑

ν

Re
[( fp

1ν√
n1

− fp
2ν√
n2

)( fp′
1ν

√

n′
1

− fp′
2ν

√

n′
2

)∗

Nν

−
( fp

1ν√
n1

− fp
2ν√
n2

)( v⊥′
1ν

√

n′
1

− v⊥′
2ν

√

n′
2

)∗]

. (45)

Having developed a general formalism for calculating
the excitation modes of the two-component Bose gas with
arbitrary one- and two-body couplings, and established
general formulas for the density and phase correlation
functions, we explicitly calculate these quantities for var-
ious homogeneous cases in the next section.

III. HOMOGENEOUS SYSTEMS

In this section, we consider a homogeneous system,
where all potentials (V1 and V2) and coupling terms (g1,
g2, g12 and Ω) in Hamiltonians (2) and (3) are indepen-
dent of the position. Assuming that the potentials V1
and V2 are equal [85], it can be assumed without loss of
generality that V1 = V2 = 0. This case allows for analyt-
ical calculations and contains the main physical effects
discussed below. Hereafter, we first rewrite the formal-
ism of Sec. II in a form adapted to the homogeneous case
(Sec. III A) and then focus on three cases corresponding
to different couplings (Sec. III B, III C, and III D).

A. Meanfield equations

Since all derivative terms in the Euler-Lagrange equa-
tions (9) and (10) vanish in the homogeneous case, it
immediately follows from Eq. (10) that θ − α = 0 or π
if Ω = Ω0e

−iα 6= 0. Inserting these two solutions into
the meanfield version of Eq. (6), we find that θ = α is a
maximum of EMF and is thus an unstable solution. The
stable solution is θ = α+π, which is a minimum of EMF.
For instance, the two components are in phase (resp. out
of phase) when Ω ∈ R

− (resp. Ω ∈ R
+). If Ω = 0, the

relative phase θ is not a determined quantity as already
discussed in the first paragraph of Sec. II A. Inserting the
stable solution into Eq. (9), we then find

g1n1 + g12n2 − µ− ~Ω0

2

√

n2

n1
= 0 (46)

g2n2 + g12n1 − µ− ~Ω0

2

√

n1

n2
= 0 (47)

and n1 + n2 = n = N/V with N the total number of
particles and V the volume of the system. In all cases
discussed below, we assume that the parameters are such
that the two components are miscible, i.e. there exists a
solution of Eqs. (46) and (47) with n1 > 0 and n2 >
0. The corresponding conditions are discussed below for
some particular cases.

Translation invariance ensures that the Bogoliubov
modes are the plane waves

uσk(r) =
1√
V
ũσke

ik.r (48)

vσk(r) =
1√
V
ṽσke

ik.r , (49)

fp,mσk (r) =
1√
V
f̃p,mσk eik.r , (50)

where we label the modes by the wave vector k (instead
of ν). In the following, we omit the tilde sign to simplify
the notations. Then, the amplitudes u1k, v1k, u2k, and
v2k are the solutions of the eigenproblem (29) for the
diagonal blocks

LGPσ =

[

+Aσk +gσnσ
−gσnσ −Aσk

]

, (51)

with Aσk = ǫk+2gσnσ+g12nσ̄−µ where ǫk = ~
2
k
2/2m

is the free-particle dispersion relation, and for the off-
diagonal blocks

Γ =

[

+g12
√
n1n2 − ~Ω0/2 +g12

√
n1n2

−g12
√
n1n2 −g12

√
n1n2 + ~Ω0/2

]

.

(52)
The biorthogonality conditions (30) and (31) reduce to

∑

σ=1,2

(

|uσk|2 − |vσk|2
)

= 1 . (53)

Note that since the classical fields φσ is homogeneous
and the Bogoliubov wave function uσk and vσk are plane
waves the orthogonalization procedure of Eqs. (30) and
(31) is irrelevant for k 6= 0.

Finally, the correlation functions introduced in
Sec. II D are found by inserting Eqs. (48) and (49) into
Eq. (42) and (43), which yields the following explicit for-
mulas: For the phase correlation function of component
σ,

Gσθ (r, r
′) =

1

2nσV
∑

k 6=0

[

|fpσk|2Nk−fpσkv∗σk
]

cos [k.(r− r
′)] ;

(54)
For the density correlation function of component σ,

Gσn(r, r
′) =

2nσ
V

∑

k 6=0

[

|fmσk|2Nk + fmσkv
∗
σk

]

cos [k.(r− r
′)] .

(55)
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Similarly, the correlation function of the relative phase is

Gθ(r, r
′)=

1

2V
∑

k 6=0

[∣

∣

∣

fp1k√
n1

− fp2k√
n2

∣

∣

∣

2

Nk (56)

−
( fp1k√

n1
− fp2k√

n2

)( v1k√
n1

− v2k√
n2

)∗]

cos [k.(r− r
′)] .

Note that, for simplicity, we have indicated only k 6= 0
below the sum symbols of Eqs. (54), (55) and (56). As a
matter of fact, we will see that in general the Bogoli-
ubov spectrum displays two branches, over which the
sums should be performed.

B. Case of two-body coupling (g12 6= 0 and Ω = 0)

Here we consider the case where the two Bose com-
ponents are coupled via two-body interactions (g12 6= 0)
with no one-body interaction (Ω = 0). This case de-
scribes for instance a mixture of gaseous Bose-Einstein
(quasi-)condensates with atoms in two different internal

states and confined in the same trap, as realized with
87Rb atoms in Refs. [7–9, 55, 69, 70]. The miscibil-
ity condition of the two components requires that the
intra-component couplings exceed the inter-component
couplings [14], i.e. |g12| < g1, g2. Hereafter, we provide
useful details about the calculations, and are more brief
in the next sections where the same techniques is used.

