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Healing Near-PT-Symmetric Structures to

Restore Their Characteristic Singularities:

Analysis and Examples
Henri Benisty, Member, IEEE, Chen Yan, Aloyse Degiron, and Anatole T. Lupu

Abstract—PT-symmetric structures, such as a pair of coupled

waveguides with balanced loss/gain, exhibit a singularity of their

eigenvalues around an exceptional point, hence a large apparent

differential gain. In the case of fixed losses and variable gain, typ-

ical of plasmonic systems, a similar behavior emerges but the sin-

gularity is smoothened, especially inmore confined structures. This

reduces the differential gain around the singular point. Our anal-

ysis ascribes the origin of this behavior to a complex coupling be-

tween the waveguides once gain is present in an unsymmetrical

fashion, even if guides feature the same modal gains in isolation.

We demonstrate that adjunction of a real index variation to the

variable waveguide heals the singularity nearly perfectly, as it re-

stores real coupling. We illustrate the success of the approach with

two geometries, planar or channel, and with different underlying

physics, namely dielectric or plasmonic.

Index Terms—Integrated optoelectronics, optical amplifiers,
waveguides, coupled mode analysis.

I. INTRODUCTION

R ECENTLY, a great interest has been paid to the unusual

properties of PT-symmetric structures, that is structures

where gain and loss are exchanged by a mirror symmetry

[1]–[4]. One “flavor” under which such PT symmetry comes

uses a plane of symmetry normal to a waveguide, but it then

demands a specific periodic pattern of gain and real index per-

turbations [5]–[7]. The other “flavor” considers two waveguides

with initially identical modal (effective) index

[2], [8]–[11]. We prefer here this second version, which is also

more prone to possible implementation in switching devices.

When gain is increased in one of the coupled waveguides and

losses are symmetrically adjusted in the other, an exceptional

point arises in the behavior of the eigenvalues [2], [4], [12],

[13]. The eigenvalues that were both real below this exceptional

point (in spite of gain in the system) become complex conjugate

beyond.

At or around such an exceptional point, the output has a very

large swing if the material gain is changed only by a small
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amount and if the length of the device is long enough, meaning

in other words that there is a large differential gain in the system.

We invoked this in our recent contributions on PT symmetry

with plasmonic systems [12], [14]. Because of the limited ex-

tent of this interesting regime, the device useful operation range,

i.e., with both substantial gain and high differential gain, has to

be assessed. We will first do such an assessment, resulting in a

simple specification for device length and a framework for our

subsequent results.

What we mainly wish to address here is the restoration of

a near-perfect singularity in practical cases of interest where it

tends to be smoothed. The smoothing phenomenon is general:

if one starts from identical waveguides at zero gain/zero loss,

modifying their material constant to bring gain to one of them

and loss to the other impacts not only the real part of the prop-

agation constant, but also the coupling constant, which tends to

become intrinsically complex. The smoothing of the singularity

by a complex coupling constant, thus, has to be mastered for the

rest of the study.

Two reasons have also attracted us toward attempts of

PT-symmetry operation with fixed losses instead of variable

ones: first the impracticality to impose balanced losses and

gain, and second and most important, the advent of plasmonic

gain/laser structures [15]–[17], so-called spasers [18] for in-

stance, whereby a fixed loss imparted by the metal contribution,

which is rather large in basic plasmonic waveguide designs in

the infrared to visible ranges, is decently mitigated by solutions

such as the “hybrid plasmonic waveguides” [19], [20]. Such

reduced losses can, therefore, be realistically balanced by gain

from known materials systems, be it in organics-based or in

semiconductor-based structures.

We also argued in [14] that in the case of fixed losses vari-

able gain, corresponding to the much investigated case of active

plasmonics, one can get a similar PT-symmetric system with

still an exceptional point in the eigenvalue evolution, at least in

a basic model, provided that coupling is adjusted between the

first gain-carrying waveguide and the second, fixed-loss wave-

guide. In brief, since the exceptional point occurs when gain and

coupling critically compete, adjusting the coupling to the crit-

ical value dictated by the fixed losses in the second waveguide

does result in an exceptional point singularity similar in most

respects to the balanced case. The singularity then occurs at the

gain value opposite to the fixed losses [14].

