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We study the lifetime of the excited state of an atom or molecule near a plane surface with a given random
surface roughness. In particular, we discuss the impact of the scattering of surface modes within the rough surface.
Our study is completed by considering the lateral correlation length of the decay rate and the variance discussing
its relation to the C0 correlation.
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I. INTRODUCTION

The spontaneous decay rate of an excited atom or molecule
is known to depend on its environment. This effect is similar
to Purcell’s effect which has been studied theoretically and
experimentally in numerous works since the pioneering works
by Purcell and Drexhage [1,2]. In the very close proximity of
a surface the decay rate increases drastically, since the excited
atom or molecule can couple to nonradiative modes. This can
be related to the increase of the local density of states (LDOS)
near a surface which is due to evanescent modes providing
more channels into which the excited atom or molecule can
decay [3,4].

Recently, this effect which allows for controlling the decay
rate of atoms and molecules has been intensively investigated
for random or disordered media. In such materials the multiple
scattering of electromagnetic modes results in the formation
of speckles, i.e., spatial fluctuations of the LDOS. The spon-
taneous decay rate of atoms or molecules close or within such
systems then becomes a statistical quantity, which depends,
on the one hand, on the local near-field environment of the
source and, on the other hand, on the mesoscopic fluctuations
of the random material itself. In particular, the fluorescence
rate statistics or fluctuations of the LDOS in such media
has been considered theoretically [5–9] and experimentally
[10–13].

A random rough surface is similar to a bulk disordered
medium in the sense that above such a surface the LDOS
shows a spatial speckle pattern [14]. The lifetime of an atom
or molecule becomes a random quantity which depends on the
local environment of the particle and the statistical properties
of the surface. Recently, the speckle pattern above random
media [15–17] has been studied. The goal of this work is to
reconsider the impact of surface roughness on the spontaneous
decay rate. Previous studies have considered the impact of
the surface roughness on the average decay rate for atoms
or molecules near metal surfaces [18–21]. Here, we focus on
the lateral correlation of the decay rates, i.e., the correlation
between the decay rates of an atom or molecule placed at
different positions above the rough surface by keeping the
distance to the mean surface constant, and its variance. In
addition, we specifically consider the influence of surface
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modes for which the enhancement of the decay rate is very
large.

For pedagogical reasons we consider a semi-infinite SiC
material with a rough surface. First, we do not have to
consider nonlocal effects for the considered atom-surface
distances which can be quite important for metal surfaces
[3,22–25]. Second, SiC has only one well-established surface
resonance and is well described by a simple model [26]
for its permittivity. Nonetheless, the results we obtain are
applicable to arbitrary local, homogeneous, and isotropic
materials. For the description of the surface roughness we use
the perturbation theory introduced in Ref. [27] up to second
order within the surface profile function.

The article is organized as follows: In Sec. II we give a
short introduction to the calculation of decay rates close to a
plane surface in the weak coupling limit. The effect of the
surface roughness on the mean decay rate is discussed in
Sec. III where we also give some interpretation of the observed
roughness correction. Finally, in Sec. IV, we investigate the
lateral correlation and the fluctuations of the decay rate. We
finish with the conclusion in Sec. V.

II. SPONTANEOUS DECAY RATE

For an electric-dipole transition in the weak-coupling
regime, the normalized spontaneous decay rate of an atom
or molecule placed at rA can be expressed as [28]

�i

�∞
= 6π

k0
Im

[
et
i · G(rA,rA,ω0) · ei

]
, (1)

where ei is the unit vector in the direction of the dipole
transition, t symbolizes the transposed vector, k0 = ω0/c with
ω0 the frequency of the dipole transition, �∞ is the decay rate
in free space (see, for example, in Ref. [28]), and G is the
classical electric Green’s dyadic for the geometry considered.
In our case, this geometry consists of a half-space of a given
material characterized by its permittivity ε(ω) with a rough
surface as depicted in Fig. 1.

Before considering the role of surface roughness, we
summarize the known results for a flat surface. We can derive
the decay rate from Eq. (1) for a dipole moment parallel �‖
and perpendicular �⊥ to the surface by inserting the Green’s
dyadic from Eq. (A1) in Appendix A. We find the well-known

052902-11050-2947/2011/84(5)/052902(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.052902


S.-A. BIEHS AND J.-J. GREFFET PHYSICAL REVIEW A 84, 052902 (2011)

zA
r

x

z

A

S(x)

FIG. 1. Sketch of a dipole at rA in a distance zA above the mean
of a rough surface described by a profile function S.
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Here, we have introduced the lateral wave vector κ =
(kx,ky)t , the perpendicular wave vector γr =

√
k2

0 − κ2 and

γ =
√

κ2 − k2
0 with k0 = ω/c; rs and rp are the Fresnel’s

coefficient for s- and p-polarized light. Additionally, we have
split the decay rate into its radiative (κ < k0) and nonradiative
(κ > k0) parts.