1. Meanfield background and Bogoliubov excitations

The background densities and the chemical potential
are found straightforwardly from Eqs. (46) and (47),
which yields

nσ =
N

V
gσ̄ − g12

g1 + g2 − 2g12
(57)

µ =
N

V
g1g2 − g212

g1 + g2 − 2g12
. (58)

Then, the Bogoliubov excitations are the solutions of







ǫk + g1n1 g1n1 g12
√
n1n2 g12

√
n1n2

−g1n1 −ǫk − g1n1 −g12
√
n1n2 −g12

√
n1n2

g12
√
n1n2 g12

√
n1n2 ǫk + g2n2 g2n2

−g12
√
n1n2 −g12

√
n1n2 −g2n2 −ǫk − g2n2













u1k
v1k
u2k
v2k






= Ek







u1k
v1k
u2k
v2k






, (59)

which corresponds to Eq. (29) where we have inserted
Eqs. (51) and (52) for the considered case. Note that
using Eqs. (46) and (47), we find Aσk = ǫk + gσnσ. By
taking the sum and difference of the first two rows on the
one hand, and of the last two rows on the other hand, we
find

Ekf
m
σk = ǫkf

p
σk (60)

Ekf
p
σk = (ǫk + 2gσnσ)f

m
σk + 2g12

√
nσnσ̄f

m
σ̄k . (61)

Inserting the first equation into the second one, and using
the biorthogonality condition fp

1kf
m
1k+f

p
2kf

m
2k = 1 [which

is equivalent to Eq. (53)] to eliminate the fp
σk functions,

we then find

[E2
k − ǫk(ǫk + 2gσnσ)]f

m
σk = 2ǫkg12

√
n1n2f

m
σ̄k (62)

Ek(f
m
1k)

2 + Ek(f
m
2k)

2 = ǫk . (63)

The Bogoliubov spectrum is found from the ratio of
the two avatars of Eq. (62) corresponding to σ = 1 and
σ = 2 respectively. Using Eqs. (57) and (58), it yields

E±
k

=
√

ǫk (ǫk + g1n1 + g2n2 ±∆) (64)

with ∆ = |g12|(n1 + n2), where here we retain only the
positive energy solutions, which correspond to excitations
of the two-component Bose gas. The spectrum is plotted
in Fig. 2 for a case with g12 6= 0. It is composed of two
branches (labelled by ±), which are distinct if and only

if g12 6= 0. Each branch shows the usual Bogoliubov dis-
persion relation: For ǫk ≪ g1n1+g2n2±∆, it is phonon-
like, E±

k
≃ c±~k with c± =

√

(g1n1 + g2n2±∆)/2m the
sound velocities; For ǫk ≫ g1n1 + g2n2±∆, it is free-
particle-like, E±

k
≃ ǫk + (g1n1 + g2n2±∆)/2. In particu-

lar, the quantity ∆ is the separation of the two branches
in the high-energy limit.

In order to determine the Bogoliubov wavefunctions,
we replace E±

k
in Eq. (62) by its expression (64), which

yields (for g12 6= 0)

[

−ζ ±
√

ζ2 + 1
]

fm±
1k = sgn(g12)×fm±

2k (65)
[

+ζ ±
√

ζ2 + 1
]

fm±
2k = sgn(g12)×fm±

1k (66)

where ζ = (g1n1 − g2n2)/2|g12|
√
n1n2. Using Eqs. (60)

and (63), we then find (for g12 6= 0)

fm±
1k =





ǫk

2E±
k

(

1 + ζ2 ∓ ζ
√

ζ2 + 1
)





1/2

(67)

fp±
1k =





E±
k

2ǫk

(

1 + ζ2 ∓ ζ
√

ζ2 + 1
)





1/2

(68)
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FIG. 2. Bogoliubov spectrum of the coupled excitations in
a homogeneous two-component Bose gas with g12 6= 0 and
Ω = 0. Plotted are the two energy branches E±

k
[Eq. (64)]

in the case g1 = g2 and |g12| = 0.7g1. Here µ0 = g1N/2V
is the chemical potential in the absence of any coupling, and
ξ0 = ~/

√
2mµ0 is the corresponding healing length. In the

low-energy limit, the two branches are phonon-like, E±
k

≃
c±~k. In the high-energy limit, they are free-particle like,
E±

k
≃ ǫk+(g1n1+g2n2±∆)/2 and are separated by a constant

value ∆.

fm±
2k = ±sgn(g12)×





ǫk

2E±
k

(

1 + ζ2 ± ζ
√

ζ2 + 1
)





1/2

(69)

fp±
2k = ±sgn(g12)×





E±
k

2ǫk

(

1 + ζ2 ± ζ
√

ζ2 + 1
)





1/2

(70)

where we have set the (arbitrary) sign of fm
1 to be posi-

tive. The moduli of these functions are plotted in Fig. 3.
In the following, we will omit the branch labels (±) in the
functions fp,m

σk for simplicity , except when necessary. It
follows from these equations that, for a given compo-
nent σ, the fm

σ (r) and fp
σ (r) wavefunctions are always in

phase [i.e. fm
σkf

p
σk > 0; see also Eq. (60)]. For g12 > 0,

the modes associated to the components 1 (fm
1k, f

p
1k) and

2 (fm
2k, f

p
2k) are off phase (fp

1kf
p
2k < 0 and fm

1kf
m
2k < 0)

in the lower (−) branch and in phase (fp
1kf

p
2k > 0 and

fm
1kf

m
2k > 0) in the upper (+) branch (and the other way

round for g12 < 0). It can be traced to the fact that
for repulsive inter-component interactions (g12 > 0), off-
phase density fluctuations (fm

1kf
m
2k < 0) cost less interac-

tion energy than in-phase density fluctuations (and the
other way round for g12 < 0).
In the particular case where the two components are

decoupled, i.e. for g12 = 0, the spectrum shows twofold
degeneracy (there is also a trivial +k ↔ −k degeneracy,
which we disregard here). The two branches of the spec-
trum are identical and correspond to the usual single-
particle Bogoliubov spectrum, E±

k
=

√

ǫk (ǫk + 2µ).

