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Abstract: By combining stochastic electrodynamics and the Maxwell-
Garnett description for effective media we study the radiative heat transfer
between two nanoporous materials. We show that the heat flux can be sig-
nificantly enhanced by air inclusions, which we explain by:(a) the presence
of additional surface waves that give rise to supplementary channels for heat
transfer throughout the gap, (b) an increase in the contribution given by the
ordinary surface waves at resonance, (c) and the appearance of frustrated
modes over a broad spectral range. We generalize the known expression for
the nanoscale heat flux for anisotropic metamaterials.
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1. Introduction

Near field heat transfer [1–4] between closely spaced isotropic media has been intensively
studied since it has been predicted that the heat flux at nanoscale can exceed the far-field limit
of the Planck’s blackbody theory by orders of magnitude [5, 6]. When considering dielectrics,
surface phonon polaritons provide additional enhancement as discussed in Refs. [7–9]. Several
experiments have recently confirmed the theoretical predictions for simple systems [11,13–16].

With the modern techniques of nanofabrication it is now possible to explore a whole new



level of complexity in material science and to fabricate artificial materials that can exhibit a
considerable diversity of optical properties [17–22]. In many situations, these composite media
possess privileged orientations so that their electromagnetic response depends on the direction
of photons propagation. When the photon’s wavelength in such a medium is large compared to
the size of its representative unit cell, the latter behaves effectively like an anisotropic material
and therefore may be described by an effective permittivity tensor (and, when necessary, an ef-
fective permeability as well). This naturally points to the question of how anisotropy influences
the near-field heat transfer.

In this work, we address this question in the particular case of two semi-infinite uniaxial
media characterized by optical axes orthogonally oriented with respect to the surface of inter-
action. The paper is organized as follows: In Sec. II we derive the expression for the heat flux
between two anisotropic media. After a brief description of the relevant composite media to
our purposes in Sec. III we investigate in Sec. IV the surface and Brewster modes supported
by them and their main features. Next, we compare in Sec. V the near-field heat exchanges
between two uniaxial media to the classical ones between two isotropic media. Finally, in order
to explain the difference in the behavior of isotropic and anisotropic materials, we discuss in
Sec. VI the transmission factor in detail between two uniaxial media and in Sec. VII we present
our conclusions.

2. Radiative heat transfer between anisotropic media

Let B1 and B2 be two anisotropic semi-infinite bodies, filling respectively the regions z < 0
and z > d and leaving a vacuum gap between them. In order to ensure a stationary process, we
assume that the Bi are in local thermal equilibrium at a temperature Ti, with T1 �= T2. The heat
flux P between the two bodies is given by

P(T1,T2,a) =
∫

A12

dA · 〈S〉, (1)

where S = E×H is the Poynting vector and A12 is any surface that separates the two bodies.
By taking such a surface to be a plane defined by z = z0 (0 < z0 < d) and using the (transverse)
translational invariance of our system, the previous equation simplifies to

P(T1,T2,a) = A〈Sz〉, (2)

showing that only the z-component of the Poynting vector is needed. After a straightforward
calculation, the latter can be conveniently written as [3]

〈Sz〉=
∫ ∞

0

dω
2π

[
Θ(ω,T1)−Θ(ω,T2)

]〈Sω〉, (3)

where we identify the mean energy of a harmonic oscillator

Θ(ω,T ) =
h̄ω

e
h̄ω

kBT −1
, (4)

and also the averaged spectral Poynting vector [3]

〈Sω〉= 2ReTr

[∫
A
dr′‖

(
G(r,r′)∂z∂ ′

zG
†(r,r′)−∂zG

†(r,r′)∂ ′
zG(r,r′)

)]
z′=z=z0

. (5)

where r = r‖+ zẑ and G(r,r′) is the electrical Green’s dyadic, satisfying
[−→

∇×−→
∇×−ω2

c2 ε(r,ω)

]
G(r,r′,ω) = δ (r− r′)I. (6)



Moreover, we have introduced Boltzmann’s constant kB, Planck’s constant 2π h̄; the † symbol-
izes hermitian conjugation and Tr the 3×3 trace.