When turning to real systems with standard electromagnetic

description, the applicability of coupled-mode theory requires

arrangements, targeting, as said previously, the complex nature
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of the coupling constant. For instance, we substantiated the

finding of coupled-mode theory with two calculations either

on 1-D waveguide models or on long-range surface plasmon

polariton (LRSPP) waveguides [21] two cases rather corre-

sponding to “deconfined” modal strategies. In both of them, the

singularity was very well restored, albeit not to mathematical

perfection. Unfortunately, when we considered more confined

waveguides such as the PIROW waveguide [12], [22], we

observed that the singularity could be substantially washed out,

even if gain and coupling were adjusted together.

This can be understood because the addition of the same

amount of gain or loss to lossless waveguides affects the cou-

pling coefficient with the other guide. Even if two guides have

equal modal gains/losses when considered in isolation, we will

see for instance that because of the repartition of gain and loss

in each of them, a relevant coupling coefficient product is no

more purely real.

The scope of this paper is therefore, after the assessment of

differential gain mentioned previously, to present an analysis

and a strategy to restore a more spiked exceptional point be-

havior in spite of the adverse effects observed in real structures,

that is “healing” the smoothing of the singularity. For this, we

first infer the complex coupling coefficients from the exact cal-

culation and deduce how they should be modified. The modifi-

cation is targeted at compensating the imaginary part of the cou-

pling to restore a real coupling. This strategy, therefore, amounts

to modify continuously the real part of the dielectric constants

in adequate proportion with the variation of gain, to get from

the optogeometric parameters a proper coupled-mode equiva-

lent behavior. We gave a first example of this in [12]. As is intu-

itive from this strategy, if the imaginary part to be compensated

is modest, the amount of real part of the dielectric constant to be

modified will be also modest in comparison to the gain (imagi-

nary part) variation, which makes the approach sensible.

In Section II, we give the assessment of “PT-symmetry en-

hanced” differential gain. We introduce a phenomenological

phase in the coupling constant and observe how it degrades and

dilutes the singularity. In Section III, we give the analysis of the

complex coupling in such a way that the remedying strategy is

logically deduced in terms of rotation in a representative com-

plex plane andmore usefully in terms of detuning. In Section IV,

we present first simple numerical examples, based on a pair of

waveguides which are modified in such a way as to explicitly

adjust the complex coupling constant while operating at a nearly

fixed effective index. We next apply our method to a more

realistic case and heal the singularity as well. Slab and channel

geometries are exemplified, with, in the latter case, either a pair

of “PIROW” inverse-rib hybrid plasmonic waveguides [12],

[22] or the LRSPP [14], [21] as the loss-carrying waveguide.

II. PT COUPLED MODE THEORY, SINGULARITY AND

DIFFERENTIAL GAIN ENHANCEMENT

In its generic version, a PT-symmetric system of two waveg-

uides [see Fig. 1(a)] can be modeled by the matrix coupled wave

equation

(1)

Fig. 1. Two coupled waveguides with perfect PT-symmetry and no complex
coupling: (a) coupled waveguides and definition of main quantities; (b) eigen-
values real and imaginary parts versus normalized modal gain ; (c) absolute
amplitude gain of the device in the “bar” configuration for lengths

, and 2.5 (curves as indicated), as a function of normalized modal gain

and comparison with isolated waveguide gain ; (d) differential
gain in dB per normalized gain unit for the three
cases of (c): (short dashed line), (dotted line),

(long dashed line). The horizontal lines show the constant differ-
ential gain of the isolated gain-carrying waveguide, proportional to .

where and are the amplitudes of the two waveguide

modes, and the matrix is

(2)

where the individual mode’s propagation constants include

gain and loss: with our convention losses are described

by as well. The coupling constants are in general

complex. In a perfect coupling case, we assume that ;

in other words, the so-called detuning is zero, and

phases are matched between the two passive modes (this will

not be the case in next sections where a role of will emerge).

If and are real valued and identical, then

varying the value of , and looking at the eigenvalues of ,

see Fig. 1(b), we have a perfect singularity [2], [4] at the excep-

tional point , that is a critical gain value that exactly

coincides with the eigenvalues splitting at .