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4

|f σ
k|

kξ0

fσk+
m

fσk+
p

fσk−
m

fσk−
p

FIG. 3. Amplitudes of the wavefunctions fp,m

σk
of the coupled

Bogoliubov excitations for a homogeneous two-component
Bose gas with g12 6= 0 and Ω = 0. Plotted are the absolute
values, |fp,m

σk
| [see Eqs. (67) to (70)] for the same parameters

as in Fig. 2. In particular since g1 = g2, we have ζ = 0 [see
below Eqs. (65) and (66)] and the absolute values are indepen-
dent of the component σ and of the sign of g12. For g12 > 0,
the excitations are off phase in the lower branch (E−

k
) and in

phase for the upper branch (E+
k
). For g12 < 0, the excitations

are off phase in the upper branch (E+
k
) and in phase for the

lower branch (E−
k
).

This holds even for g1 6= g2 because the meanfield back-
ground is identical for the two Bose gases, i.e. g1n1 =
g2n2 = µ [see Eqs. (57) and (58) with g12 = 0]. In this
case, each branch can be ascribed to elementary excita-
tions in one of the components, so that fm

σk = 1/fp
σk =

√

ǫk/Ek and fm
σ̄k = fp

σ̄k = 0.

2. Fluctuations and correlations

The phase and density correlations in each compo-
nent σ are determined by the fp

σk and fm
σk functions [see

Eqs. (54) and (55)]. Due to the similarity of the disper-
sion relation and formulas for the fp,mσk functions with
those of a single-component Bose gas, each component
behaves as an effective single-component gas. The ef-
fective parameters however depend on all coupling pa-
rameters g1, g2 and g12 and are in general different
for the two components (if g1 6= g2). Then, the den-
sity fluctuations remain small for strong-enough inter-
action parameters and low temperatures in any dimen-
sion. In contrast, the behavior of the phase fluctuations
strongly depends on the dimension, owing to the 1/

√

|k|
divergence of the fp

σk functions. In three dimensions,
the two components form true Bose-Einstein conden-
sates with intra-component phase coherence. In lower di-
mensions, they form quasi-condensates with strong intra-
component phase fluctuations.
The fluctuations of the relative phase, which we de-

tail more here, follow the same behavior. Indeed, using
Eqs. (40), (41), and (60), the correlation function for the
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relative phase [Eq. (56)] reduces to

Gθ(r, r
′) =

1

4V
∑

k 6=0,±

∣

∣

∣

fp±
1k√
n1

− fp±
2k√
n2

∣

∣

∣

2{

2Nk +
(

1− ǫk

E±
k

)}

× cos [k.(r− r
′)] . (71)

where the sum runs over all nonzero values of k and
over the two branches ±. This correlation function has a
quantum contribution corresponding to the |fp

1k/
√
n1−

fp
2k/

√
n2|2(1−ǫk/Ek) terms, and a thermal contribution,

corresponding to the |fp
1k/

√
n1 − fp

2k/
√
n2|2Nk terms.

Since |fp
1k/

√
n1−fp

2k/
√
n2| 6= 0 at least in the off-phase

branch (corresponding to the lower branchE−
k
for g12 > 0

and to the upper branch E+
k

for g12 < 0), the low-
k term diverges as 1/k as for single-component Bose
gases [40, 41]. In three dimensions and low tempera-
ture, the two components are thus mutually coherent.
Conversely, in lower dimensions, they show no true long-
range mutual phase coherence.
To further discuss the effect of inter-component two-

body interactions, let us restrict ourselves, for the sake
of simplicity, to the case where the two intra-component
couplings are equal (i.e. g1 = g2 ≡ g). Then, we have
n1 = n2 = n/2 (with n = n1 + n2 the total density)
and ζ = 0, so that fp

1k = fp
2k for the in-phase branch

and fp
1k = −fp

2k for the off-phase branch [see Eqs. (68)
and (70)]. It results that, as can be expected, only
the off-phase branch contributes to the correlation func-
tion of the relative phase. This contribution depends
quantitatively on whether the off-phase branch corre-
sponds to the upper or the lower branch, i.e. on the
sign of g12. In the contributing off-phase branch, we
have |fp

1k/
√
n1− fp

2k/
√
n2|2 = 2Eoff

k
/nǫk where Eoff

k
=

√

ǫk[ǫk + (g − g12)n] is the energy of the mode (E−
k

for

g12 > 0 and E+
k

for g12 < 0). Hence, the quantum con-
tribution to the relative phase fluctuations is weaker for
repulsive inter-component interactions (g12 > 0) than for
attractive inter-component interactions (g12 < 0). The
behavior of the thermal contribution is more involved be-
cause, although the amplitude |fp

1k/
√
n1−fp

2k/
√
n2|2 is

smaller for g12 > 0, the populations Nk of the off-phase
branch excitations are larger since it is the lower branch.
To determine the overall behavior of the relative phase
fluctuations, it is worth rewriting Eq. (71) into the more
compact form

Gθ(r, r
′) =

1

2nV
∑

k 6=0

[

Eoff
k

ǫk
coth

(

Eoff
k

2kBT

)

−1

]

cos[k.(r−r
′)]

(72)
where the sum runs over a single-branch corresponding
to all values of k 6= 0. Then, since ucoth(u) is an in-
creasing function of u (for u > 0) and Eoff

k
is a decreas-

ing function of g12, we conclude that the relative phase
fluctuations are weaker for g12 > 0 than for g12 < 0.
In particular, the relative phase fluctuations are maxi-
mally suppressed when g12 > 0 approaches g from below.
In other words, in a homogeneous two-component Bose

gas, repulsive inter-component interactions reduce rela-
tive phase fluctuations while attractive inter-component
interactions enhance relative phase fluctuations.

