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We present a theoretical model for the propagation of non-self-interacting atom laser beams. We start from
a general propagation integral equation and we use the same approximations as in photon optics to derive tools
to calculate the atom-laser-beam propagation. We discuss the approximations that allow one to reduce the
general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to
the eikonal. Within the paraxial approximation, we also introduce the ABCD matrices formalism and the beam
quality factor. As an example, we apply these tools to analyze the recent experiment by Riou et al. �Phys. Rev.
Lett. 96, 070404 �2006��.
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I. INTRODUCTION

Matter-wave optics, where a beam of neutral atoms is
considered for its wavelike behavior, is a domain of consid-
erable studies, with many applications, ranging from atom
lithography to atomic clocks and atom interferometer �1�.
The experimental realization of coherent matter wave—so-
called atom lasers �2–8�—which followed the observation of
Bose-Einstein condensation put a new perspective to the
field by providing the atomic analog to photonic laser beams.

Performant theoretical tools for characterizing the propa-
gation properties of matter waves and their manipulation by
atom-optics elements are of prime interest for high accuracy
applications, as soon as one needs to go beyond the proof-
of-principle experiment. In the scope of partially coherent
atom interferometry, and for relatively simple �i.e., homog-
enous� external potentials, many theoretical works have been
developed �9–12� and applied successfully �13,14�. All these
tools essentially address the propagation of an atomic wave
packet. For fully coherent atom-laser beams, most theoretical
investigations focused on the dynamics of the outcoupling
�15–28� and the quantum statistical properties of the output
beam �29–36�. Some works specifically addressed the spatial
shape of the atom laser beam �37,38�, but rely essentially on
numerical simulations or neglect the influence of dimension-
ality and potential inhomogeneity. For realistic experimental
conditions, the 3D external potential is inhomogeneous and
full numerical simulation becomes particularly cumbersome.
One thus needs a simplified analytical theoretical framework
to handle the beam propagation.

Following our previous work �39,40�, we present here in
detail a simple but general framework for the propagation of
atom laser beams in inhomogeneous media. We show how
several theoretical tools from classical optics can be adapted

for coherent atom optics. We address three major formalisms
used in optics: The eikonal approximation, the Fresnel-
Kirchhoff integral, and the ABCD matrices formalism in the
paraxial approximation.

The first part of the paper gives an overview of these
theoretical tools for atom-laser-beam propagation. In the first
section, we introduce the integral equation of the propagation
and its time-independent version. We present in the second
section different ways of dealing with the time-independent
propagation of the matter wave. First, the time-independent
propagator is computed using the stationary phase approxi-
mation. Then, we show that two approximations-the eikonal
and the paraxial approximation, which apply in different
physical contexts, can provide a more tractable treatment
than the general integral equation. In the second part, we
show in practice how to use these methods in the experimen-
tal case of �39� with a rubidium radiofrequency-coupled
atom laser. Some of these methods have recently been used
also for a metastable helium atom laser �41� as well as for a
Raman-coupled atom laser �42�.

II. ANALYTICAL PROPAGATION METHODS FOR
MATTER WAVES

A. Matter wave weakly outcoupled from a source

1. Propagation equation

We consider a matter wave ���r , t� outcoupled from a
source �s�r , t�. We note Vi�r , t� �i= �� , s��, the external po-
tential in which each of them evolves. We also introduce a
coupling term Wij�r , t� between �i and � j. In the mean-field
approximation, such system is described by a set of two
coupled Gross-Pitaevskii equations, which reads

i��t�i = �−
�2

2m
� + Vi + �

k=�,s
gki	�k	2
�i + Wij� j . �1�

In this equation, gik is the mean-field interaction strength
between states i and k. The solution of such equations is not
straightforward, mainly due to the presence of a nonlinear
mean-field term. However, in the case of propagation of mat-
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ter waves which are weakly outcoupled from a source, one
can greatly simplify the treatment �28�. Indeed, the weak-
coupling assumption implies the two following points: The
evolution of the source wave function is unaffected by the
outcoupler and the extracted matter wave is sufficiently di-
luted to make self-interactions negligible.

The former differential system can then be rewritten as

i��t�s = �−
�2

2m
� + Vs + gss	�s	2
�s, �2�

i��t�� = �−
�2

2m
� + V� + gs�	�s	2
�� + W�s�s. �3�

The source wave-function �s�r , t� now obeys a single differ-
ential Eq. �2� and can thus be determined independently. The
remaining nonlinear term 	�s	2 in Eq. �3� acts then as an
external potential for the propagation of ��. This last equa-
tion is thus a Schrödinger equation describing the evolution
of the outcoupled matter wave in the total potential V�r , t� in
the presence of a source term ��r , t�,

i��t�� = Hr�� + � , �4�

where

Hr = −
�2

2m
�r + V , �5a�

V = V� + gs�	�s	2, �5b�

� = W�s�s. �5c�

2. Integral equation

The evolution between times t0 and t �t� t0� of the solu-
tion �� of Eq. �4� in a given volume V delimited by a surface
S is expressed by an implicit integral �43�

���r,t� = �
V

dr�G�r,r�,t − t0����r�,t0�

+
i�

2m
�

t0

t

dt��
S

dS��G�r,r�,t − t���r����r�,t��

− ���r�,t���r�G�r,r�,t − t���

+
1

i�
�

t0

t

dt��
V

dr�G�r,r�,t − t����r�,t�� , �6�

where dS� is the outward-oriented elementary normal vector
to the surface S. We have introduced the time-dependent
Green function G�r ,r� ,�� which verifies

�i��� − Hr�G = i�������r − r�� �7�

and is related to the propagator K of the Schrödinger equa-
tion via a Heaviside function � ensuring causality,

G�r,r�,�� = K�r,r�,������ . �8�

Equation �6� states that, after the evolution time t− t0, the
value of the wave function is the sum of three terms, the

physical interpretation of which is straightforward. The first
one corresponds to the propagation of the initial condition
���r� , t0� given at any position in the volume V. The second
one takes into account the propagation of the wave function
taken at the surrounding surface S and is nonzero only if V is
finite. This term takes into account any field which enters or
leaks out of V. Finally, the last term expresses the contribu-
tion from the source.

Equation �6� can be successfully applied to describe the
propagation of wave packets in an atom interferometer as
described in �44�. Nevertheless, the propagation of a continu-
ous atom laser, the energy of which is well defined, can be
described with a time-independent version of Eq. �6�, that we
derive below.

3. Time-independent case

We consider a time-independent Hamiltonian Hr and a
stationary source

��r,t� = ��r�exp�− iEt/�� . �9�

We thus look for stationary solutions of Eq. �4� with a given
energy E,

���r,t� = ���r�exp�− iEt/�� . �10�

When t0→−	, Eq. �6� then becomes time independent:

���r� =
1

i�
�

V
dr�GE�r,r����r��

+
i�

2m
�

S
dS��GE�r,r���r����r��

− ���r���r�GE�r,r��� , �11�

where GE is the time-independent propagator related to K via

GE�r,r�� = �
0

+	

d� K�r,r�,��eiE�/�. �12�

Note that the first term of Eq. �6� vanishes in the time-
independent version of the propagation integral equation as
K�r ,r� ,��→0 when �→	. The second term of Eq. �11� is
the equivalent for matter waves of what is known in optics as
the Fresnel-Kirchhoff integral �45�.

B. Major approximations for atom-laser-beam propagation

1. Independent treatment of a succession of potentials

As an optical wave can enter different media �free space,
lenses, etc.� separated by surfaces, matter waves can propa-
gate in different parts of space, where they experience poten-
tials of different nature. For instance, when one considers an
atom laser outcoupled from a condensate as in the example
of Sec. III, the beam initially interacts with the Bose-
condensed atoms and abruptly propagates in free space out-
side of the condensate. The expression of the propagator in
whole space would then be needed to use the Eq. �11�. Most
generally, such calculation requires to apply the Feynmann’s
path integral method, either numerically or analytically �46�.
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For example, the time-dependent propagator K can be ana-
lytically expressed in the case of a continuous potential
which is at most quadratic, by using Van Vleck’s formula
�47� or the ABCD formalism �44�. However, such expres-
sions fail to give the global propagator value for a piecewise-
defined quadratic potential.

As in classical optics, we can separate the total evolution
of a monochromatic wave in steps, each one corresponding
to one homogeneous potential. This step-by-step approach
stays valid as long as one can neglect any reflection on the
interface between these regions as well as feedback from one
region to a previous one. In this approach, each interface is
considered as a surface source term for the propagation in the
following media. It allows us to calculate K explicitly in
every part of space as long as the potential in each region
remains at most quadratic, which we will assume throughout
this paper.

2. Time-independent propagator in the stationary phase
approximation

Whereas the expression of GE is well known for free
space and linear potentials �9,38�, to our knowledge, there is
no analytical expression for the inverted harmonic potential,
which plays a predominant role in an atom laser interacting
with its source condensate. We thus give in the following a
method to calculate the time-independent propagator GE in
any up to quadratic potential.

Since K is analytically known in such potentials, we use
the definition of GE as its Fourier transform �Eq. �12��. The
remaining integral over time � is calculated via a stationary
phase method �45�, taking advantage that K is a rapidly os-
cillating function. We write the time-dependent propagator as

K�r,r�,�� = A���exp�i
�r,r�,��� . �13�

We introduce �n as the positive real solution�s� of

��
�r,r�,�n� = − E/� , �14�

which correspond�s� to the time�s� spent on classical path�s�
of energy E connecting r� to r. We develop 
 to the second
order around �n,

�
��� 
 
��n� +
�


��
�

�n

��� − �n� +
�2


��2 �
�n

�� − �n�2

2
.