In Fig. 2 we show a plot of the distance dependence of the
decay rates �‖ and �⊥ for an atom near a flat SiC interface. We

consider a transition frequency coinciding with the SiC surface
phonon resonance at ωSPhP = 1.787 × 1014 s−1 and a transition
frequency slightly smaller and slightly larger than ωSPhP. In all
three cases one finds the known characteristics of the decay rate
near a flat surface [4]: (i) For relative large distances zA > λ0 =
2πc/ω0 the decay rate oscillates due to the phase change of
the reflected field. (ii) In the near-field regime with zA < λ0 =
2πc/ω0 the decay rate is highly increased due to the decay into
nonradiative or evanescent channels. For ω0 = 1.4 × 1014 s−1

and ω0 = 3 × 1014 s−1 the atom or molecule can decay into
total internal reflection modes, whereas for ω0 = 1.787 ×
1014 s−1 it can decay into surface phonon polaritons. It can
be expected that within this near-field regime, the decay rate
will be very sensitive to the multiple scattering of surface
waves within a rough surface for ω0 = 1.787 × 1014 s−1.
(iii) Finally, for a distance zA smaller than about 100 nm the
decay rate diverges as z−3

A . This so-called quenching effect
emerges from the 1/z3 electrostatic interaction of the atom’s
dipole field with the surface. Therefore, this effect is extremely
localized so in this extreme near-field regime the decay rate
will be sensitive only to the change of the local environment
of the atom or molecule as, for example, to the local change
of the surface geometry due to roughness.

III. ROUGHNESS CORRECTION TO THE DECAY RATE

Now, we turn to the effect of surface roughness on the
decay rate. To this end, we consider a stochastic surface profile
function S describing the deviation of the rough surface from
flatness (see Fig. 1). The function S is modeled as a stochastic
Gaussian process with mean value and correlation function
given by

〈S(x)〉 = 0, (4)

〈S(x)S(x′)〉 = δ2e
− |x−x′ |2

a2 = δ2W (|x − x′|), (5)

x = (x,y)t . The brackets 〈〉 stand for the average over an
ensemble of realizations of the surface profile S(x); δ is the
rms height and a the correlation length of the surface profile. It
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FIG. 2. (Color online) Normalized decay rate of an atom in a distance zA above a flat surface with its dipole moment oriented (left) parallel
and (right) perpendicular to the surface. We have chosen the material properties of SiC at the transition frequencies ω0 = 1.4 × 1014 s−1,
1.787 × 1014 s−1, and 3 × 1014 s−1.
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FIG. 3. (Color online) Correction to the decay rate 
� for an atom with its dipole moment oriented (left) parallel and (right) perpendicular
to the mean surface. The parameters are the same as in Fig. 2. For the rough surface we choose δ = 5 nm and a = 200 nm.

follows that the Fourier components S̃(κ) of the surface profile
function fulfill the relations

〈S̃(κ)〉 = 0, (6)

〈S̃(κ)S̃(κ ′)〉 = (2π )2δ2δ(κ + κ ′)g(κ), (7)

where we have introduced the surface roughness power
spectrum

g(κ) =
∫

d2x W (|x|)e−iκ ·x. (8)

In the following calculations we will assume a Gaussian
correlation function W (|x − x′|) = exp(|x − x′|2/a2) so, in

this case, g(κ) = πa2e− κ2a2

4 . By introducing a stochastic
surface profile, the fields are scattered by that surface and,
hence, the decay rate becomes a stochastic process. The
reflected fields can be described by a stochastic reflection
coefficient which determines the decay rate in Eqs. (2) and
(3). The statistics of the decay rate is itself determined by its
mean value and higher moments. Here, we will concentrate
on the mean decay rate and in the next section we will turn
to the correlation function and the variance. By virtue of
Eqs. (2) and (3) the mean decay rate depends on the mean
reflection coefficients of the surface. The average restores the
translational invariance so the decay rate depends only on the
distance to the surface zA. The mean reflection coefficients can
be determined perturbatively if the surface roughness is much
smaller than the wavelength λ0. It has been shown in Ref. [29]
that by using the perturbation theory of Ref. [27], the correction
to the Fresnel reflection coefficient 
rs/p = 〈rs/p〉 − rs/p due
to roughness is to second-order in the surface profile given as


rs/p = −2iγr (Ds/p)2Ms/p, (9)

where

Ds = i

γr + γt

and Dp = iε

γrε + γt

(10)

using γt =
√

k2
0ε − κ2. The expressions for Ms and Mp can be

found in Ref. [29]. Therefore, one can easily get the second-
order correction to the decay rates