In order to evaluate the heat flux in the given geometry we have to determine the Green’s
dyadic inside the gap region. This can be done by considering the multiple scattering of a plane
wave due to a source inside the gap [23]. Details and the final expression for the Green’s dyadic
can be found in appendix A. When inserting the resulting expression in Eq. (40) into the heat
flux formula, we find

〈Sω〉=
∫

d2κ
(2π)2 T (ω,κ;d). (7)

The integral is carried out over all transverse wave vectors κ = (kx,ky)
t including propagating

modes with κ < ω/c and evanescent modes with κ > ω/c, where c is the velocity of light in
vacuum. The energy transmission coefficient T (ω,κ;d) is different for propagating and evanes-
cent modes and can be stated as

T (ω,κ;d) =

{
Tr
[
(1−R†

2R2)D
12(1−R1R

†
1)D

12†]
, κ < ω/c

Tr
[
(R†

2 −R2)D
12(R1 −R†

1)D
12†]

e−2|γr|d , κ > ω/c
(8)

where γr =
√

ω2/c2 −κ2 and R1, R2 are the 2×2 reflection matrices characterizing interfaces.
By writing them a bit more explicitly,

Ri =

[
rs,s
i (ω,κ) rs,p

i (ω,κ)
rp,s
i (ω,κ) rp,p

i (ω,κ)

]
, (9)

we see that their elements rλ ,λ ′
i are the reflection coefficients for the scattering of an incoming

λ -polarized plane wave into an outgoing λ ′-polarized wave. Note that expression (8) is very
general, as it in principle applies to any crystallographic anisotropy, both electric and magnetic.
In the isotropic limit they reduce to the usual Fresnel coefficients

rs,s
i (ω,κ) =

γr −
√

εi(ω)ω2/c2 −κ2

γr +
√

εi(ω)ω2/c2 −κ2
,

rp,p
i (ω,κ) =

εi(ω)γr −
√

εi(ω)ω2/c2 −κ2

εi(ω)γr +
√

εi(ω)ω2/c2 −κ2
,

rs,p
i (ω,κ) = rp,s

i (ω,κ) = 0, (10)

and we see that the matrices become diagonal. In addition, we have introduced the matrix D12,
defined by

D12 = (1−R1R2e2iγrd)−1, (11)

which gives rise to a Fabry-Pérot-like denominator for T (ω,κ;d) in the isotropic case.
From Eqs. (3), (7) and (8) we see that, once the reflection matrices are known, it is possi-

ble to determine the heat flux between two arbitrary anisotropic semi-infinite bodies kept at
fixed temperatures T1 and T2. Moreover, in order to have an independent check, we verified
that Eq. (7) also can be derived from the general scattering formalism derived on Ref. [24].
In the following we will use these expressions to discuss the heat flux between two uniaxial
anisotropic materials with their optical axes normal to the interface.

3. Porous materials

The structures investigated in this paper are depicted in Fig. 1. They are two semi-infinite media
composed by a host isotropic material, defined by its complex dielectric function εh(ω) =



Fig. 1. Sketch of two porous slabs with different temperatures separated by a vacuum gap.

ε ′h(ω)+ iε ′′h (ω) (where ε ′′h (ω)> 0), with uniform cylindrical inclusions oriented in the direction
orthogonal to the surface as shown in Fig. 1. These inclusions in turn are filled by a medium of
dielectric permittivity εi, that is also assumed to be isotropic. When the size of the representative
unit cell is much smaller than all the other characteristic scales involved, a suitable volume
average of the material’s local electromagnetic response can be made. In our case, the emerging
azimuthal symmetry in this long wavelength limit gives rise to effective uniaxial crystals with
a permittivity tensor of the form

ε = ε‖ [ex ⊗ ex + ey ⊗ ey]+ ε⊥ez ⊗ ez (12)

where ex, ey, and ez are orthogonal unit vectors in x, y, and z direction. The parallel and per-
pendicular components can be derived from the Maxwell-Garnett effective medium theory
(EMT) [25, 26]

ε‖ = εh
εi(1+ f )+ εh(1− f )
εi(1− f )+ εh(1+ f )

, (13)

ε⊥ = εh(1− f )+ εi f , (14)

where f is the volume fraction of inclusions. For the structure considered in this work the
deviation from the exact result of homogenization given in Refs. [28, 29] is small even for
relatively high filling factors such as f = 0.5. Hence, we will discuss the heat flux between
porous media with the Maxwell-Garnett expression for f ∈ [0,0.5] in this work.