�15�

Using the last development in the integral �12�, and assum-
ing that the envelope A��� varies smoothly around �n, we
can express GE as

GE
�1� 
 �

n

� 2i�


���n�
K��n�exp�i

E�n

�
� . �16�

Such an approach is valid as long as stationary points �n exist
and their contribution can be considered independently: Eq.
�16� fails if the stationary points are too close to each other.
We can estimate the validity of our approach by defining an
interval In= ��n−�n ;�n+�n� in which the development
around �n contributes to more than 
=90% to the restricted
integral. For � large enough, we can use �48�

��
−�

�

dx exp�iz
x2

2 
 −�2i�

z
� �

2

	z�	
, �17�

and obtain �n

�n =
1

1 − 

� 2

�
���n�
. �18�

The validity condition is thus 	�n−�n+1	��n+�n+1.
If Eq. �16� is not valid, a better approximation consists

then in developing 
 to higher order around a point which is
in between successive �n. The simplest choice is to take the
one which cancels 
� and to choose stationary points �k
which verify

��
2
�r,r�,�k� = 0. �19�

We thus develop 
 to the third order around �k, which leads
to the following expression of GE,

GE
�2� 


2�K��k�exp�i
E�k

� �
�3 − 
�3���k�/2

Ai�
���k� + E/�
�3 
�3���k�/2

� , �20�

where Ai is the Airy function of the first kind �49�.
In practice, combining the use of GE

�2� and GE
�1� depending

on the values of r� and r gives a good estimate of the time-
independent propagator, as we will see in Sec. III.

Although the above approach is quite general, further ap-
proximations can be made. In the region where diffraction
can be neglected, one can describe the propagation with the
eikonal approximation. When the propagation is in the
paraxial regime, it is more appropriate to describe it with the
paraxial ABCD matrices, instead of using the general Kirch-
hoff integral.

3. Eikonal propagation

The purpose of this method, equivalent to the WKB ap-
proximation, is to give a semiclassical description of the
propagation from a matter wave, given its value on a surface.
Let us consider that we know the value of the wave function
of energy E on the surface S�. To calculate its value on any
other surface S, the eikonal considers classical paths con-
necting S and S�. Let us write the wave function as

���r� = A�r�exp�iS�r�/�� . �21�

The Schrödinger equation on �� reduces to �50�

	�rS	 =
�

�
, �r�A2 � S� = 0, �22�

where we have introduced the de Broglie wavelength

��r� =
�

�2m�E − V�r��
. �23�

The first equation is known in geometric optics as the eiko-
nal equation �45,51�. The calculation consists in integrating
the phase along the classical ray of energy E connecting r� to
r, to obtain the phase on r,
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S�r� = �
r�

r

du
�

��u�
+ S�r�� . �24�

The second equation of system �22� corresponds to the con-
servation of probability density flux and is equivalent to the
Poynting’s law in optics. Again, after integration along the
classical path connecting r� to r, one obtains the amplitude
on S

A�r� = A�r��exp�− �
r�

r

du
�S�u���u�

2�
� . �25�

Note that interference effects are included in this formalism:
If several classical paths connect r� to r, their respective
contributions add coherently to each other. Also, if some
focusing points exist, dephasings equivalent to the Gouy
phase in optics appear and can be calculated following �45�.

Such semiclassical treatment is valid as long as one does
not look for the wave function value close to classical turn-
ing points, and as long as transverse diffraction is negligible:
transverse structures of size �x must be large enough not to
diffract significantly, i.e., �x4� ��t /2m�2. This condition re-
stricts the use of the eikonal to specific regions of space
where the matter wave does not spend a too long time t. For
instance, this is the case for the propagation in the small
region of overlap with the BEC.

The eikonal can thus be used to deal with the first term of
Eq. �11� and is equivalent to the development of this integral
around classical trajectories �52�.

4. Paraxial propagation

The paraxial regime applies as soon as the transverse
wave vector becomes negligible compared to the axial one. It
is for instance the case after some propagation for gravity-
accelerated atom-laser beams. We can then take advantage of
methods developed in optics and use the paraxial atom-
optical ABCD matrices formalism �40,44�, instead of the
general Kirchhoff integral, and characterize globally the
beam with the quality factor M2 �53,54�.