�‖/⊥ = 〈�‖/⊥〉 − �
(0)
‖/⊥

�∞
(11)

by replacing the reflection coefficient in Eqs. (2) and (3) by

rs and 
rp. We now use the approximation for the correction
to the reflection coefficient from Ref. [29]


rs/p ≈ rs/p2κ2δ2 (12)

which holds in the quasistatic regime for κ 	 k0 and κa 	 1.
Since this is in the quasistatic regime equivalent to distances
zA 
 a, we can conclude that for zA 
 a we have


�‖/⊥ ≈ 6
δ2

z2
A

�
(0)
‖/⊥. (13)

In order to illustrate the effect of roughness we plot in Fig. 3
the roughness correction 
�‖/⊥ for the same frequencies as
in Fig. 2 considering a rough surface with an rms δ = 5 nm
and a correlation length a = 200 nm. It can be seen that the
roughness correction is very small in the large-distance regime
for zA > λ0 but can be relatively large for small distances,
i.e., for zA < λ0, where the decay rate is very large due to the
decay into nonradiative channels. As will be discussed in more
detail in the following, electrostatic effects in the extreme near-
field for zA < 100 nm and surface phonon polaritons in the
intermediate distance regime are responsible for this relatively
large correction. The first is a local effect, whereas the latter is
a multiple-scattering effect.

In the intermediate distance regime, 100–1000 nm, it can be
seen in Fig. 3 that the roughness correction is slightly positive
at a distance of ≈1000 nm when total internal reflection
modes are excited (i.e., for ω0 = 1.4 × 1014 s−1 and ω0 = 3 ×
1014 s−1). For a frequency ω0 = ωSPhP surface phonon po-
laritons are excited in this distance regime. Surprisingly, the
presence of roughness leads to a large negative correction,
indicating that the lifetime is increased. This effect was studied
in Ref. [29] in terms of the LDOS (see Fig. 14 in Ref. [29]) and
is due to the roughness-induced multiple scattering of surface
modes. The scattering causes a broadening of the dispersion
relation [30]. Due to this broadening as illustrated in Fig. 4
the LDOS [which is proportional to Im(rp)] becomes smaller
for frequencies close to ωSPhP for intermediate κ or distances
zA, respectively, explaining the observed decrease of the decay
rate.

We now consider the very small distances zA 
 a regime.
The roughness correction is, in this case, due to the local
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FIG. 4. (Color online) Plot of Im(rp) for the flat and Im(〈rp〉)
for the rough surface for κ = 3.3 × 106 m−1 which corresponds
approximately to a distance of zA ≈ κ−1 = 3 × 10−7 m.

electrostatic interaction (quenching) of the atom dipole mo-
ment with the rough surface resulting in a positive and large
roughness correction to the decay rate. This quenching effect is
similar for all transition frequencies, as shown in Fig. 3. This
correction can be described by the quasistatic expression in
Eq. (13). We will now see that we can retrieve this expression
in Eq. (13) using a simple physical argument. If zA 
 a,
curvature effects are negligible so the atom feels only the
local deviation of the surface from flatness. This effect can be
described by the ansatz:

〈�‖/⊥〉 ≈ 〈�(d + S(x))〉. (14)

This means that one replaces locally the surface profile by a
shifted flat surface. Employing this approximation in Eqs. (2)
and (3) we see that it is equivalent to the replacement of the
mean reflection coefficient by

〈rs/p〉 = rs/p〈e2iγrS(x)〉. (15)

Note that this is the expression for the propagating (κ < k0)
and the evanescent (κ > k0) part. Now, this expression can be
easily evaluated, since we have assumed that S(x) is Gaussian
distributed. We find

〈rs/p〉 = rs/pe−2γ 2
r δ2

. (16)

For propagating waves such that κ < k0, this is the well-known
result of the Kirchhoff approximation [31] which holds if λ 

a. But for κ 	 k0, this approximation produces the result in
Eq. (12) when expanding the exponential up to second order
in the rms δ. Hence, we have retrieved Eq. (13).

IV. STATISTICAL PROPERTIES OF SPONTANEOUS
EMISSION

We now examine the fluctuations and the spatial correla-
tions of the decay rate above a random rough surface. The
statistical properties of fields in random media has received a
lot of attention in the past 30 years. Here, we are interested in
some recent results relevant to our system. It has been shown
recently that the intensity correlations above random media or
materials with rough surfaces become nonuniversal in the near

field, i.e., they highly depend on the properties of the random
media or rough surfaces [14–16,32–34]. A remarkable con-
nection has been established between the LDOS fluctuations
and the C0 correlation [6,7] for multiple-scattering media. The
C0 correlation is defined as the infinite-range contribution to
the correlation of the intensity in multiple-scattering media
[6]. A simple explanation has been reported recently [8].
Finally, the multiple scattering of surface modes in a random
media or rough surface can lead to localized surface modes
[35,36] which show a characteristic long tail distribution of
the intensity enhancement of the fields close to the surface
[37,38]. This effect can be neglected for surfaces with small
roughnesses as shown for fractal surfaces [39,40]. Here, we
focus on the lateral correlation and the variance of the decay
rate above a rough surface and we will discuss the relation
of the variance to the LDOS fluctuations and C0 correlation.
Since the perturbative approach is restricted to small surface
roughnesses, we will leave the problem of localization and its
relation to the distribution of decay rates for future studies.