C. Case of one-body coupling (Ω 6= 0 and g12 = 0)

Let us turn to the opposite case where the two Bose
components are coupled via one-body coupling (Ω 6= 0)
but not by two-body coupling (g12 = 0). This case can
be realized for instance using two Bose-Einstein conden-
sates in two elongated traps, coupled by non-vanishing
quantum tunneling, as considered in Refs. [26, 30].

1. Meanfield background and Bogoliubov excitations

In this case, there is no simple general solution to
Eqs. (46) and (47). However, straightforward analysis of
these equations for g12 = 0 shows that there is a unique
solution, such that nσ ≥ µ/gσ for any µ > 0. For the sake
of simplicity, let us assume g1 = g2 ≡ g. Then, Eqs. (46)
and (47) are considerably simplified, and we easily find

n1 = n2 =
N

2V (73)

µ =
gN

2V − ~Ω0

2
. (74)

Then, the Bogoliubov excitations are obtained by the
same procedure as in Sec. III B. We find a two-branch
spectrum given by the equations

E−
k

=
√

ǫk (ǫk + gn) (75)

E+
k
=

√

(ǫk + ~Ω0) (ǫk + ~Ω0 + gn) , (76)

where n = n1 + n2 is the total density. The spectrum is
plotted in Fig. 4 for a case with Ω0 6= 0. The two branches
(labelled by ±) are distinct if and only if Ω0 6= 0. The
lower branch (−) shows the usual (ungapped) Bogoliubov
dispersion relation: For ǫk ≪ gn, it is phonon-like, E−

k
≃

c~k with c =
√

gn/2m the sound velocity; For ǫk ≫ gn,

it is free-particle-like, E−
k

≃ ǫk + gn/2. In contrast, the
upper branch (+) is gapped and free-particle-like in both
low- and high-energy limits: For ǫk ≪ gn, ~Ω0, we have
E+

k
≃

√

~Ω0(~Ω0 + gn) + 2~Ω0+gn

2
√

~Ω0(~Ω0+gn)
ǫk; For ǫk ≫

gn, ~Ω0, we have E+
k

≃ ǫk + ~Ω0 + gn/2. In particular,

the quantity
√

~Ω0(~Ω0 + gn) is the gap of the upper
branch, while the quantity ~Ω0 is the separation between
the two branches in the high-energy limit.
The Bogoliubov wavefunctions are then found follow-

ing the same procedure as in Sec. III B.

fm±
1k =

[

ǫk + ~Ω0/2± ~Ω0/2

2E±
k

]1/2

(77)

fp±
1k =

[

E±
k

2ǫk + ~Ω0 ± ~Ω0

]1/2

(78)
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FIG. 4. Bogoliubov spectrum of the coupled excitations in a
homogeneous two-component Bose gas with g12 = 0 and Ω 6=
0. Plotted are the two energy branches E±

k
[Eq. (75)and (76)]

in the case g1 = g2 and ~Ω0 = 0.7gn. Here, µ0 = g1N/2V
is the chemical potential in the absence of any coupling, and
ξ0 = ~/

√
2mµ0 is the corresponding healing length. In con-

trast, for Ω0 6= 0, the upper branch (E+

k
) is gapped and

quadratic in both low and high-energy limits.

fm±
2k = ∓

[

ǫk + ~Ω0/2± ~Ω0/2

2E±
k

]1/2

(79)

fp±
2k = ∓

[

E±
k

2ǫk + ~Ω0 ± ~Ω0

]1/2

(80)

Their moduli are plotted in Fig. 5. They do not de-
pend on the component σ since we considered only the
case where g1 = g2. As in Sec. III B, for a given compo-
nent σ, the fm

σ (r) and fp
σ (r) wavefunctions are always in

phase. However, the modes associated to the components
1 (fm

1k, f
p
1k) and 2 (fm

2k, f
p
2k) are now off phase in the upper

(+) branch and in phase in the lower (−) branch. In the
lower (−) branch, each component behaves as a single-
component Bose gas with renormalized effective param-
eters, since the previous Bogoliubov spectrum and wave-
functions are similar to those of a single-component gas.
In contrast, the gapped dispersion relation of the upper
(+) branch yields a different behavior for the fp+

σk and

fm+
σk functions. They do not depend much on k as soon
as ~Ω0 and gn are of the same order, and in particular
the fp+

σk functions no longer diverge at low energy, since
the gap acts as a low-energy cut-off.