(a) The paraxial equation. We look for paraxial solutions
to the time-independent Schrödinger equation,

Hr���r� = E���r� . �26�

We decompose the wave function and the potential in a
transverse �“�”� and parallel �“�”� component, taking z as
the propagation axis,

���x,y,z� = ���x,y,z����z�, V�x,y,z� = V��x,y,z� + V��z� ,

�27�

where V��z�=V�0,0 ,z�. We express the solution �� to the
one-dimensional equation

−
�2

2m

�2��

�z2 + V��� = E�� �28�

by using the WKB approximation

���z� =�mF
p�z�

exp� i

�
�

z0

z

du p�u�
 . �29�

In this expression, F is the atomic flux through any trans-
verse plane, p�z�=�2m�E−V��z�� is the classical momentum
along z and z0 is the associated classical turning point veri-
fying p�z0�=0. Using these expressions, and assuming an
envelope �� slowly varying along z, we obtain the paraxial
equation of propagation for the transverse profile,

�i��� +
�2

2m
��x

2 + �y
2� − V��x,y,��
���x,y,�� = 0, �30�

where ��z�=�z0

z dz m / p�z� is a parameter corresponding to
the time which would be needed classically to propagate on
axis from the turning point z0. Equation �30� can thus be
solved as a time-dependent Schrödinger equation,

���x,y,�� = �
S�

dx�dy�K�x,y ;x�,y�;� − ������x�,y�,��� .

�31�

The use of the paraxial approximation allows us to focus
only on the evolution of the transverse wave function, reduc-
ing the dimensionality of the system from 3D to 2D, as the
third dimension along the propagation axis z is treated via a
semiclassical approximation �Eq. �29��.

(b) ABCD matrices. In the case of a separable transverse
potential independent of z, the paraxial approximation re-
stricts to two independent one-dimensional equations. Let us
consider a potential Vx at most quadratic in x. One can then
write the propagator Kx by using the Van Vleck formula, or
equivalently the general ABCD matrix formalism �9�,

Kx =� �

2�iB
exp� i�

2B
�Ax�2 + Dx2 − 2xx��
 . �32�

The coefficients A, B, C, D verifying AD−BC=1 are func-
tions of �−�� and � is an arbitrary factor depending on the
definition of the ABCD coefficients. These ones are involved
in the matrix describing the classical dynamics of a virtual
particle of coordinate X and speed V in the potential Vx�X�

� X���
�V���

� = � A�� − ��� B�� − ���/�
�C�� − ��� D�� − ���

�� X����
�V����

� . �33�

Different choices of � can be made and popular values in the
atomoptic literature are �=1 �9� or �=m /� �39,40�. We take
the last convention and, by introducing the wave vector K
=mV /�, use throughout this paper the following definition
for the ABCD coefficients in which is included the value of
�,

�X���
K���

� = �A�� − ��� B�� − ���
C�� − ��� D�� − ���

��X����
K����

� . �34�

(c) Propagation using the Hermite-Gauss basis. To calculate
the propagation along the x axis
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�x�x,��� dx�Kx�x;x�;� − ����x�x�,��� , �35�

it is useful to use the Hermite-Gauss basis of functions
��n�n�N

�0�x,�X,K�� =
�2��−1/4

�X
exp�i

K

X

x2

2
� , �36�

�n�x,�X,K�� = �0�x�
1

�2nn!

	X	n

Xn Hn� x
�2	X	
 . �37�

Hn is the nth order Hermite polynomial and the two param-
eters �X ,K��C, which define univocally the basis set, must
verify the normalization condition

KX� − K�X = i , �38�

so that this basis is orthonormalized.
These functions propagate easily via Kx, as

�n�x,�X,K����� =� dx�Kx�x;x�;� − ����n�x�,�X,K������ ,

�39�

i.e., the integral is calculated by replacing X���� and K���� by
their value at � through the algebraic relation �34�.

Thus the propagation of the function �x between two po-
sitions z���� and z��� is obtained by first decomposing the
initial profile on the Hermite-Gauss basis

�x�x,��� = �
n

cn�n�x,�X,K������ , �40�

where

cn =� dx �n
��x,�X,K�������x�x,��� . �41�

The profile after propagation until z��� is then

�x�x,�� = �
n

cn�n�x,�X,K����� . �42�

The high efficiency of this method comes from the fact that,
once the decomposition �40� is made, the profile at any po-
sition z��� is obtained by calculating an algebraic evolution
equation: the ABCD law �Eq. �34��. Such computational
method is then much faster than the use of the Kirchhoff
integral, which would need to calculate an integral for each
considered position.

Note that the initial choice of �X ,K����� is a priori arbi-
trary as soon as it verifies the normalization condition �38�.
However, one can minimize the number of functions �n
needed for the decomposition if one chooses �X ,K����� as a
function of the second-order moments of the profile.