A. Variance and correlation function

Before evaluating the correlation function of the decay rate,
we first determine the variance which is up to second order in
the surface profile given by

σ 2
i = 〈

�2
i

〉 − 〈�i〉2 = 〈
�

(1)
i �

(1)
i

〉
. (17)

Obviously, the variance is a special case of the more general
correlation function

〈�i(r)�j (r′)〉 = 〈�i�
′
j 〉spec + 〈�i�

′
j 〉diff, (18)

which can be divided into a specular (depending only on the
mean field) and a diffuse contribution (due to the fluctuating
part of the field). By inserting the perturbation expansion �i ≈
�

(0)
i + �

(1)
i + �

(2)
i we find up to second order for both of these

contributions,

〈�i�
′
j 〉spec = �

(0)
i (z)�(0)

j (z′) + �
(0)
i (z)

〈
�

(2)
j (z′)

〉
+ 〈

�
(2)
i (z)

〉
�

(0)
j (z′) (19)

and

〈�i�
′
j 〉diff = 〈

�
(1)
i (r)�(1)

j (r′)
〉
. (20)

Obviously, the specular part depends only on z and z′. This is
due to the fact that for the mean field the translational symmetry
with respect to the x-y plane is restored after averaging,
whereas for a fixed z and z′ the diffuse part contains lateral
correlations with respect to |x − x′|. Furthermore, we note
that the variance depends on the diffuse part of the correlation
function only.

B. Lateral correlation

We now focus on the lateral correlation only. Therefore, we
assume z = z′ = zA. The correlation function is then given by

〈�i(x)�j (x′)〉 = 〈�i�j 〉spec + 〈�i(x)�j (x′)〉diff . (21)

It is clear from Eq. (19) that the specular contribution is just
a constant term giving an infinite-range correlation depending
on the distance zA only. On the other hand, the diffuse part
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depends on |x − x′| and, therefore, contains the lateral short-
range correlations. We derive the explicit expression for the
diffuse part of the correlation function in Appendix C. The
result can be stated as [see Eq. (C6)]〈

�
(1)
i (x)�(1)

j (x′)
〉

�2∞

= (3π )2

k2
0

2Re
∫

d2ξ

(2π )2
δ2g(|ξ |)Fj (ξ ; zA)

×Gi(ξ ; zA)eiξ ·(x−x′), (22)

where the functions Gi and Fj are defined in Eq. (C7) and
(C8). In the following we will discuss this expression in more
detail.

Let us focus on the evanescent regime, i.e., zA 
 λ. The
exponential function exp(iγ ′

r zA) ≈ exp(−|κ ± ξ |zA) in the
integrand ai of Fj and Gi [see Eq. (C2)] then acts as a
low-pass filter and restricts the contributing ξ to ξ < 1/zA.
On the other hand, for a Gaussian roughness correlation, the
roughness power spectrum g(|ξ |) also acts as a low-pass filter,
restricting the ξ to ξ < 1/a. Therefore, we can make simple
approximations for Eq. (22) in the two limits a 	 zA and
a 
 zA.

In the case a 	 zA the functions Fj and Gi can be approxi-
mated by Fj (0; zA) and Gi(0; zA). It follows immediately from
Eq. (C6)〈

�
(1)
i �

(1)
j

′〉
�2∞

≈ (3π )24Im[Gj (0; zA)]

× Im[Gi(0; zA)]
δ2

k2
0

W (|x − x′|). (23)

We can conclude from this expression that the lateral correla-
tion function reproduces the correlation function of the surface
roughness for distances such that zA 
 a, which also holds
for zA > λ. In particular, the correlation length of the lifetime
correlations coincides with a. This means that in this distance
regime one can directly measure the correlation of surface
roughness by measuring the correlations of lifetimes above the
surface. In the quasistatic limit the correlation function can be
further simplified (see Appendix D for a detailed calculation).
We find

〈�‖/⊥�‖/⊥〉diff

�
(0)
‖/⊥(zA)�(0)

‖/⊥(zA)
≈ 9

δ2

z2
A

W (|x − x′|). (24)

Now, in the opposite limit, where we have a 
 zA

the roughness power spectrum g(|ξ |) in Eq. (8) can be
approximated by g(0) = πa2 and can be taken out of the
integral. The remaining expression can be further simplified
in the evanescent regime, assuming that the most important
contributions stem from ξ 	 k0 and ξ 	 k0|ε|. The resulting
expression for the �‖ can be written as [see Eq. (D16)
Appendix D]