2. Fluctuations and correlations

The phase and density fluctuations within one compo-
nent σ are governed by the fp

σk and fm
σk functions. Let

us discuss the relative phase fluctuations. Proceeding as
in Sec. III B, we can rewrite the correlation function for

 0
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 5
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|f σ
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kξ0

fσk
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fσk
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fσk
m−

fσk
p−

FIG. 5. Amplitudes of the wavefunctions fp,m

σk
of the coupled

Bogoliubov excitations for a homogeneous two-component
Bose gas with g12 = 0 and Ω 6= 0. Plotted are the absolute
values, |fp,m

σk
| [see Eqs. (67) to (70)] for the same parameters

as in Fig. 4. Since g1 = g2, the absolute values are indepen-
dent of the component σ. The excitations are in phase in the
lower branch (E−

k
) and off phase for the upper branch (E+

k
).

the relative phase

Gθ(r, r
′) =

1

2Vn
∑

k 6=0,±

{

2Nk +
(

1− ǫk+~Ω0/2±~Ω0/2

E±
k

)}

×
∣

∣

∣f
p±
1k −fp±

2k

∣

∣

∣

2

cos [k.(r− r
′)] , (81)

making appear the thermal and quantum contributions.
As in Sec. III B, only the off-phase branch contributes to
Gθ(r, r

′). Here, the off-phase branch is always the upper
one, independently of the sign of Ω(r), or more generally
independently of its phase α. Due to the gap of the up-
per branch, its contribution remains finite and does not
suppress mutual phase coherence of the two Bose gases,
in any dimension. The one-body coupling thus tends to
favor fluctuations of the phases of the components that
are in phase. It contrasts with the mean-field phases θ1
and θ2, the difference of which is imposed by the sign of
Ω(r), or more generally its phase α [see Sec. III A]. This
behavior can by understood from the fact that the one-
body coupling tends to impose the difference between the
total phases of the two components. Since it is realized
at the meanfield level, the phase fluctuations tend to be
in phase. By rewriting Eq.( 81) into the form

Gθ(r, r
′) =

1

nV
∑

k 6=0

[

√

ǫk + gn+ ~Ω0

ǫk + ~Ω0
coth

(

E+
k

2kBT

)

− 1

]

× cos[k.(r − r
′)] (82)

one can indeed check that since E+
k

increases with Ω0,

both coth(E+
k
/2kBT ) and

√

(ǫk + gn+ ~Ω0)/(ǫk + ~Ω0)
decrease when Ω0 increases, so that the relative phase
fluctuations Gθ(r, r) decrease when the intensity of the
one-body coupling increases. In particular, for a tem-
perature smaller than the gap, kBT <

√

~Ω0(~Ω0 + gn),
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the quantum fluctuations of the relative phase dominate,
and are strongly suppressed for ~Ω0 > gn. These results
generalize those of Ref. [26] to the case of a one-body
coupling of arbitrary phase.

D. Case of one-body (Ω 6= 0) and two-body
(g12 < g1 = g2) couplings

As discussed in the last two sections, the one-body
coupling tends to establish the mutual coherence between
the two Bose gases and to suppress relative phase fluctua-
tions, while the two-body coupling can reduce or enhance
the relative phase fluctuations depending on the sign of
g12. Let us now consider the general case where both
one-body and two-body couplings are present, and study
how they interplay.

1. Meanfield background and Bogoliubov excitations

For the sake of simplicity, we will assume as in
Sec. III C that g1 = g2 ≡ g, which captures the main
physics of the problem. Detailed calculations for the gen-
eral case are shown in the appendix. In the case we con-
sider here, the densities of the two components are equal,
n1 = n2, and Eqs.( 46) and ( 47) yield the chemical po-
tential µ = (g + g12)n/2− ~Ω0/2, with n = n1 + n2 the
total density. The same procedure as in Sec. III B yields
the two-branch spectrum

E−
k

=
√

ǫk (ǫk + gn+ g12n) (83)

E+
k
=

√

(ǫk + ~Ω0) (ǫk + ~Ω0 + (g − g12)n) , (84)

which is plotted in Fig. 6. The (−) branch is one of
the two branches of the case with only two-body cou-
pling (Sec. III B). In particular, we recover the results
of Sec. III B of two separated Bogoliubov-like branches
when Ω0 → 0. However, if g12 > 0, the (−) branch
yields the previous upper (+) branch, and vice-versa.
Following the analysis of Sec. III B, the (−) branch
shows the usual ungapped Bogoliubov behavior: It is
phonon-like for ǫk ≪ gn, g12n, E

−
k

≃ c~k with c =
√

(g + g12)n/2m the sound velocity; It is free-particle-

like for ǫk ≫ gn, g12n, E
−
k

≃ ǫk + (g + g12)n/2. Con-
versely, the (+) branch is similar to that of the case
with one-body coupling (Sec. III C), although the ef-
fective coupling term is renormalized by the two-body
interaction strength (g → g − g12). The (+) branch
is gapped, and free-particle-like in both low and high-
energy limits: For ǫk ≪ (g − g12)n, ~Ω0, we have

E+
k
≃

√

~Ω0(~Ω0 + (g − g12)n)+
2~Ω0+(g−g12)n

2
√

~Ω0(~Ω0+(g−g12)n)
ǫk;

For ǫk ≫ (g − g12)n, ~Ω0, we have E+
k

≃ ǫk + ~Ω0 +
(g − g12)n/2. Therefore, attractive two-body coupling,
g12 < 0, cooperates with one-body coupling to separate
the branches: we have E−

k
< E+

k
for any momentum

k, and E+
k

− E−
k

increases with both Ω0 and g12. In
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FIG. 6. Bogoliubov spectrum of the coupled excitations in
a homogeneous two-component Bose gas with g12 6= 0 and
Ω 6= 0. Plotted are the two energy branches E±

k
[Eqs. (83)

and (84)] in the case g1 = g2 and for g12 = 0.7g1 and ~Ω0 =
0.4g1n. This corresponds to a situation where g12n > ~Ω0 and
the (+) and (−) branches cross at a certain momentum kc (see
text). For g12n < ~Ω0, there is no crossing point and the (+)
branch is always above the (−) one. Here, µ0 = g1N/2V is
the chemical potential in the absence of any coupling, and
ξ0 = ~/