The condition of long wavelengths sets a limit to the lattice constant a of the inclusions for
which the EMT can be used. In the far-field regime this condition is fullfilled when the thermal
wavelength λth = h̄c/kBT is much larger than a. In the near-field region the contributing modes
at a distance d above the porous material have a lateral wavelength which depends on d. For
κ = 2π/a (which corresponds to a lateral wavelength a) the evanescent waves are damped as
exp[−

√
(2π/a)2 −ω2/c2d]≈ exp(−(2π/a)d) in the non-retarded near-field region above the

porous material. It follows that the contribution to the heat flux is dominated by evanescent
waves with lateral wavelength larger than a if d > a/(2π). On the other hand, one can argue
that a nonlocal model for the permittivity is necessary if the lateral wave vectors κ are on the
order of π/a. Since the exponential in the transmission coefficient in Eq. (8) for κ > ω/c sets a
cutoff for κ of the modes contributing to the near-field heat flux which is ≈ 1/d, one finds that
a local EMT description is permissible if d 
 a/π . Hence, for a given lattice constant a of the



inclusions the validity of the EMT in Eq. (13) in the near field regime is restricted to d 
 a/π .
Artificial structures as depicted in Fig. 1 can have an a on the order of 100nm [22] so that the
distances for which the EMT can be considered as appropriate in this case are about d > 30nm.
Nonetheless, chemically produced nanoporous materials can show smaller structures [27] so
that we will consider distances d ∈ [10nm,100 μm].
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Fig. 2. Plot of the dispersion curves (white dashed lines) from Eq. (22) in the (ω ,κ) plane
for filling factors (a) f = 0.1, (b) f = 0.3, and (c) f = 0.5. The white dash-dotted line
represents the light line in vacuum (ω = κc). Furthermore the dark (blue) areas mark the
region for which γp is purely real, whereas the bright (red) areas are the regions for which
γp is purely imaginary.

4. Surface and Brewster modes in porous media

Let us study the surface waves supported by these media when they are sufficiently far away
from each other so that any coupling of evanescent waves can be neglected. By definition, these
surface waves are resonant surface modes and therefore are determined by the poles of the
reflection coefficients of these media. For out-of-plane uniaxial media the components of the
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Fig. 3. Plot of ln(1/|rp,p|2) in (ω,κ) plane for (a) f = 0.1, (b) f = 0.3, and (c) f = 0.5.

reflection matrix are

rs,s(ω,κ) =
γr − γs

γr + γs
, (15)

rp,p(ω,κ) =
ε‖γr − γp

ε‖γr + γp
, (16)

rs,p = rp,s = 0, (17)

where γs,p are given by the solutions of Fresnel equations in the anisotropic material [30]

γs =
√

ε‖ω2/c2 −κ2, (18)

γp =

√
ε‖ω2/c2 − ε‖

ε⊥
κ2, (19)

and hence it follows at once that the surface modes are determined by

(γr + γs) = 0, (20)

(ε‖γr + γp) = 0. (21)

It is straightforward to verify that in this case only the second equation above can be satisfied,
meaning that only p-polarized surface waves can exist at the interface of these media. Solving



that equation explicitly for κ gives us the sought dispersion relation of surface waves

κ =
ω
c

√
ε⊥(ε‖ −1)

ε‖ε⊥−1
. (22)

but one must be aware that Eq. (22) has two branches, and only one is connected to surface
modes [31]. Since their dispersion relation involves ε‖ and ε⊥, these waves are also called
extraordinary surface waves [32], and they reflect the material anisotropy. When ε‖ = ε⊥ = ε ,

Eq. (22) degenerates into the well-known dispersion relation κ = ω/c
√

ε/(ε +1) of surface
modes supported by a semi-infinite isotropic medium (bounded by vacuum) with a dielectric
permittivity ε . In Fig. 2 we plot the dispersion curves for silicon carbide (SiC) with vacuum
inclusions for different filling factors f = 0.1, f = 0.3 and f = 0.5. The dielectric function of
SiC is described [33] by the simple model