〈�(1)
⊥ (r)�(1)

⊥ (r′)〉 ∝ δ2a2
P3

(
zA√

z2
A+(|x−x′ |2

)
[
z2
A + |x − x′|2]2 , (25)

where P3 is the Legendre polynomial of third power. Hence,
for distances such that a 
 zA 
 λ the lateral correlation goes
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FIG. 5. (Color online) Plot of the correlation functions
〈�(1)

⊥ (r)�(1)
⊥ (r′)〉 and 〈�(1)

‖ (r)�(1)
‖ (r′)〉 in Eqs. (25) and (D17) over the

lateral distance (x − x′)/zA normalized to their value at x = x′.

rapidly to zero for |x − x′| 	 zA. Surprisingly, the lateral
correlation length depends only on zA and does neither
depend on the correlation length of the surface roughness
nor on the properties of the material. For 〈�(1)

‖ (x)�(1)
‖ (x′)〉 we

find a somewhat more complicated but similar expression in
Eq. (D17) which leads to the same conclusions. We note that
a similar result was found for the intensity correlation in the
near-field of a random medium [15,34]

In Fig. 5 we plot the quasistatic results of 〈�(1)
⊥ (x)�(1)

⊥ (x′)〉
and 〈�(1)

‖ (x)�(1)
‖ (x′)〉 from Eqs. (D16) and (D17) for a fixed

distance zA which is assumed to be so small that the conditions
for the quasistatic approximations are met, but zA 	 a. Note
that the regime where these approximations are valid might be
hard to achieve in practice, since the nonretarded regime starts
for SiC, for example, for zA < 200 nm, i.e., for distances which
are not much larger than typical surface roughness correlation
lengths. Nonetheless, one can expect that, for the intermediate
region, the correlation length is the atom-surface distance zA.
To illustrate this fact, we plot in Fig. 6 numerical results for
the correlation function in Eq. (22). It can be seen that for
intermediate distances a < zA < λ the correlation length is
about zA.

C. Variance and standard deviation

Let us now return to the variance given by Eq. (17). In the
quasistatic limit using Eq. (24) we find for z 
 a the simple
expression

σ 2
‖/⊥

[�(0)
‖/⊥(z)]2

≈ 9
δ2

z2
A

. (26)

In Fig. 7 we show some plots of the standard deviation σ/�0.
It can be seen that the standard deviation approaches the
approximate result 3δ/zA for zA 
 a so that for very small
distances as z = 10 nm the standard deviation or variance
is on the order of �(0) or [�(0)]2, respectively, indicating that
fluctuations of the decay rate are large in the quasistatic regime.
In all shown cases σ falls off rapidly with the surface atom
distance, which is due to the small roughness considered. It
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FIG. 6. (Color online) Plot of the correlation functions (left) 〈�(1)
⊥ (r)�(1)

⊥ (r′)〉 and (right) 〈�(1)
‖ (r)�(1)

‖ (r′)〉 in Eq. (22) for different distances
z at ω0 = 1.787 × 1014 s−1 choosing the surface roughness parameters δ = 5 nm and a = 50 nm. The correlation functions are normalized to
their value at x = x′. Furthermore, we plot again the approximations shown in Fig. 5.

could be expected from Eq. (25) that in the distance regime
a 
 zA the standard deviation varies like σ ∝ δa/z2

A. Indeed,
in Fig. 7, we find this power law for σ⊥ but not for σ‖. Note
that for the distance region around 200 nm for which we have
found a relatively large roughness correction of 15% to the
mean decay rate σ⊥/‖ is smaller than 10%.

D. LDOS fluctuations and C0 correlation

Finally, we want to explore the relation between the LDOS
and the infinite-range intensity correlation C0 as studied for
multiple-scattering media [6]. It was shown that this infinite-
range correlation equals the LDOS fluctuations [7]. Since the
decay rate is proportional to the LDOS, one could expect, by
analogy, that above a rough surface the C0 correlation equals
the decay-rate fluctuations or, more precisely, C0 = σ 2/〈�〉2.
To prove this, we follow the reasoning of Ref. [8] adapted to
our problem. First, we assume for simplicity that we have a
nonabsorbing half-space with a rough surface. The radiated
power of a dipole in vacuum P0 and of a dipole above the
rough surface P then can be related to the decay rate of an

atom in vacuum �0 and the decay rate of an atom above a
rough surface � by the simple relation [28]

P

P0
= �

�0
. (27)

Since the decay rate is proportional to the LDOS ρ at the
position of the atom we also have P/P0 = ρ/ρ0.

