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Observation and measurement of “giant” dispersive optical non-linearities

in an ensemble of cold Rydberg atoms.
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We observe and measure dispersive optical non-linearities in an ensemble of cold Rydberg atoms
placed inside an optical cavity. The experimental results are in agreement with a simple model where
the optical non-linearities are due to the progressive appearance of a Rydberg blockaded volume
within the medium. The measurements allow a direct estimation of the “blockaded fraction” of
atoms within the atomic ensemble.

The realization of non-linear optical effects that are
large enough to effect photon-photon interactions would
be a significant step forward for quantum information
processing and communications. In particular, a giant
dispersive and non-dissipative non-linearity could enable
the implementation of a two-photon phase gate. It is
well known that standard optical non-linearities, even
the largest ones that are typically resonant χ(3) effects,
are too small to reach this range. Presently, two main
approaches have been considered to reach the desired
regime of deterministic photon-photon interactions. One
is cavity (or circuit) QED, where it is experimentally
well-established that the atom-field coupling can be large
enough to produce single atom - single photon interac-
tions [1]. However, in order to use such effects for optical
“flying qubits”, the challenge is to get very high input-
output coupling to the cavity [2]. Another approach,
inspired by recent work on both dark-state polaritons [3]
and on Rydberg blockade [4, 5] is to temporarily con-
vert the photons into other particles, such as Rydberg
polaritons, that may have very strong interactions [6–8].
Here, we pursue this approach by using an ensem-

ble of cold Rydberg atoms to create “giant” dispersive
non-linearities on a weak “signal” beam. Specifically, we
use atoms in a 3-level ladder configuration (see Fig. 1a)
driven by a strong (blue) laser beam, detuned from res-
onance on the upper transition, and a very weak (red)
signal beam on the lower transition. Our scheme is sim-
ilar to those used in previous work on non-linearities
in three-level systems [9, 10]; however, even at optimal
performance, the optical non-linearity produced in those
schemes was not large enough to be useful at the single-
photon level. Here, the two-photon transition involves
Rydberg states in order to exploit their very large van der
Waals interactions to further enhance the non-linearity.

It should be noted that a signifiant challenge in such
experiments is that, while the non-linearities are ex-
pected to be extremely large at very small intensities,
they also quickly saturate with increasing signal beam in-
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FIG. 1: a) An ensemble of N three-level atoms inside an op-
tical cavity is excited by a strong (blue) coupling field, and
a weak (red) signal field, all detuned from resonance with re-
spect to the 5S1/2 → 5P3/2 → nD5/2 transitions in Rubidium
87. b) Principle of the measurements. Lower part: black:
cavity scan without atoms, red: without the blue beam, blue:
with blue light at very low red intensity. θ is the signal laser-
cavity detuning (in units of cavity linewidth), scanned with
the cavity length. Upper part: corresponding real part of sus-
ceptibilities. The effect of blockade is indicated by the green
arrows. c) Measured transmission versus θ with the coupling
field on (green) or off (red) for different normalized red in-
tensities Y in the case of the n = 61 state. The differential
peak shift, denoted by Φ(Y ), is reduced by the blockade for
increasing intensities (see text).

tensity, whereupon one enters the dipole blockade regime.
As such, one must be able to work with very small
light intensities and to accurately detect small non-linear
phase shifts.

In this letter, we present the first measurements and
a simple physical interpretation of this “giant” disper-
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sive non-linear effect. At the lowest (non-linear) order
in signal intensity, a χ(3) behaviour is expected, creat-
ing intensity-dependent phase shifts. In order to both
create and detect such phase shifts, we use the follow-
ing experimental approach. First, in order to increase
the dispersive effects with respect to the absorptive ones,
the signal and control fields are detuned from all levels
(intermediate and Rydberg, see Fig. 1a). Second, the
atoms are located inside a low-finesse optical cavity, in
order to amplify the effects while keeping a high input-
output coupling efficiency. Since the cavity is itself an
interferometer, it converts the non-linear phase shift into
a shift of the cavity resonance peak; the position of this
peak can be measured as a function of the intensity of
the signal light, with and without the coupling blue light.
Theoretically, the system is described by the Hamil-