Thus, we make use in the following of the normalized gain

as the abscissa. Of course, the imaginary part of the propaga-

tion eigenvalues is exactly zero in this case at the ex-

ceptional point. The singularity at the exceptional point means

that eigenvalues evolve locally faster, and quadratically, with

the underlying modal gain (or bulk gain) and loss of the iso-

lated waveguides.

The transmission matrix of a device of length is easily

calculated according to , where is the

diagonal matrix composed of the eigenvalues

and is the matrix of the eigenvectors of . We show in

the semilog plot of Fig. 1(c) the resulting “bar” transmission

, compared to the case of plain amplitude amplification

. While gain is obviously lower due to the coupling,
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Fig. 2. Perfect PT symmetry, i.e., balanced gain and losses, with variable de-
grees of complex coupling, , and 0.15 (the coupling constant
product is ); (a) real and imaginary parts as a function of modal
gain ; (b) gain of the coupled system for different lengths for the three
phases, showing the smoothing of the high slope region around , the
straight lines being ; (c) eigenvalues trajectories in complex plane,
with dots associated with linearly spaced gain values; (d) differential gain for
different lengths and phases as in (b); the horizontal solid lines show the con-
stant differential gains of isolated gain-carrying waveguides.

there is an abrupt change from to close

to the exceptional point. Fig. 1(c) shows that this rapid transi-

tion holds best for the longest waveguides and occurs closer and

closer to the exceptional point as the device length increases.

This behavior has already been evidenced in [14, Fig. 1] and

mostly results from a change in the way the waveguides in-

teract below and above the exceptional point. Just below the

exceptional point, we have because the length of the

device is such that all the signal is coupled to the lossy wave-

guide. Above the exceptional point, the signal propagating in a

PT-symmetric structure is always transmitted through the gain

channel, leading to a strong overall gain if the device

is sufficiently long. In other words, we have a reasonably narrow

region around the exceptional point where a change in the cou-

pling properties produces a feature that cannot be afforded by a

single guide, and consequently genuinely offers a novel device

opportunity.

The abrupt changes in for the three lengths considered

here imply that the differential gain is very high in the vicinity of

the exceptional point. This is best seen in Fig. 1(d) which gives

a plot of the “PT-enhanced” differential gain enhancement.

Next, playing with this model, we can readily address in a

general manner the effect of a complex coupling constant. More

precisely, we can take constants with a complex product such

as . The eigenvalues are determined by

the product . We use this phase of the product

as a parameter, in Fig. 2(a), (b), and (d) which complements

Fig. 1(b)–(d) for three different phases . In Fig. 2(c), we have

added a complex plane representation of the eigenvalue trajec-

tories, showing how the phase causes the poles trajectories to

repel. It is obvious that a complex constant tends to wash out

the singularity, but the enhanced differential gain is still robust

Fig. 3. Imperfect PT symmetry with constant losses, and with variable degrees
of complex coupling, , and 0.15; (a) real and imaginary parts as
a function of modal gain ; (b) gain of the coupled system for different lengths
L for the three phases, showing the smoothing of the high slope region around

, the straight lines being ; (c) eigenvalues trajectories in com-
plex plane, with dots associated with linearly spaced gain values: at zero gain,
loss dominates (negative for both branches); (d) differential gain for dif-
ferent lengths and phases as in (b); the horizontal solid lines show the constant
differential gains of isolated gain-carrying waveguides.

against this adverse effect up to phase values of about 0.1. It ac-

tually avoids differential gain peaking. We will see later in more

detail how real systems correspond to this situation.

Furthermore, we can consider still in a general manner the

fixed loss condition that we discussed in [14]: it is the reference

situation for the use of plasmonics for wave-guiding. It is indeed

interesting to combine gain and losses not just to fight losses of

plasmonic waveguides, but to fruit the possibility of “PT-en-

hanced differential gain” discussed previously. We, thus, have

(3)

As explained in [14], to maintain the singularity/degeneracy

at the same central eigenvalue position , the fixed losses

(in amplitude) and coupling constant should be matched,

, and the singularity occurs when the variable gain

also matches . In Fig. 3(a)–(d), we, therefore, do the

same exercise as in Fig. 2(a)–(c) but for this fixed loss situation.