√
2mµ0 is the corresponding healing length.

contrast, repulsive two-body coupling, g12 > 0, com-
petes with one-body coupling, which tends to decrease
the separation energy E+

k
− E−

k
. For low momentum,

the gap in the (+) branch ensures that E−
k
< E+

k
. Con-

versely, for larger momenta, the two branches can ex-
hibit a crossing point if the repulsive interactions are
strong enough (g12n > ~Ω0). This happens at the energy
ǫc
k
= (~kc)2/2m = ~Ω0[~Ω0 + (g − g12)n]/2(g12n− ~Ω0).
The computation of the Bogoliubov wavefunctions fol-

lows from the same procedure as in the previous sections,
which yields

fm±
1k =

[

ǫk + ~Ω0/2± ~Ω0/2

2E±
k

]1/2

(85)

fp±
1k =

[

E±
k

2ǫk + ~Ω0 ± ~Ω0

]1/2

(86)

fm±
2k = ∓

[

ǫk + ~Ω0/2± ~Ω0/2

2E±
k

]1/2

(87)

fp±
2k = ∓

[

E±
k

2ǫk + ~Ω0 ± ~Ω0

]1/2

. (88)

Although they are given by the same expressions as in
Sec. III C, it should be noticed that the expressions of
E±

k
have changed according to Eqs. (83) and (84). Their

behaviors however remain very similar to the case of
Sec. III C. Note that we also recover the particular for-
mulas for g12 = 0 as well as for Ω0 = 0 (with branches
(+) and (−) being inverted if g12 > 0).
As in previous the cases, the fm

σ (r) and fp
σ (r) wave-

functions of a single component are always in phase.
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The modes associated to the components 1 (fm
1k, f

p
1k)

and 2 (fm
2k, f

p
2k) are off phase in the (+) branch and

in phase in the (−) branch. For attractive interactions
g12 < 0, we have E−

k
< E+

k
, so in-phase fluctuations

are favored cooperatively by one-body and two-body cou-
plings. Conversely, if the two-body coupling is repulsive
and strong enough to compete with the one-body cou-
pling (g12n > ~Ω0), so that the two branches cross, they
compete with the following result: For low-energy exci-
tations (ǫk < ǫc

k
), in-phase fluctuations cost less energy

than off-phase fluctuations, whereas it is the opposite for
high energy excitations (ǫk > ǫc

k
).

2. Fluctuations and correlations

Due to the similarity of the dispersion relation and
Bogoliubov wavefunctions with the case of Sec. III C,
the results for phase and density fluctuations within one
component σ are qualitatively identical. In particular,
each component is phase coherent in three dimensions
but exhibits large phase fluctuations in lower dimensions,
driven by the ungapped Bogoliubov-like spectrum of the
(−) branch and the corresponding low-momentum diver-

gence of fp−
σk .

For the same reason, the correlation function of the
relative phase is as well very similar to Sec. III C. It
can in particular be rewritten in the form of Eq. (81)
with E±

k
now given by Eqs. (83) and (84). In the case

g1 = g2 we are considering, only the off-phase branch
(+) contributes to Gθ(r, r

′). Owing to the gap in the
(+) branch, it yields mutual phase coherence in all di-
mensions. Furthermore, the behavior of Gθ(r, r

′) is iden-
tical to that of Sec. III C with a renormalized interaction
strength g → g − g12,

Gθ(r, r
′) =

1

nV
∑

k 6=0

[

√

ǫk+(g−g12)n+~Ω0

ǫk + ~Ω0
coth

(

E+
k

2kBT

)

−1

]

× cos[k.(r − r
′)] . (89)

The relative phase fluctuations therefore decrease when
the intensity of the one-body coupling Ω0 increases, as
in the particular case of Sec. III C. We also find that
the relative phase fluctuations decrease when the two-
body coupling increases, recovering as well the behavior
of Sec. III B. It can be seen from Eq. (89) noticing that
√

(ǫk + (g − g12)n+ ~Ω0)/(ǫk + ~Ω0) = E+
k
/(ǫk + ~Ω0),

that E+
k

decreases when g12 increases [see Eq. (84)], and
that the function coth is a decreasing function.
Let us discuss the behavior of the relative phase cor-

relation function Gθ(r, r
′) versus temperature. We focus

on the one-dimensional case where phase fluctuations are
expected to be the more important. The discussion ex-
tends the results of Ref. [26] to the case where one-body
and two-body coupling coexist. Equation (89) is plotted
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FIG. 7. Correlation function of the relative phase for a
two-component Bose gas with one-body (Ω0 6= 0) and two-
body (g12 6= 0) couplings, plotted for various temperatures
(kBT/µ0 = 0, 1, 1.5, 2) in the case where g1 = g2 ≡ g.
The parameters here correspond to N = 104 atoms of 87Rb
(m ≃ 144 × 10−27kg) in a 1D box of size 2L = 10−4m, and
interacting via the scattering length a1 = a2 = 5.95nm. It
corresponds in the absence of any coupling to the chemical
potential µ0 = gn = 7.88 × 10−31J, which we choose as the
energy unit. In these units, we use the parameters ~Ω0 = 1µ0

and g12n = 0.75µ0 .