εh = ε∞
ω2 −ω2

L − iωΓ
ω2 −ω2

T − iωΓ
(23)

where ωL = 1.827 · 1014 s−1, ωT = 1.495 · 1014 s−1, Γ = 0.9 · 1012 s−1, and ε∞ = 6.7 denote
respectively the longitudinal and transversal optical phonon pulsation, the damping factor and
the high frequency dielectric constant, respectively. In order to avoid the inherent difficulties
of multiple possible interpretations of complex dispersion relations [34], we have deliberately
neglected the host material losses to represent these curves. The relevance of this approximation
can be checked by comparing Fig. 2 with Fig. 3, where we plot the reflection coefficients of
dissipating porous material. In order to distinguish between evanescent and propagative waves
inside the effective medium, solutions of Eq. (22) are superimposed in Fig. 2 to a two-color
background. This background is a binary representation of ζ = sgn(ε‖ω2/c2 − ε‖κ2/ε⊥). In
the blue zones ζ < 0 so that only evanescent modes can exist, and conversely, in the red zones
we have ζ > 0 and all modes are propagative. Similarly the light line ω = cκ allows us to
distinguish between the radiative (propagative) and the non-radiative (evanescent) modes inside
the vacuum. Notice that, in order to satisfy Eq. (22) both ζ and sgn(ω2/c2 −κ2) must be the
same. In other words, frustrated modes cannot satisfy the dispersion relation (22).

Now let us turn to the description of modes supported by our artificial structures. For low
filling factors we note in Fig. 2(a) the existence of two surface modes. The first one (at a lower
frequency) corresponds to the classical surface phonon-polariton (SPP) supported by a massive
SiC sample [35]. That surface mode is also present in isotropic SiC. The most interesting feature
of Fig. 2(a) is, however, the appearance of a second surface mode at higher frequencies, because
it is a signature of the anisotropic character of the material and therefore a direct consequence
of the vacuum inclusions in the host medium. As the porosity increases, both surface waves
split. Beyond a critical filling factor between f = 0.3 and f = 0.5, the upper surface wave
disappears as is seen in Fig. 3. Nevertheless the SPP which still exists continue to move toward
the smaller frequencies, i.e., to ωT. Above the light line, we see that the anisotropy gives rise
to two different types of Brewster modes. At high frequency we recognize the usual modes
where the reflection coefficient [Fig. 3(a)] of the effective medium vanishes. In addition to
these modes, different Brewster modes appear depending on the value of filling factor. Also,
we see on the reflection curves (Fig. 3) that the Christiansen point [36] for which the reflectivity
is zero for all κ does not depend on the porosity. Indeed, an inspection of expressions (13) and
(14) shows that the condition for the Christiansen point of the host material εh = 1 implies that
ε‖ = 1 and ε⊥ = 1 so that, according to Eq. (17), the reflection coefficients vanish.



5. Heat flux between porous media

Before we discuss the influence of the inclusions on the heat flux, we show in Fig. 4 the results
of the mean Poynting vector 〈Sz〉 between two semi-infinite SiC bodies at fixed temperatures
T1 = 300K and T2 = 0K. First of all one can see that the heat flux becomes very large for
distances much smaller than the thermal wavelength λth = h̄c/kBT (which is about 7.68 μm
for T = 300K). At d = 10nm the heat flux for the two SiC bodies is about 1000 times larger
than the heat flux between two black bodies. This increase is due to the frustrated total internal
reflection and to the coupled surface phonon polariton modes [9]. In the propagating regime,
i.e., for distances larger than λth the heat flux is determined by Kirchhoff-Planck’s law and is
limited by the black-body value. Note, that the heat flux is dominated by the p-polarized modes
for distances smaller than 100nm and larger than 10 μm, whereas for distances in between it is
dominated by the s-polarized modes.
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Fig. 4. Heat flux between two SiC plates over distance with T1 = 300K and T2 = 0K. The
flux is normalized to the value for two black bodies SBB = 459.6Wm−2. The contribution
of the s- and p-polarized part are shown as well.

Now, we introduce the inclusions by using the Maxwell-Garnett expression in Eqs. (13) and
(14). We use the same filling factor for both materials, so that we have a symmetric situation.
In Fig. 5 we show the resulting heat flux normalized to the values for the two non-pourous SiC
plates shown in Fig. 4. We find that for distances smaller than 100nm and larger than 1 μm the
heat flux becomes larger when we add air inclusions, whereas for intermediate distances the
heat flux is reduced.