tonian for a 3-level atomic ensemble in the presence of
blue and red laser fields, and the van der Waals interac-
tion potential between Rydberg atoms. This leads to a
hierarchy of Bloch equations containing atom-atom cor-
relation operators [11, 12]. The susceptibility χ expe-
rienced by the signal field is determined by the atomic
coherence of the lower transition of the ladder system.
As we are interested in its value at low field intensities,
the hierarchy may be truncated to second order (two-
body correlations), leading to a closed set of equations
[11]. The solution of these equations may be performed
numerically for the full three-level model, or analytically
by appropriate adiabatic eliminations. Both cases re-
cover the result obtained in [11] for the particular case of
zero two-photon detuning.
Additionally, this analysis must take into account that

the blue and red light have different beam waists, stand-
ing wave structures and very different finesses (respec-
tively 2 and 120) in the optical cavity. Hence, the spatial
variations of the two fields must be introduced in the nu-
merical evaluation of Bloch equations, and averages per-
formed over the intensity distributions. In addition, the
coupling of the injected cavity mode with other trans-
verse cavity modes, induced by the non-linear term of
susceptibility, might produce losses and additional line-
shifts [13], but this effect was calculated to be negligible
in our experimental conditions.
The numerical and analytical solutions we obtained

for the dispersive part in the χ(3)-limit confirm a modi-
fied version of the “universal scaling” introduced in [14],
where the susceptibility of the medium is expressed as:

χ = χ3level + pb (χ2level − χ3level). (1)

Here, χ2level is the susceptibility of the lower one-photon
transition without blue light, χ3level is the susceptibil-
ity of the same transition with blue light but without
Rydberg-Rydberg interactions, and pb is the probabil-
ity for an atom to be blockaded due to the Rydberg-
Rydberg interaction. The intuitive explanation of the
non-linear effect is the following: if we inject a very weak
red signal beam in the presence of the blue light on the
two-photon transition, it will experience the single-atom

3-level dispersive phase shift (pb ∼ 0, χ ∼ χ3level). As
the red intensity is increased, the Rydberg state pop-
ulation will increase with the effect that each excited
Rydberg atom will detune from the two-photon reso-
nance all neighbouring atoms inside a blockade sphere,
because of the Rydberg-Rydberg interaction. Therefore
the 3-level component of the dispersion will be reduced,
and the dispersion of the medium will go back towards
its value in absence of blue light (pb → 1, and thus
χ → χ2level). In equation (1), χ2level and χ3level can be
obtained from standard 2-level and 3-level optical Bloch
equations (without the Rydberg interaction term), while
pb must be inferred from the full model. The result is
that, to lowest order in the red beam intensity, one can
write the simple relation (holding for a homogeneous sys-
tem)

pb = (p3 − p3coll)/p3 = nb p3, (2)

where p3 is the Rydberg population without Rydberg-
Rydberg interactions, p3coll is the Rydberg population in
presence of interactions, and nb is the number of atoms
in a blockade sphere [11], more precisely defined by

nb = (2π2/3)ρ
√

|C6|/δe. (3)

In this expression, ρ is the atomic density, C6 is the usual
coefficient in the van der Waals interaction [4, 5], and
δe is the two-photon detuning, corrected (and actually
increased, see Appendix) by the blue-induced light shift.
The experimental scheme is shown in Fig. 1a. A

cloud of cold 87Rb atoms in a magneto-optical trap is
placed into an optical cavity, with finesse F ∼ 120 and
linewidth κ/2π ∼ 10 MHz at 780 nm. The atomic sam-
ple is cooled to 40 µK by 6 ms of polarization gradi-
ent cooling, whereupon the sample is optically pumped
to the 5S1/2(F = 2,mF = 2) state. Approximately 1
nW of 780 nm light is coupled into the cavity; the red
light is detuned by ∆ = −75 MHz ∼ −25γ below the
5S1/2(F = 2,mF = 2) → 5P3/2(F = 3,mF = 3) tran-
sition with linewidth γ. The cavity length is scanned
around resonance with the red beam. Approximately
100 mW of a 480 nm beam is also injected into the
cavity, using a dichroic mirror. The two beams are
slightly blue-detuned from the two-photon transition to-
ward the Rydberg state nD5/2(F = 4,mF = 4), with
n = 46, 50, 56, 61. On the cavity output side, the blue
and red beams are separated by a second dichroic mirror,
and the 780 nm light is focused on an avalanche photo-
diode (APD). Since the two-photon detuning has to be
rather small (typically 1 MHz), the locking system of the
lasers should be designed to ensure a narrow linewidth of
the two-photon transition. For this purpose, the red (780
nm) and blue (480 nm) lasers are locked onto the same
“transfer” cavity, as well as a far detuned laser (810 nm)
locking the experimental cavity.
The choice of the sign of the detunings is very impor-

tant, because neither the light shifts nor the Rydberg
interactions should bring the atoms (or pairs of atoms)
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into resonance, otherwise the losses become very high.
This is both predicted theoretically [11] and observed ex-
perimentally. We are using nD5/2 Rydberg states, that
have attractive interactions and may involve many dif-
ferent potential curves. One reason for this is to fulfill
the above condition on the sign of the detunings. The in-
creased risk to create ions in the cloud due to attractive
Rydberg-Rydberg interactions is discussed below. The
value of