We now define the speckle correlation function C(x,x′)
for the lateral correlations with respect to x and x′ above the
surface as

C(x,x′) = 〈I (x)I (x′)〉
〈I (x)〉〈I (x′)〉 − 1, (28)

where I (x) is the radiated power of the dipole at the position x
such that the integral over a plane parallel to the mean surface
at z = 0 (but for z > zA and z > λ0 so evanescent waves are
not included)

lim
r0→∞

1

A

∫
A

d2x I (x) = PR (29)

gives the total radiated power into the half-space for z > zA.
Here, we have introduced the circular area A = πr2

0 . The factor
R takes into account that only a part of the total power P is
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FIG. 7. (Color online) Plot of the standard deviation σ⊥ (left) and σ‖ (right) for different distances of an atom placed at the distance zA

above a rough SiC surface with δ = 5 nm and a = 200 nm. The transition frequencies are chosen to be ω0 = 1 × 1014 s−1, 1.787 × 1014 s−1,
and 3 × 1014 s−1.
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radiated into the half-space for z > zA, whereas another part,
PT , is radiated into the half-space z < 0 such that the total
power is the sum of both contributions, i.e., T + R = 1.

With the relation P/P0 = ρ/ρ0 and the definition of I (x)
and C(x,x′), we have〈

ρ2

ρ2
0

〉
= lim

r0→∞
1

A2

1

R2

1

P 2
0

∫
A

d2x

∫
A

d2x ′ 〈I (x)I (x′)〉

= lim
r0→∞

1

A2

1

R2

1

P 2
0

∫
A

d2x

×
∫

A

d2x ′ 〈I (x)〉〈I (x′)〉[C(x,x′) + 1]. (30)

Since, after averaging, we retrieve the translational invariance
parallel to the plane with z = 0 and isotropy, we have 〈I (x)〉 =
PR = P0Rρ/ρ0. Inserting this relation into Eq. (30) it follows
that

〈ρ2〉 = 〈ρ〉2 lim
r0→∞

1

A2

∫
A

d2x

∫
A

d2x ′ [1 + C(|x − x′|)]

= 〈ρ〉2

[
1 + lim

r0→∞
2π

A

∫ ∞

0
dr rC(r)

]
. (31)

In fact, the integral over C(r) gives nonzero contributions
only for C(r) = const ≡ C0, when assuming that for intensity
correlations the relation C(0) � C(r) for r > 0 is valid.1

Therefore, the integral in Eq. (31) reduces to C0, i.e., the
constant component of C(r) which is the searched for infinite-
range C0 correlation. Hence, we find

C0 = 〈ρ2〉 − 〈ρ〉2

〈ρ〉2
= 〈�2〉 − 〈�〉2

〈�〉2
, (32)

which proves our statement that the C0 correlation equals the
decay-rate fluctuations or C0 = σ 2/〈�〉2.

Finally, using the perturbation expansion for the decay rate,
we get for the C0 correlations above a rough surface

C0 = σ 2

〈�〉2
≈ 〈�(1)�(1)〉

(�(0) + 〈�(2)〉)2

= 〈�(1)�(1)〉
�(0)2

1(
1 + 〈�(2)〉

�(0)

)2 ≈ 〈�(1)�(1)〉
�(0)2 . (33)

Hence, the square of the normalized standard deviation σ/�(0)

gives the infinite-range C0 correlation showing its sensitivity
to the local environment which enters through its dependence
on zA. In the quasistatic regime, we can now use the above
derived result in Eq. (26) so for zA 
 a we find C0 ≈ 9δ2/z2

A.
We note that this result is very similar to the result found by
Shapiro [6] for random media, where C0 = π/(kl) with the
wave number k and the mean free path of radiation inside
the random medium l. In our case, δ2/z2

A corresponds to the
scattering strength 1/(kl).

V. CONCLUSION

We have studied the impact of surface roughness on the
decay rate or inverse lifetime of a molecule or atom above

1Here, we assume that C(r) − C0 → 0 for r → ∞.

a rough surface. For pedagogical reasons we have considered
only SiC as the bulk material, but the conclusions can be easily
transferred to other dielectric materials supporting surface
modes as, for example, silica. Our results show that the decay
rate might be reduced by 15% due to the surface roughness
for very shallow roughnesses with an rms of δ = 5 nm and
a correlation length of a = 200 nm. This reduction is due to
the surface-induced scattering of surface modes which prevails
for intermediate distances. On the other hand, for very small
distances zA 
 a the rouhgness correction to the decay rate
�(0) is due to the local electrostatic interaction of the atom or
molecule with the surface and is given by the simple expression
6δ2/z2

A�(0).
In addition, we have studied the variance and the lateral

correlation of decay rates above the rough surface. We find
that the lateral correlation length is approximately given by the
distance zA itself in the nonretarded regime for distances larger
than a. For distances smaller than a the lateral correlation
function resembles the surface roughness correlation function,
allowing for a direct measurement of the surface roughness
properties by measuring decay rate or lifetime correlations.
The variance itself is a special case of the lateral correlation
function and we have pointed out that it equals the C0

correlation as for random media. We have shown that it
can also be approximated by a simple result σ 2 = 9δ2/z2