(d) Moments and quality factor. Let us define the second-
order moments of �x,

�xx�� =� dx x2�x�x
�, �43�

�kk�� =� dx �x�x�x�x
�, �44�

�xk� + x�k� = i� dx x��x�x�x
� − �x

��x�x� , �45�

where we have used that �x is normalized ��dx	�x	2=1�. We
also define the wavefront curvature C �55� as

C =
�xk� + x�k�

2�xx��
. �46�

The three moments follow also an ABCD law during propa-
gation. By introducing the matrix

M��� = � �xx�� �xk� + x�k�/2
�xk� + x�k�/2 �kk��

� , �47�

this law is expressed as

M��� = �A B

C D
�M�����A B

C D
�t

. �48�

This relation allows us to derive propagation laws on the
wavefront second-order moments, such as the rms transverse
size �Rayleigh law�. As det�M� is constant, this law also
exhibits an invariant of propagation, the beam quality factor
M2, related to the moments and curvature by

�xx����kk�� − C2�xx��� = �M2

2
�2

. �49�

The physical meaning of the M2 factor becomes clear by
taking the last equation at the waist, i.e., where the curvature
C is zero:

��xx��0�kk��0 =
M2

2
. �50�

The M2 factor is given by the product of the spatial and
momentum widths at the beam waist and indicates how far
the beam is from the diffraction limit. Because of the Heisen-
berg uncertainty relation, the M2 factor is always larger than
one and equals unity only for a perfect Gaussian wavefront.

Finally, the determination of the second order moments
and the M2 factor from an initial profile allows us to choose
the more appropriate values of �X���� ,K����� to parametrize
the Hermite-Gauss basis used for the decomposition at z����
�Eq. �40��. Indeed, these parameters are closely related to the
second order moments of the Hermite-Gauss functions
�n�x , �X ,K�� by

�xx���n
= �2n + 1�	X	2, �51�

�kk���n
= �2n + 1�	K	2, �52�

�xk� + x�k��n
= �2n + 1��XK� + X�K� . �53�

From this we obtain that the M2 factor of the mode �n is
M�n

2 = �2n+1� and that all the modes have the same curvature
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C�n
= C = �XK� + X�K�/2	X2	 . �54�

It is thus natural to choose the parameters �X ,K�, so that the
curvature of the profile �Eq. �46�� equals C. This last condi-
tion, together with the choice 	X	2= �xx�� /M2, the normaliza-
tion condition �38� and the choice of X real �the phase of X is
a global phase over the wavefront�, lead to the univocal de-
termination of the parameters �X���� ,K����� associated with
the Hermite-Gauss basis, so that the decomposition of the
initial profile �x�x ,��� needs a number of terms of the order
of M2.

III. APPLICATION TO A RADIOFREQUENCY-
OUTCOUPLED ATOM LASER

We apply the previous framework to the radiofrequency
�rf� outcoupled atom laser described in �39� where a Bose-
Einstein condensate �BEC� of rubidium 87 �mass m� is mag-
netically harmonically trapped �frequencies �x=�z=�� and
�y� in the ground state 	F=1,mF=−1�, and is weakly out-
coupled to the untrapped state 	F=1,mF=0�. The BEC is
considered in the Thomas-Fermi �TF� regime described by
the time-independent wave function 
s�r�, with a chemical
potential � and TF radii R�,y =�2� /m��,y

2 �56�. The exter-
nal potential experienced by the beam is written

Vi�r� = � −
1

2
m��

2 �2 −
1

2
m���

2 �x2 + z2� + �y
2y2� �55�

inside the BEC region and

Vo�r� =
1

2
m�2�q

2 −
1

2
m�2�x2 + �z + �q�2� �56�

outside. The expulsive quadratic potential of Vi originates
from the mean-field interaction �independent of the Zeeman
substates for 87Rb� between the laser and the condensate,
whereas that of Vo �frequency �� is due to the second order
Zeeman effect. We have noted �=g /��

2 and �q=g /�2, the
vertical sags due to gravity −mgz for mF=−1 and mF=0
states, respectively. The rf coupling �of Rabi frequency �R�
between the condensate and the beam is considered to have a
negligible momentum transfer and provides the atom-laser
wave function with a source term �=��R /2
s�r�.

In the following, we consider a condensate elongated
along the y axis �����y�, so that the laser dynamics is
negligible along this direction �57,58�. We thus study inde-
pendently the evolution in each vertical �x ,z� plane at posi-
tion y0. We calculate the beam wave function in two steps
corresponding to a propagation in each region defined by Vi
and Vo �see Fig. 1�. The wave function at the BEC frontier is
calculated in Sec. III A using the eikonal approximation.
Then, in Sec. III B, we calculate the wave function at any
position outside the BEC, with the help of the Fresnel-
Kirchhoff formalism and the paraxial ABCD matrices.

A. Propagation in the condensate zone

In this section, we determine the beam wave function
���r� in the condensate zone by using the eikonal formalism
described in Sec. II B 3. This formalism is appropriate in this

case as the time necessary for the laser to exit the BEC
region ��1 ms� is small enough so that the transverse dif-
fraction is negligible �transverse size �R��.