In order to see how the s- and p-mode contribution is changed by the porosity, we show in
Fig. 6(a) and 6(b) the plots for the separate contributions of s- and p-polarized modes. It is
clear that the p-polarized part of the heat flux gets enhanced for all distances when compared
to the isotropic case, regardless of the filling factor. The s-polarized part in turn gives a larger
heat flux for distances larger than about 1 μm and a smaller heat flux for distances smaller than
1 μm. Therefore, the smaller heat flux found in Fig. 5 for intermediate distances is associated
to the dominance of s-polarized modes in that distance regime.

In summary, by introducing inclusions we find for large and small distances an increase
of the heat flux. For the propagating regime (d > λth) this can be understood from a simple
argument: the vacuum holes simply dilute the material so that, according to Kirchhoff’s law,
the reflectivity is decreased and hence the emissivity is increased. In fact, for f = 1 one would
retrieve the black body result, since in this case the reflectivity is zero. On the other hand,
there is no such simple argument for the increased heat flux in the near-field region. Here, it
is necessary to study how the coupled surface modes, which give the main contribution to the
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Fig. 5. Heat flux between two porous SiC plates over distance with T1 = 300K and T2 = 0K.
The flux is normalized to the value for two SiC plates shown in Fig. 4.

heat flux for distances smaller than 100nm, are influenced by the introduction of the inclusions.
This will be done by inspection of the transmission coefficient in the next section.

6. Transmission coefficient

As mentioned before, for the small distance regime (d < 100nm) the heat flux between two
isotropic semi-infinite SiC-bodies is solely dominated by the p-polarized contribution. This
remains true for the porous SiC bodies. In fact, the dominance of the p-polarized contribution
becomes even greater with increasing filling factors. Hence, to understand the observation that
by introducing some porosity the heat flux becomes larger, it suffices to study the p-polarized
contribution.

In Fig. 7 we show the transmission coefficient Tp(ω,κ;d) in the (ω,κ)-plane for different
filling factors and a distance d = 100nm. In Fig. 7(a) one can see Tp(ω,κ;d) for two isotropic
SiC plates. Here, Tp(ω,κ;d) is one or close to one for the propagating modes, the total inter-
nal reflection modes and the coupled surface phonon polaritons. In the plotted region one can
mainly see the coupled surface phonon polaritons, which are responsible for the large heat flux
at small distances. Now, for f = 0.1 one can see in Fig. 7(b) that a second coupled surface mode
appears due to the air inclusions. In addition, the coupled surface mode of the bulk SiC is shifted
to smaller frequencies. When increasing the filling factor [Fig. 7(c) and 7(d)] the upper coupled
surface modes shift to higher frequencies and become less important for the transmission coef-
ficient. On the other hand, the low frequency surface modes shift further to lower frequencies.
Between the two coupled surface mode branches a band of frustrated internal reflection modes
is formed which gives also a non-negligible contribution to the transmission coefficient.

In order to get further information we now consider the spectral mean Poynting vector 〈Sω〉
defined in Eq. (7) for p-polarization only. We have plotted this quantity in Fig. 8 at the same
distance as before, i.e., d = 100nm, and again for different filling factors. As in Fig. 7 one can
see the strong contribution of the two coupled surface mode resonances, which are shifted in
frequencies when changing the filling factor. Moreover, the shifting of the primary surface mode
to lower frequencies by itself also enhances the flux, as such a shift brings that surface mode
closer to the peak wavelength of blackbody radiation as given by the Wien’s law. Furthermore,
one can now observe, that when increasing the filling factor the low frequency resonance is not
only shifted to smaller frequencies, but the resonance is also getting stronger.

The study can now be completed when considering the mean transmission factor for the
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Fig. 6. As in Fig 5 but for the (a) s- and (b) p-polarized contribution only.

p-polarized modes, that was introduced in Ref. [9] as

T p(κ) =
3

π2

∫ ∞

0
du f (u)Tp(u,κ;d) (24)

with u = h̄ω/kBT and f = u2eu/(eu − 1)2. It represents the mean transmission coefficient of
a mode specified by it’s wave vector κ for a given temperature T and a small temperature
difference ΔT between the two bodies. By means of this quantity the heat flux can be rewritten
in a Landauer-like form [9]

〈Sz〉= π2

3
k2

BT
h

∫
dκ
2π

κ T p(κ)ΔT. (25)

Note, that for κd 
 1 and κ > ω/c the transmission coefficient Tp(ω,κ;d) is exponentially
damped [see Eq. (8)] and therefore also the mean transmission factor T p(κ). This damping
determines the wave vector cutoff and hence the number of states contributing to the heat flux.