on Fig. 7 as a function of |r − r
′| for various temper-

atures. The function Gθ(r, r
′) increases with the tem-

perature T , as is easily checked from Eq. (89), since the
thermal contribution gets more and more important. For
kBT ≫ ~Ω0, (g − g12)n, the quantum contribution can

be neglected and coth
(

E+

k

2kBT

)

can be safely replaced by

2kBT/E
+
k

in Eq. (89), yielding the exponentially decay-
ing correlation function

Gθ(r) =
2mkBT

n~2L−1
θ

e−|r|/Lθ , (90)

where Lθ =
√

~

2mΩ0
is the relative-phase correlation

length [26]. This approximate formula still holds for
smaller values of the temperature in the large separation
limit, predicting thus a correct correlation length. The
latter then weakly depends on the two-body coupling and
decreases when the one-body coupling increases.
We finally discuss the relative phase fluctuations,

which are given by Gθ(r = 0). As already pointed out,
the relative phase fluctuations always decrease with the
one-body coupling Ω0, which thus favors mutual phase
coherence between the two condensates. Moreover, re-
pulsive two-body coupling (g12 > 0) tends to reduce
the fluctuations of the relative phase while attractive
two-body coupling enhance them. The temperature de-
pendence of those fluctuations is shown in Fig. 8. The
zero-temperature fluctuations, which are given by their
quantum contribution, are smaller than those of a sin-
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FIG. 8. Relative phase fluctuations as a function of temper-
ature for a two-component Bose gas with one-body (Ω0 6= 0)
and two-body (g12 6= 0) couplings, plotted for the same pa-
rameters as in Fig. 7. While the quantum fluctuations are
small, the thermal contribution increases with temperature.
Note that the temperatures considered here are outside the
range of validity of Eq. (90).

gle condensate [26]. The fluctuations then unsurpris-
ingly increase with temperature. The linear dependence
predicted by Eq. (90), Gθ(r = 0) ≃ 2mkBT

n~2L−1

θ

, is ex-

pected only in the regime where kBT ≫ ~Ω0, (g − g12)n,
which is beyond the range of temperatures considered
here. In addition, the fluctuations remain small provided
kBT ≪ n~

√

~Ω0/m. Hence, the one-body coupling fa-
vors local mutual phase coherence between the two com-
ponents.

IV. CONCLUSIONS

In this paper, we have derived a general meanfield
theory for a two-component Bose gas, in the presence
of both one-body and two-body couplings. We consid-
ered the most general situation where both one-body
and two-body couplings can be position dependant, and
where the gas can experience a component-dependent
external potential. Our formulation uses the phase-
density formalism, which allows us to capture both cases
of true condensates and quasi-condensates with large
phase fluctuations. We have written the coupled Gross-
Pitaevskii equations, which determine the ground-state
background, as well as the Bogoliubov equations, which
determine the pair-excitation spectrum of the mixture.
We obtained general formulas for phase and density cor-
relation functions within each component, as well as for
their relative phase, at zero and finite temperature.
We have then applied our formalism to homogeneous

cases with only two-body coupling (Sec. III B), only one-
body coupling (Sec. III C), or both one-body and two-
body couplings (Sec. III D). Our discussion then focused

on the excitation spectrum and the relative phase fluctu-
ations. We summarize our main results in the following.

Two-body coupling (Sec. III B) — When only the
two-body coupling is present, the excitation spectrum ex-
hibits two gapless Bogoliubov-like branches. These two
branches correspond to in-phase and off-phase fluctua-
tions of the two components. They are separated by
an energy-dependent quantity that converges to ∆ =
|g12|(n1 +n2) in the high-energy limit. As regards phase
and density fluctuations, each component behaves as an
effective single-component Bose gas with coupling pa-
rameters that are renormalized by the inter-species two-
body coupling. This is also the case of the relative
phase since the two-body coupling does not constraint
it. Nevertheless, the relative-phase fluctuations and cor-
relations are mostly determined by the off-phase branch
of the spectrum, provided that the intra-species inter-
action strengths are not too different. The influence of
the two-body coupling on the relative phase fluctuations
was discussed in the case where the intra-species inter-
action strengths are equal (g1 = g2). One one hand, an
increasing g12 tends to lower the contributing off-phase
branch, hence increasing its thermal occupancy. On the
other hand, it enhances the amplitude of off-phase den-
sity fluctuations, and therefore reduces the amplitude of
phase fluctuations in the contributing off-phase branch.
We found that the latter effect always dominates. There-
fore, repulsive inter-component interactions suppress rel-
ative phase fluctuations while attractive inter-component
interactions enhance relative phase fluctuations.

One-body coupling (Sec. III C) — The one-body cou-
pling, and in particular its phase, imposes the relative
phase of the two components at the meanfield level.
Then, the fluctuations of the relative phase only de-
pend on the modulus of the one-body coupling. The two
branches of the excitation spectrum are different from
the previous case. While the lower branch is of the Bo-
goliubov type and corresponds to in-phase relative fluc-
tuations, the upper branch is gapped and corresponds
to off-phase relative fluctuations. In the case where the
intra-species interaction terms of the two components are
equal, the relative phase fluctuations are strictly gov-
erned by the off-phase branch. The gap then cuts the low-
energy divergence of the corresponding excitation func-
tions, and the relative phase fluctuations are suppressed.
Hence one-body coupling suppresses the fluctuations of
the relative phase, independently of its sign.