1. Atomic rays inside the BEC

One first needs to calculate the atomic paths followed by
the atom laser rays from the outcoupling surface �the rf
knife� to the border of the BEC. The rf knife is an ellipsoïd
centered at the magnetic field minimum �chosen in the fol-
lowing as the frame origin; see Fig. 1�. Its intersection with
the �x ,z� plane at position y0 is a circle centered at the frame
origin. Its radius r0 depends on the rf detuning ��
= �m /2h����

2 �r0
2−�2�+�y

2y0
2�. As we neglect axial dynamics

and consider zero initial momentum, the classical equations
of motion give for the radial coordinate r=�x2+z2,
r�t�=r0 cosh ��t allowing one to find a starting point r0 on
the rf knife for each point rf on the BEC output surface, i.e.,
the BEC border below the rf knife �59�.

2. Eikonal expression of the wave function

We now introduce

a� =� �

m��

, R =
r

a�

, � = − � r0

a�

�2

, �57�

which are respectively the size of the harmonic potential, the
dimensionless coordinate, and energy associated with the
atom laser. Following Eqs. �24� and �25�, we obtain

S�R� =
�

2
�R�R2 + � + � ln�R + �R2 + �

�− �
�
 ,

M2

z

y

Rf knife

x

Kirchhoff Int.

ABCD matrix

¡

r0

rf
BEC
output
surface

Eikonal

FIG. 1. Principle of the calculation: The wave function is cal-
culated from the rf knife �a circle of radius r0 centered at the frame
origin� using the eikonal. A general radial atomic trajectory starting
at zero speed from r0 crosses the BEC border at rf. Once the matter
wave has exited the condensate region, the wave function is given
by the Fresnel-Kirchhoff integral, allowing one to compute the
wave function at any point from the BEC output surface. In the
paraxial approximation, we calculate the propagation using ABCD
matrices.
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A�R� =
B
s�r0��

�R2�R2 + ���1/4 . �58�

B is proportional to the coupling strength and is not directly
given by the eikonal treatment �60�. The atom laser beam
amplitude A�R� �61� is proportional to the BEC wave func-
tion value at the rf knife 
s�r0�. The wave function at the
BEC output surface is then

���Rf� = A�Rf�exp�iS�Rf�/�� . �59�

B. Propagation outside the condensate

Once the matter wave has exited the condensate region,
the volume source term � vanishes and the beam wave func-
tion is given by the second term of Eq. �11� only, i.e., the
Fresnel-Kirchhoff integral for matter waves, allowing one to
compute the wave function at any point from the wave func-
tion on the BEC output surface. In this section, we calculate
the propagation using an analytical expression for the time-
independent propagator and apply the ABCD formalism in
the paraxial regime.

1. Fresnel-Kirchhoff Integral

We perform the Fresnel-Kirchhoff integral in the �x ,z�
plane at position y0:

�� =
i�

2m
�

�

dl��GE � �� − �� � GE� , �60�

where �� is nonzero only on the BEC output surface as seen
in Sec. III A. The surface S of Eq. �11� is here reduced to its
intersection contour � with the vertical plane. It englobes the
BEC volume and is closed at infinity.

Using the expression of GE calculated in Appendix A, we
compute Eq. �60� and the result is shown in Fig. 2 for four
different outcoupling rf detunings. When coupling occurs at
the top of the BEC, the propagation of the beam exhibits a
strong divergence together with a well-contrasted interfer-
ence pattern. The divergence is due to the strong expulsive
potential experienced by the beam when crossing the con-
densate and interferences occur because atomic waves from
different initial source points overlap during the propagation.

Comparison with a numerical Gross-Pitaevskii simulation
shows good agreement. We also compare the results obtained
by using at the BEC surface either Eq. �59� or Eq. �B9�. The
eikonal method fails when coupling at the very bottom of the
BEC �Fig. 2�a��, since the classical turning point is too close
to the BEC border, whereas the method using the exact so-
lutions of the inverted harmonic potential agrees much better
with the numerical simulation for any rf detuning. Finally,
for very high coupling in the BEC �Fig. 2�d��, our model
slightly overestimates the fringe contrast near the axis.

2. Propagation in the paraxial regime

Since the atom laser beam is accelerated by gravity, it
enters quickly the paraxial regime. In the case considered in
�39�, the maximum transverse energy is given by the chemi-
cal potential � whereas the longitudinal energy is mainly

related to the fall height z by Ez�mgz. For � typically of a
few kHz, one enters the paraxial regime after approximately
100 �m of vertical propagation. For larger propagation dis-
tances, we can thus take advantage of the paraxial approxi-
mation presented in Sec. II B 4.