Now, in Fig. 9 we plot T p(κ) for a given distance of d = 100nm and different filling factors
normalized to the mean transmission factor for two semi-infinite SiC bodies. For f = 0.1 the
mean transmission coefficient for the porous SiC increases for intermediate κ but decreases for
very large κ . The increased mean transmission factor is due to the second coupled surface mode
and the frustrated modes, whereas the lower value for large wave vectors can be attributed to
a stronger cutoff in the transmission coefficient, which means that the number of contributing
modes is decreased. The enhancement of the transmission factor due to the surface mode pre-
vails and leads to an enhanced heat flux at that distance. The same mechanism is responsible for
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Fig. 7. Transmission coefficient Tp(ω,κ;d) in the (ω,κ)-plane for two porous SiC slabs
with different filling factors (a) f = 0, (b) f = 0.1, (c) f = 0.3, and (d) f = 0.5. The distance
is fixed at d = 100nm.
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the enhanced heat flux for f = 0.3. On the other hand, for larger filling factors the curves change
slightly for intermediate κ compared to the curve for f = 0.3. The contribution in that interme-
diate region is due to the second coupled surface mode branch and the frustrated modes. But for
very large κ the mean transmission coefficient increases compared to f = 0.3. This means that
by introducing a higher porosity we soften the cutoff of the transmission coefficient. Hence, the
number of modes contributing to the heat flux is increased and results for large filling factors in
a further enhanced heat flux.

The dependence of the cutoff on the filling factor for large κ can easily be discussed for the
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ized to the isotropic case ( f = 0). The distance is fixed at d = 100nm and the temperature
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transmission coefficient Tp(κ ,ω;d). It was found in Ref. [9] that the cutoff region, i.e., where
Tp(κ ,ω;d) is exponentially damped, is given by

κiso > log

(
2

Im(ε)

)
1
2d

(26)

when considering two isotropic semi-infinite bodies at the surface mode resonance frequency
[see also Refs. [37]]. For the uniaxial anisotropic case as considered here, this relation changes
to

κuni > log

(
2

Im(
√ε‖ε⊥)

)
1
2d

(27)

where the permittivities have to be evaluated at the surface mode resonance frequency of the
semi-infinite anisotropic body (see Appendix B). In Fig. 10 we show a plot of κuni/κiso over
the filling factor. It is seen that by introducing the air inclusions the cutoff first decreases and
then monotonically increases. This is the same qualitative behavior as observed for the mean
transmission factor T p(κ) in Fig. 9 for κd 
 1. This reasoning confirms that the number of
contributing modes is the main mechanism for increasing the heat flux at small distances and
large filling factors ( f > 0.3).

7. Conclusion

We have presented a detailed study of near and far field heat transfer between two flat uni-
axial media made of polar materials (in our case, SiC) in which cylindrical inclusions drilled
orthogonally to surfaces are uniformally distributed.

After applying the classical stochastic electrodynamic theory to anisotropic materials we
have shown that, for short distances, the heat flux between such media can be significantly larger
than those traditionally measured between two isotropic materials in the same non-equilibrium
thermal conditions. For small filling factors we have determined that this enhancement stems
from additional surface waves arising at the uniaxial material-vacuum interface, clearly indi-
cating that such increase is intrinsically connected to anisotropy. Indeed, we did calculations
for isotropically rarified SiC plates with low filling factors ( f ≤ 0.1) and found that the heat
transfer modification for is much smaller. In contrast, for larger filling factors ( f > 0.3) we
have shown that, after a thorough analysis of the transmission factor, the enhancement in heat
transfer arises mainly from the increased number of modes contributing to the flux.
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A. Green’s dyadic in the gap region

In order to construct the Green’s dyadic in the vacuum gap we first start with the Green’s dyadic
in free space. If z > z′ Weyl’s expansion for the Green’s dyadic is [38]

G(r,r′) =
∫

d2κ
(2π)2

ieiκ ·(x−x′)