One-body and two-body couplings (Sec. IIID) — The
general case, where both one-body and two-body cou-
plings are present, combines the behaviors found in the
two previous cases. The spectrum is again made of two
branches. The first branch, which corresponds to in-
phase fluctuations of the two Bose gases, is of the Bo-
goliubov type. It depends only on the two-body cou-
pling while being unaffected by one-body coupling. The
second branch, which corresponds to off-phase fluctua-
tions, is gapped. The two branches cross each other at
a given momentum if the two-body coupling is repulsive
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and exceeds the one-body coupling. Here again the rel-
ative phase is imposed by the one-body coupling at the
meanfield level and the fluctuations depend only on its
modulus. As in the case where two-body coupling is ab-
sent, one-body coupling always favors relative-phase co-
herence of the two Bose gases. Then, repulsive two-body
coupling cooperates with one-body coupling and further
suppresses relative-phase fluctuations, while attractive
two-body coupling competes with one-body coupling and
enhances relative-phase fluctuations. However the corre-
lation length of the relative phase decreases when the
one-body coupling increases.
Our work generalizes previous results to the case where

both one-body and two-body couplings are present be-
tween the two Bose components. The homogeneous
cases we have analyzed are expected to contain the
main physics of relative-phase coherence. The formal-
ism that we have developed here can be directly applied
to more complicated situations. For instance, the effect
of inhomogeneous trapping, which can be component-
dependent, is particularly relevant in the context of
ultracold-atom systems. In this case, one may resort to
numerical solutions of the Gross-Pitaevskii and Bogoli-
ubov equations. Other interesting applications of this
formalism include the study of the effects of strong in-
homogeneities in interacting Bose gases, in particular
random couplings, which is attracting much attention
in ultracold-atom systems [71]. One may envision sev-
eral applications. First, disordered potential have been
shown to induce Anderson localization of the Bogoliubov
excitations in single-component Bose gases [72–75]. How
does it extend to the case of coupled Bose gases ? Sec-
ond, disorder can be included in interaction terms using
inhomogeneous Feshbach resonances [76]. What would
be the effect of random inter-species coupling ? Third,
disorder can be included in one-body coupling, which has
been shown to produce random-field-induced-order of the
relative phase of two Bose-Einstein condensate at zero
temperature [35, 36, 77, 78]. How do finite temperature

affect this behavior ?
Note added. While completing this manuscript, we

were made aware of a related work, reporting analysis
of the excitation spectrum and the structure factors of
coupled two-component Bose-Einstein condensates [79].
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Appendix A: General case with one-body (Ω 6= 0)
and two-body (g12 < g1, g2) couplings

We compute here the excitation spectrum of the two-
component Bose gas in the general case where both one-
body and two-body couplings are present and the intra-
component couplings g1 and g2 can be different. Follow-
ing the same approach as in Secs. III B, III C and III D,
we rewrite the Bogoliubov equations in terms of the fp,m

σk
functions :

Ekf
m
σk =

(

ǫk +
~Ω0

2

√

nσ̄
nσ

)

fp
σk − ~Ω0

2
fp
σ̄k

Ekf
p
σk =

(

ǫk +
~Ω0

2

√

nσ̄
nσ

+ 2gσnσ

)

fm
σk

+

(

2g12
√
n1n2 −

~Ω0

2

)

fm
σ̄k

where σ̄ is the conjugate of component σ. Using the
normalization condition f+

1kf
−
1k + f+

2kf
−
2k = 1, it yields :

E2
kf

p
σk =

(

ǫk +
~Ω0

2

√

nσ̄
nσ

+ 2gσnσ

)[(

ǫk +
~Ω0

2

√

nσ̄
nσ

)

fp
σk − ~Ω0

2
fp
σ̄k

]

+

(

2g12
√
n1n2 −

~Ω0

2

)[

−~Ω0

2
fp
σk +

(

ǫk +
~Ω0

2

√

nσ
nσ̄

)

fp
σ̄k

]

(A1)

Ek = fp
1k

[(

ǫk +
~Ω0

2

√

n2

n1

)

fp
1k − ~Ω0

2
fp
2k

]

+ fp
2k

[(

ǫk +
~Ω0

2

√

n1

n2

)

fp
2k − ~Ω0

2
fp
1k

]

. (A2)

In order to simplify the notations, let us define ǫσk =

ǫk +
~Ω0

2

√

nσ̄

nσ
, Uσ = gσnσ, and U12 = g12

√
n1n2. Then,

we have Akσ = ǫσk(ǫσk+2Uσ)−
~Ω0

2

(

2U12 −
~Ω0

2

)

and

Bkσ = ǫσ̄k

(

2U12 −
~Ω0

2

)

− ~Ω0

2
(ǫσk+2Uσ). With these

notations, Eqs. (A1) and (A2) write

fp
σ̄kBkσ = fp

σk[E
2
k −Akσ]

Ek = fp
1k[ǫ1kf

p
1k − ~Ω0

2
fp
2k] + fp

2k[ǫ2kf
p
2k − ~Ω0

2
fp
1k].
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We thus find the excitation spectrum

E±
k

=

√

1

2
(Ak1 +Ak2)±

√

(Ak1 −Ak2)2/4 +Bk1Bk2.

(A3)
In the particular case where Ω0 = 0, Akσ = ǫk(ǫk +
2gσnσ) and Bkσ = ǫk2g12

√
n1n2, so that we recover

the result of Sec. III B. In the case where both one-
body and two-body couplings are present and n1 = n2,

Ak1 = Ak2 ≡ Ak =

(

ǫk +
~Ω0

2

)(

ǫk +
~Ω0

2
+ gn

)

−
~Ω0

2

(

ng12 −
~Ω0

2

)

and Bk1 = Bk2 ≡ Bk =
(

ǫk +
~Ω0

2

)(

ng12 −
~Ω0

2

)

− ~Ω0

2

(

ǫk +
~Ω0

2
+ gn

)

,

and we recover the spectrum of Sec.III D, with possible
inversion of the two branches depending on the sign of
Bk.
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