To proceed, we start from the profile ���x� calculated af-
ter 150 �m of propagation via the Kirchhoff integral. Using
Eqs. �43�–�46�, we extract the widths �xx��, �kk�� and the
beam curvature C at this position. From these parameters we
calculate the beam quality factor M2 by using the general Eq.
�49�. Following the procedure presented in Sec. II B 4, we
can choose the appropriate Hermite-Gauss decomposition of
���x� and the propagation of each mode is then deduced
from the ABCD matrix corresponding to the transverse part
of the potential described in Eq. �56�: V��x�=−�m /2��2x2.
The ABCD matrix then reads

�A B

C D
� =� cosh ��� − ���

�

m�
sinh ��� − ���

m�

�
sinh ��� − ��� cosh ��� − ��� � .

�61�

As explained in Sec. II B 4, the propagation is parametrized
by the time �, given by the classical equation of motion of
the on-axis trajectory in the longitudinal part of the potential
V��z̃�=−�m /2��2z̃2, where z̃=z+�q.

The ABCD matrices formalism allows also to extract
global propagation laws on the second order moments
X���, K��� and evaluate the wavefront curvature
C���=Re�K��� /X���� associated with the wavefront ���x ,��.

(a) (b)

(c) (d)

0
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5×104

0

105

0

105

0

105

2×105

0 10 20 30 40 50
(¹m)x

0 10 20 30 40 50
(¹m)x

0 10 20 30 40 50
(¹m)x

0 10 20 30 40 50
(¹m)x

Ã`
2

Ã`
2

Ã`
2

Ã`
2

5×104 5×104

FIG. 2. Density profiles obtained at 150 �m=z−� below the
BEC center. We consider the vertical plane y0=0 and have normal-
ized 	��	2 to unity. We have drawn the results obtained by using as
input of the Kirchhoff integral the profile calculated using the eiko-
nal �Eq. �59�, dotted line� or exact solutions of the inverted har-
monic oscillator �Eq. �B9�, full line�, and compare them to a full
numerical integration of the two-dimensional Gross-Pitaevskii evo-
lution of the atom laser �dashed line�. The used rf detunings are �a�
��=8900 Hz, �b� ��=6500 Hz, �c� ��=2100 Hz, and �d�
��=−1100 Hz, and correspond to increasing outcoupling height,
from �a� to �d�.
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By considering the paraxial evolution of the rms size � of
���x ,��, we then obtain a generalized Rayleigh formula:

�2��� = �0
2 cosh2���� + �M2�

2m�
�2sinh2����

�0
2 , �62�

involving the M2 factor, and where �0=X��0� and �=�−�0.
We have introduced the focus time �0 so that C��0�=0. The
relation �62� has been fruitfully used in �39� and �42� to
extract the beam quality factor from experimental images.

IV. CONCLUSION

Relying on the deep analogy between light waves and
matter waves, we have introduced theoretical tools to deal
with the propagation of coherent matter waves as follows.

The eikonal approximation is the standard treatment of
geometrical optics. It is valid when diffraction, or wave-
packet spreading, is negligible. It can be fruitfully used to
treat short time propagation, as we show on the example of
an atom laser beam crossing its source BEC.

The Fresnel-Kirchhoff integral comes from the classical
theory of diffraction. It is particularly powerful as it allows
to deal with piecewise defined potential in two or three di-
mensions together with taking into account diffraction and
interference effects.

The ABCD matrices formalism can be used as soon as the
matter wave is in the paraxial regime. This widely used tech-
nique in laser optics provides simple algebraic laws to propa-
gate the atomic wavefront, and also global laws on the sec-
ond order moments of the beam, as the Rayleigh formula.
Those results are especially suitable to characterize atom la-
ser beams quality by the M2 factor.

The toolbox developed in this paper can efficiently ad-
dress a diversity of atom-optical setups in the limit where
interactions in the laser remain negligible. It can be suited for
beam focusing experiments �62,63� and their potential appli-
cation to atom lithography �64�. It also provides a relevant
insight on beam profile effects in interference experiments
involving atom lasers or to characterize the outcoupling of a
matter-wave cavity �65�. It could also be used in estimating
the coupling between an atom laser beam and a high finesse
optical cavity �66�. Further developments may be carried out
to generalize our work. In particular, the M2 factor approach
could be generalized to self interacting atom laser beam in
the spirit of �67� or to more general cases of applications,
such as non-paraxial beams or more complex external poten-
tial symmetries �68�.
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APPENDIX A: TIME-INDEPENDENT PROPAGATOR IN
AN INVERTED HARMONIC POTENTIAL

The time-dependent propagator of the inverted harmonic
potential can be straightforwardly deduced from its expres-
sion for the harmonic potential �46� by changing real trap-
ping frequencies to imaginary ones ��→ i��. We derive here
an analytic evaluation of its time-independent counterpart
GE, by using the results of Sec. II B 2.