2γr
eiγr(z−z′)1 (28)

with γr =
√

ω2/c2 −κ2, x = (x,y)t and κ = (kx,ky)
t. The unit dyadic 1 is the unit dyadic in the

polarization basis and is defined as

1= â+s ⊗ â+s + â+p ⊗ â+p . (29)

The polarisation vectors for s- and p-polarized waves are given by

â+s =
1
κ

⎛
⎝−ky

kx

0

⎞
⎠ and â+p =

c
κω

⎛
⎝ kxγr

kyγr

−κ2

⎞
⎠ . (30)

By construction both polarization vectors are orthogonal. For propagating waves they are also
normalized. The Fourier component G(κ;z,z′) of the Greens dyadic is defined by

G(r,r′) =
∫

d2κ
(2π)2 G(κ;z,z′)eiκ·(x−x′). (31)

The above expression for the Green’s dyadic represents the field of a right going wave at z
of a source of unit strength placed at z′. If a semi-infinite medium is located at z > d then this
wave will be reflected so that the Green’s dyadic G(κ;z,z′) reads at z > z′

GA(κ;z,z′) =
i

2γr

[
1eiγr(z−z′) + e2iγrdeiγr(z+z′)R2

]
(32)

where we have introduced the reflection matrix

R2 = ∑
i, j={s,p}

r2
i, jâ

−
i ⊗ â+j (33)



with the reflection coefficients r2
i, j and the polarization vectors â−p = −c/(κω)(kxγr,kyγr,κ2)t

and â−s = â+s . If there is now a second semi-infinite medium at z < 0 with a reflection operator
defined as

R1 = ∑
i, j={s,p}

r1
i, jâ

+
i ⊗ â−j (34)

the waves in that cavity will be multiply reflected at the boundaries at z = 0 and z = d so
that [23]

GA(κ;z,z′) =
i

2γr

[
1eiγr(z−z′) + e2iγrde−iγr(z+z′)R2

+ e2iγrdeiγr(z−z′)R1R2

+ e4iγrde−iγr(z+z′)R2R1R2 + . . .

]
.

(35)

Summing up all contributions we get

GA(κ;z,z′) =
i

2γr

[
D12eiγr(z−z′) +D21R2e2iγrde−iγr(z+z′)

]
(36)

where we have introduced

D12 = (1−R1R2e2iγrd)−1, (37)

D21 = (1−R2R1e2iγrd)−1. (38)

The expression in Eq. (36) is not yet the complete intracavity Green’s dyadic, since we have
not considered the waves which start from z′ as left going waves and arrive after being reflected
at the boundary at z = 0 at z > z′. With the same reasoning as for GA(κ;z,z′) we find for this
contribution

GB(κ;z,z′) =
i

2γr

[
D12R1eiγr(z+z′) +D21R2R1e2iγrdeiγr(z′−z)

]
(39)

Finally, the intracavity Green’s dyadic is given by the sum of Eqs. (36) and (39) yielding

Gintra =
i

2γr

[
D12

(
1eiγr(z−z′) +R1eiγr(z+z′)

)

+D21
(
R2R1eiγr(z′−z)e2iγrd +R2e2iγrde−iγr(z+z′)

)] (40)

B. The resonances in an anisotropic material

The precise location of resonances can be analytically determined from expression (22) by
solving

ε‖ε⊥ = 1. (41)

Frequencies which satisfy this condition are resonance frequencies of medium because they
correspond to a flat region of the dispersion curve in the (ω,κ) plane and therefore to strong
density of states. Using expressions (13) and (14) this equation can be recast into the following
form

aε3
h +bε2

h + cεh +d = 0, (42)



with

a = (1− f )2, (43)

b = εi(1− f )(2 f +1), (44)

c = (1+ f )(ε2
i f −1), (45)

d = εi( f −1). (46)

The solutions of this equation can readily been calculated using the Cardano’s method [39].
When inclusions are made by pure vacuum (i.e. εi = 1), these solutions are real and read

εh,n = 2

√−p
3

cos

[
1
3

arccos

(
−q

2

√
27
−p3

)
+

2πn
3

]
(47)

for n = 0,1,2. with

p =
3ac−b2

3a2 and q =
27a2d−9abc+2b3

27a3 (48)

Only one of these solutions is positive and must be conserved to search the resonance frequen-
cies.
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