A

in the quasistatic regime for zA 
 a, emphasizing that the
infinite-range C0 correlation highly depends on the local
environment of the atom, i.e., on the distance zA.
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APPENDIX A: GREEN’S FUNCTION FOR A FLAT
SURFACE

The Green’s function with observation point and source
point above the flat surface, i.e., for 0 < z � z′, can be stated
as [41,42]

G(0)(r,r′; ω)

=
∫

d2κ

(2π )2

ieiκ ·(x−x′)

2γr

[1−−eiγr (z′−z) + R+−eiγr (z′+z)]

− 1

3k2
0

δ(z − z′)δ(x − x′)ez ⊗ ez, (A1)

where ez is the unit vector in the z direction and ⊗ symbolizes
the dyadic product. The tensors 1 and R are defined as

1−− =
∑

j={s,p}
â−

j (κ) ⊗ â−
j (κ), (A2)

R+− =
∑

j={s,p}
rj â+

j (κ) ⊗ â−
j (κ), (A3)

where

â−
s (κ) = â+

s (κ) = 1

κ
(−ky,kx,0)t , (A4)
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â−
p (κ) = − 1

κk0
(kxγr ,kyγr ,κ

2)t , (A5)

â+
p (κ) = 1

κk0
(kxγr ,kyγr , −κ2)t (A6)

are the polarization vectors for s and p polarization. Note that
these vectors are always orthogonal but only normalized for
propagating modes with κ < k0. The reflection coefficients rs

and rp are the usual Fresnel coefficients

rs = γr − γt

γr + γt

and rp = γrε − γt

γrε + γt

. (A7)

APPENDIX B: FIRST-ORDER GREEN’S FUNCTION

The correction to the Green’s function we find from first-
order perturbation theory is [27]

G(1)(r,r′; ω) = −
∫

d2κ

(2π )2

∫
d2κ ′

(2π )2

k2
0(ε − 1)

4γrγ ′
r

ei(κ ·x+γr z)

×S̃(1)(κ ′ − κ)ei(κ ′ ·x′+γ ′
r z

′)X+−(κ,κ ′) (B1)

with

S̃(1)(κ ′ − κ) =
∫

d2x e−i(κ ′−κ)·xS(x) (B2)

and

X+−(κ,κ ′) =
∑

i,j={s,p}
â+

i (κ) ⊗ â−
j (κ ′)Xij (κ,κ ′). (B3)

The elements of the tensor Xij are given as

Xss = ts t
′
s κ̂ · κ̂ ′, (B4)

Xsp = −ts t
′
p

γ ′
t√
εk0

ez · κ̂ × κ̂ ′, (B5)

Xps = −tpt ′s
γt√
εk0

ez · κ̂ × κ̂ ′, (B6)

Xpp = +tpt ′p
1

εk2
0

(κκ ′ε − γtγ
′
t κ̂ · κ̂ ′), (B7)

where κ̂ = κ/κ and ts ,tp are the usual amplitude transmission
coefficients

ts = 2γr

γr + γt

and tp = 2γr

√
ε

γrε + γt

. (B8)

APPENDIX C: CORRELATION FUNCTION

By inserting the Green’s function from Eq. (B1) into Eq. (1)
we find for the first-order correction to the decay rate the
expression

�
(1)
i (r)

�∞
= 3πi

k0

∫
d2κ

(2π )2

∫
d2κ ′

(2π )2
[S̃(1)(κ ′ − κ)ai(κ,κ ′; r)

−S̃(1)(κ − κ ′)a∗
i (κ,κ ′; r)]eix·(κ−κ ′), (C1)

where

ai(κ,κ ′; r) = k2
0(ε − 1)

4γrγ ′
r

eiz(γr+γ ′
r )
[
et
i · X+− · ei

]
. (C2)

With this definition at hand it is an easy task to check that the
correlation function is〈
�

(1)
i (r)�(1)

j (r′)
〉

�2∞
= (3π )2

k2
0

2Re
∫

d2κ

(2π )2

∫
d2κ ′

(2π )2
δ2g(|κ − κ ′|)

×ai(κ,κ ′; r)
∫

d2κ ′′

(2π )2
[a∗

j (κ ′′,κ−; r′)

−aj (κ ′′,κ+; r′)]ei(x−x′)·(κ−κ ′) (C3)

using the relations

κ+ = κ ′′ + (κ − κ ′), (C4)

κ− = κ ′′ − (κ − κ ′). (C5)

By introducing the new variable ξ = κ − κ ′ we can write the
correlation function as〈

�
(1)
i (r)�(1)

j (r′)
〉

�2∞
= (3π )2

k2
0

2Re
∫

d2ξ

(2π )2
δ2g(|ξ |)Fj (ξ ; z′)