We consider a potential in dimension d, characterized by
the expulsing frequency �

V�r� = V�0� − �
j��1. . .d�

1

2
m�2rj

2. �A1�

By introducing the reduced time s=�� and the harmonic
oscillator size �o=�� /m�, GE is expressed as

GE�r,r�� = �
0

	

ds H�s�ei
�r,r�,s�, �A2�

with H�s�=m / �2�i� sinh s�, and


 =
��r2 + r�2�cosh s − 2r · r��

2�o
2 sinh s

+
�E − V�0��

��
s . �A3�

The first-order stationary times s� verify

cosh s� =
− b � �b2 + 4�E − V�0��c

2�E − V�0��
, �A4�

where b=m�2r ·r� and c=E−V�0�+m�2�r2+r�2� /2. If there
are positive and real solutions s�, GE reads �Eq. �16��

GE
�1��r,r�� = �

s��0
� 2i�

	�2
/�s2	s�

H�s��ei
�s��. �A5�

Otherwise, the relevant stationary point s0 �Eq. �19�� verifies

cosh s0 =
r2 + r�2 + ��r + r��2�r − r��2

2r · r�
. �A6�

s0 is the time associated with the classical trajectory connect-
ing r� and r with the closest energy to E. If the angle be-
tween r and r� is above � /2 then, according to Eq. �A6�, the
absolute value of the first derivative of 
 is never minimal,
so that ei
�s� quickly oscillates over �0; +	� and one can take
GE�r ,r��=0. In other cases, where the solution is unique, one
develops the phase around s0 and GE finally expresses as �Eq.
�20��

GE
�2��r,r�� =

2�H�s0�
�

ei
�s0�Ai�− � 1

�

�


�s �
s0

� , �A7�

where �= �	−�1 /2���3
 /�s3�	s0
�1/3.

APPENDIX B: EXACT SOLUTIONS OF THE TWO-
DIMENSIONAL INVERTED HARMONIC OSCILLATOR

AND RELATION WITH THE EIKONAL

In this appendix, we give an analytical expression for the
eigenfunctions of the inverted harmonic potential in the BEC
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region. The use of such solutions enables us to avoid any
divergence of the eikonal solution close to the turning point.

Using dimensionless parameters introduced in Eq. �57�,
the time-independent Schrödinger equation in the BEC re-
gion reads

− � �2�

�R2 +
1

R

��

�R
+

1

R2

�2�

��2� − R2� = �� . �B1�

Introducing the angular momentum L�= �� / i���� /���, one
can decompose the solution of this equation as the product of
a radial part and an angular part

��R,�� = 
�R�eil�, �B2�

with l�Z and �l is the angular momentum of the wave
function. The general solution 
 is given by


�R� =
c1

R
M�− i

�

4
;

l

2
;iR2� +

c2

R
W�− i

�

4
;

l

2
;iR2� . �B3�

M�� ,� ,z� and W�� ,� ,z� are Whittaker functions �related to
the confluent hypergeometric functions of the first and sec-
ond kind� �49�, whereas c1 and c2 are complex coefficients.

In general, the wave function must be decomposed on the
basis of the different solutions 
�R� parametrized by l and �.
However, in the following, we restrict ourselves to the study
of a solution that connects asymptotically to the eikonal.
Thus we are only interested in the wave function describing
a dynamics without any transverse speed or diffraction, i.e.,
with l=0. Since the wave progresses from the rf knife R0 to
the outer part of the potential, we also only look for “outgo-
ing wave” type solutions �69�. Such solutions behave as pro-
gressive waves in the asymptotic limit �R→	�. One can ex-
press the Whittaker functions in term of hypergeometric
functions �49� for any complex parameter � and z

M��,0,z� = e−z/2�z 1F1�1

2
− �;1;z� , �B4�

W��,0,z� = e−z/2z�
2F0�1

2
− �,

1

2
− �; ;−

1

z
� . �B5�

For 	z	→	, these functions are asymptotically expanded as
�70�

1F1�a;b;z� �
��b�

��b − a�
�− z�−a

2F0�a,a − b + 1; ;−
1

z
�

+
��b�
��a�

ezza−b
2F0�b − a,1 − a; ;

1

z
� �B6�

and

2F0�a,b; ;
1

z
� → 1 + O�1

z
� . �B7�

One thus obtains an asymptotic formula for Eq. �B3� in
which terms proportional to eiR2/2 or e−iR2/2 appear. Cancel-
ling the second ones corresponding to an incoming wave
toward the center leads to a relation between c1 and c2:

i
e−��/4

�� 1
2 − i �

4�c1 + c2 = 0. �B8�

The solution is finally written as

��R� =
�� 1

2 + i �
4�ei��1−ln�−�/4��/4

R �e��/8M�− i
�

4
;0;iR2�

−
ie−��/8

�� 1
2 − i �

4�W�− i
�

4
;0;iR2�
 , �B9�

where the prefactor has been chosen so that the asymptotic
expression of ��R� connects to the eikonal solution given by
Eq. �58�.
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