√
C6 is calculated by averaging

√

C6(λ) over po-
tentials Uλ of a given nD5/2 + nD5/2 manifold, where λ
enumerates the molecular states. These effective C6 lie
within 20 % from the values calculated in [15].
The cavity resonance position corresponds to a mea-

sured value of θ = (ω − ωc)/κ, ω and ωc being the red
laser and cavity frequencies (θ = 0 is the resonance po-
sition without atoms). In the absence of blue light and
well below one-photon saturation, the atoms induce a
shift of this position proportional to Cχ2level ∼ Cγ/∆.
It depends on the detuning ∆ and on the cooperativity
parameter C = Ng2/2γκ where g is the usual atom-field
coupling parameter, and C takes into account the collec-
tive enhancement due to the N atoms within the cavity
mode. In the presence of blue light, the shift becomes
∝ Cχ where χ is the general susceptibility, expected to
be theoretically defined by (1) in our parameter range.
We measured the blue-induced part of the resonance shift
Φ(Y ) (see Fig. 1c), where Y is the red intensity normal-
ized to the saturation intensity at resonance on the lower
transition. A significant Y -dependent blue-induced res-
onance shift at low values of Y is an indication of the
desired collisional non-linear dispersive effect. It is con-
venient to normalize this shift to its value for vanishing
red power, and to consider Φ(Y )/Φ(0). From (1) and (2)
its theoretical value is given by:

Φ(Y )

Φ(0)
=

(χ− χ2level)

(χ3level − χ2level)
= 1− nbp3. (4)

To lowest order, p3 ∝ Y , so the quantity 1 − nbp3
should manifest a Y -dependence and, according to (3), a
Rydberg-level dependent behaviour. It should be noted
that p3 is also dependent on the blue Rabi frequency (see
Appendix) and, since the different Rydberg levels possess
different dipole moments, a given blue power corresponds
to different values of Rabi frequency for the different n
states. However, after averaging over spatial intensity
distributions as discussed above, the averaged p3 is only
very weakly sensitive to the state-dependent variation of
blue Rabi frequency in our parameter range.
Figure 2a shows the measured shift versus Y for Ryd-

berg states with different n. Below a certain Y value, the
behaviour is well described by the function 1 − snY . As
the red power increases, a saturation effect appears: the
number of atoms in the Rydberg level stops increasing
proportionally to the red intensity. If our simple descrip-
tion is correct, the initial slope sn should be proportional
to

√
C6 which scales as

√
n∗11 = n∗5.5 = (n−d)5.5 where

d ≈ 1.35 is the quantum defect [4, 5]. However, sn actu-
ally contains an additional contribution from the intrin-
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FIG. 2: a) Normalized cavity shift Φ(Y )/Φ(0) versus normal-
ized input red intensity Y , for several Rydberg states with
n = 46 (black triangles), 50 (green diamonds), 56 (red cir-
cles), 61 (blue squares). The full lines corespond to the initial
slopes of the curves, which are expected to be of the form
1− snY . b) Value of sn as a function of (n− d), in logarith-
mic scales. The slope of this curve gives the expected power
law behaviour. c) Normalized cavity shift Φ(Y )/Φ(0) as a
function of the normalized input red intensity Y , for the Ry-
dberg state n = 61, for two different atomic densities ρlow ∼

0.02 at/µm3 (orange circles), and ρhigh ∼0.04 at/µm3 (blue
squares). The observed change in slope is consistent with the
expected ratio ρhigh/ρlow ∼ 2 of the densities.

sic non-linearity of χ3level. The measured sn, corrected
for this calculated (small) contribution, are plotted as a
function of n∗ in log-log scale in Fig. 2b. A linear fit
yields a slope of 6 ± 0.5, consistent with the expected
5.5. To confirm that the observed effect is due to atomic
interactions, we show in Fig. 2c the results obtained for
n = 61, by decreasing the atomic density, and keeping
the same cooperativity. This is achieved by loading more
atoms in the MOT and letting the cloud expand a longer
time, so the same cooperativity is obtained from a larger
cloud with less density. In that case, one expects a re-
duced non-linear collisional effect, since interactions are
density dependent (nb is proportional to ρ). The two sets
of data points in the figure correspond to the two values
ρlow ∼ 0.02 at/µm3, and ρhigh ∼ 0.04 at/µm3: the ob-
served change in slope (by a factor 2.3±0.3) is consistent
with the density ratio ρhigh/ρlow ∼ 2.