×Gi(ξ ; z)eiξ ·(x−x′) (C6)

with

Gi(ξ ; z) =
∫

d2κ

(2π )2
ai(κ,κ −ξ ; z) (C7)

and

Fj (ξ ; z′) = G∗
j (ξ ; z′) − Gj (−ξ ; z′). (C8)

APPENDIX D: APPROXIMATIONS FOR QUASISTATIC
LIMIT

In the quasistatic limit (κ 	 k0) the reflection coefficients
can be approximated by

rp ≈ ε − 1

ε + 1
and rs ≈ ε − 1

4

k2
0

κ2
. (D1)

By inserting these relations into Eqs. (2) and (3) we find the
quasistatic approximations for the decay rates

�
(0)
‖

�∞
≈ 3

16

1

(k0z)3
Im

(
ε − 1

ε + 1

)
, (D2)

�
(0)
⊥

�∞
≈ 3

8

1

(k0z)3
Im

(
ε − 1

ε + 1

)
. (D3)

In particular, �
(0)
⊥ = 2�

(0)
‖ .

1. Distance regime z � a

We now want to find similar simple approximate expres-
sions for the correlation function in Eq. (C6). To this end we
consider first κ 	 ξ , which is fulfilled for z 
 a. For such
wave vectors we can approximate Eq. (C7) by

G‖(ξ ; z) ≈
∫

dκ

2π

k2
0(ε − 1)

8γ 2
r

e2iγr z

×
{
t2
s − t2

p

εk2
0

γ 2
r

k2
0

[
κ2(ε + 1) − k2

0ε
]}

, (D4)

052902-8



STATISTICAL PROPERTIES OF SPONTANEOUS . . . PHYSICAL REVIEW A 84, 052902 (2011)

G⊥(ξ ; z) ≈
∫

dκ

2π

k2
0(ε − 1)

4γ 2
r

e2iγr z

× t2
p

εk2
0

−κ2

k2
0

[
κ2(ε + 1)−k2

0ε
]
. (D5)

Using the quasistatic approximation for the transmission
coefficients

ts ≈ 1 and tp ≈ 2
√

ε

ε + 1
(D6)

allows for further simplification. We find

G‖(ξ ; z) ≈ − 3!

4π

1

(2z)4

1

k2
0

ε − 1

ε + 1
, (D7)

G⊥(ξ ; z) ≈ − 3!

2π

1

(2z)4

1

k2
0

ε − 1

ε + 1
. (D8)

Inserting these approximations into Eq. (C6) finally yields

〈�(1)
‖ (r)�(1)

‖ (r′)〉
�2∞

≈ 81

256

δ2

k6
0z

4z′4

[
Im

(
ε − 1

ε + 1

)]2

W (|x − x′|),

(D9)

〈�(1)
⊥ (r)�(1)

⊥ (r′)〉
�2∞

≈ 81

64

δ2

k6
0z

4z′4

[
Im

(
ε − 1

ε + 1

)]2

W (|x − x′|).

(D10)

As can be expected from G⊥ = 2G‖ we find

〈�(1)
⊥ (r)�(1)

⊥ (r′)〉
〈�(1)

‖ (r)�(1)
‖ (r′)〉

= 4. (D11)

2. Distance regime z � a

In this limit, we consider the case κ 	 ξ yielding

G⊥ ≈
∫

d2κ

(2π )2
az(κ, −ξ ), (D12)

G‖ ≈
∫

d2κ

(2π )2
ax(κ, −ξ ). (D13)

Together with the quasistatic approximation, i.e, ξ 	 k0 and
ξ 	 k0ε, we get

G⊥ ≈ e−ξzξ

∫
dκ

2π
κ3 tp(ε − 1)

k2
04iγr

eiγr z
2
√

ε

ε + 1
≡ f⊥(z)e−ξzξ

(D14)

and

G‖ ≈ e−ξzξ cos2(θ )
1

2

∫
dκ

2π
κ

k2
0(ε − 1)

4iγr

eiγr z

×
[
γrγt tp

k2
0ε

− rs

k2
0

√
ε

]
≡ f‖(z)e−ξzξ cos2(θ ), (D15)

where we have introduced ξx = ξ cos θ and ξy = ξ sin(θ ).
Finally, when plugging these results into Eq. (C3) we find
[43]

〈�(1)
⊥ (x)�(1)

⊥ (x′)〉
�2∞

∝ a2δ2

[z2 + |x − x′|2]2
P3

[
z√

z2 + (x − x′)2

]
,

(D16)

〈�(1)
‖ (x)�(1)

‖ (x′)〉
�2∞

∝ δ2a2

z4

[
2F 1

(
2,

5

2
; 3; −|x − x′|2

z2

)

−20

3

|x−x′|2
z2 2F 1

(
3,

7

2
; 3; −|x − x′|2

z2

)]
,

(D17)

where P3 is the Legendre polynomial of third power and 2F 1

is the hypergeometric function.
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