It is also important to take into account the time-scale
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of the experiment. The measurements - the scans of the
cavity length around the red resonance - are done in a
transient regime: the time it takes to scan one cavity
linewidth is approximately 4 µs, which should be com-
pared to the time necessary to reach the steady state
value of the Rydberg population. The two times turn
out to be of the same order of magnitude, so we have
used dynamical rather than steady state solutions, lead-
ing to some reduction of the observed non-linear effect.
The final calculated values of the slopes sn, taking into
account spatial averaging and dynamics, agree with the
experiment to within 50 %.
An additional complication arises from the fact that

the blockade effect could be mimicked by the unintended
creation of ions in the medium. Such ions can be gener-
ated either from single atoms, due to the interaction of
Rydberg atoms with the ambient blackbody radiation,
or from collisions between Rydberg atoms. In the lat-
ter, the collisions are enhanced since we work with Ry-
dberg states with attractive atom-atom potentials. By
increasing the laser powers and scanning the cavity at
lower speed, we observed typical cascade ions effects [16],
which in our case lead to a reduction in the cooperativ-
ity through atom loss. However, ions do not seem to
play a role in the regime of parameters where we mea-
sured Φ(Y )/Φ(0). To confirm this, we varied the dura-
tion of exposure to the red light during the scans and did
not observe significant changes in the non-linear cavity
shift, while the number of ions should change dramati-
cally [16, 17]. Furthermore, for the most relevant param-
eter range, corresponding to the lowest red intensity, the
Rydberg state population is actually very small (< 5%),
and the number of ions must be even smaller, typically
by several orders of magnitude.
In conclusion, it is interesting to compare the observed

χ(3) with other references. The resonance shift we ob-
serve for the n = 61 Rydberg state corresponds to an
effective value of Re[χ(3)] ∼ 5.10−9m2/V 2. This value,
which is the first measurement of a dispersive non-linear
susceptibility of such magnitude in Rydberg gases, is ap-
proximately two orders of magnitude below the value re-
ported in [18], which was for a stronger absorptive on-
resonance process. It is worth noting that in our setup
the non-linear phase shift corresponding to this χ(3) is
multiplied by the cavity finesse.
It can thus be expected that the kind of non-linearity

observed here can be extended to the single photon
regime by reducing the cavity beam waist, increasing the

cavity finesse and choosing a Rydberg state with higher
quantum number n. Correspondingly, one should in-
crease the blue intensity in order to keep a large enough
blue-induced phase shift, despite the decrease of the
dipole matrix element as n increases. A better descrip-
tion of the losses (due to the atoms or to the cavity)
also has to be developed. Though much progress is still
needed to reach the regime of large dispersive photon-
photon interactions in the optical domain, in our system
the interaction-induced non-linearities exceed by several
orders of magnitude the usual non-linearities resulting
from a collection of one-atom effects.
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Appendix. We give here explicit expressions of quanti-
ties used in the text, obtained from suitable approxima-
tions in standard optical Bloch equations. Let us intro-
duce again the number nb of atoms in a blockade sphere
[11], defined by

nb =
2π2ρ

3

√

|C6|
δ − g2b/∆

, (5)

where C6 is the standard van der Waals coefficient, δ is
the two-photon detuning (δ > 0), ∆ the one-photon de-
tuning (∆ < 0) , and gb the blue laser Rabi frequency.
To lowest order for our experimental parameters, the Ry-
dberg population p3 without interactions is :

p3 =
g2ag

2
b

∆2(δ − g2b/∆)2
(γb∆

2 + γg2b )

(γc∆2 + γg2b )
, (6)

where ga is the red Rabi frequency (Y ∝ g2a), γb and
γc are the coherence and population damping times of
the Rydberg level. The population p3coll of the Rydberg
state in presence of interactions is: p3coll = p3(1−p3 nb),
and the real part of the “differential” susceptibility is:

(χ3level − χ2level) ∝
g2b

∆2(δ − g2b/∆)
. (7)

As noted above, averaging over the spatial distributions
of intensities has been carried out for comparison with
the experimental data.
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[11] S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Phys. Rev.
Lett. 107, 153001 (2011).
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