It is clear that there is a price to pay and that the differential gain

enhancement is reduced. But in essence the phenomenology is

conserved and the combination produces substantially more dif-

ferential gain in an acceptable range of the variable gain and of

the variable phase of the coupling coefficient.

With all these elements in mind (perfect case, Fig. 1, role of

phase, Fig. 2, and situation of fixed losses, Fig. 3), we can now

proceed and explain in the next section how one can heal a given

real system. The difference is that in a real system, the eigen-

value pattern is not found by diagonalizing a matrix, but by an

exact electromagnetic calculation (1-D for coupled slab modes

or 2-D for coupled channel modes). Therefore, the handles are

not direct, and more understanding has to be provided to manip-

ulate those handles. We stick to the case of fixed losses because
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we believe it is more realistic. We, thus, study how the degrada-

tion in differential gain enhancement due to complex coupling

can be mitigated.

III. HEALING IMPERFECT PT SYMMETRY: COUPLED MODE

APPROACH TO PREDICT DETUNING

We now turn to the converse issue of “healing” an imper-

fect PT-symmetry exceptional point, and we concentrate on the

fixed loss cases. We first manipulate the CMT model in such

a way that its parameters can be retrieved from the sole evolu-

tion of eigenvalue versus . This is because, for exact systems

modeled in 1-D or 2-D, the coupling coefficient can be tricky

to safely determine, whereas there is generally no doubt on the

eigenvalue spectrum evolution. Such a spectrum could stem for

instance from a mode solver, and is generally reliable.

In general, the product of the two coupling coefficient is com-

plex (with K and real). The physical reason

for a complex valued product starts by remarking that the two

terms and are independent. They are related to the overlap

of one mode’s tail to the other guide’s gain or loss region. For

instance, these active regions may be positioned in arbitrary re-

gions within the respective guides provided that integrated other

their ownmode profile, each achieves the given gain or loss .

Formally, imagine a slab waveguide with gain in only one half

of it. This half can be either close or far from the other wave-

guide; nevertheless, the modal gain of the isolated waveguide

would be the same, whereas the overlap integral would differ

since gain would be further in the tail in the “far” case. More

generally, because there is no a priori relation between the two

modes (core or tail), the two overlaps may take distinct complex

values, preventing the coupling constant product to be real.

Solving the eigenvalues of matrix by requesting

yields a second-order equation

, whose roots can be

written, with easy algebra:

(4)

The discriminant is inde-

pendent of the absolute index (similarly to the fact that there

is no energy origin in quantum mechanics, the splitting is inde-

pendent of the mean effective index of these diagonal elements).

Some more algebra on the detailed form of gives

(5)

whereby only the detuning appears, not the absolute

indices. This has an interesting consequence: if we start from

only the knowledge of the two eigenvalues (e.g., they

are complex effective indices obtained from a mode solver

in a simulation), we have from (4) ; thus,

. By separating the real and imaginary parts

in the difference , we get from (5) two

identities

(6)

(7)

Thus, eliminating K, we can retrieve for any starting data

(8)

This is an important piece as it shows that the coupling

product phase (and then K) can be retrieved from the

combined knowledge of the sole eigenvalue difference of the

coupled guides and the gain/loss and detuning of the isolated

guides (three parameters). Note that the formal signs attributed

to the two eigenvalues do not matter in (8).

By the same token, we have gained a useful approach to heal

systems with imperfect PT symmetry due to complex coupling,

and which are characterized by a large nonzero lower bound for

the eigenvalue “distance” in a complex plane

, as observed in Section II models and in reality. Since

the optimal PT-symmetry-related singularity is characterized by

a root degeneracy, see Fig. 1(a), we want to force a point such

that at the singular point and we will

do that by adjusting the detuning parameter first

from an algebraic point of view, and second with a graphical

justification.

We take the freedom to add the condition

at the singular point which anyway verifies

: it is reasonable to take advantage of a high differen-

tial gain in a region where the gain is not smaller than unity, nor

too much higher. This greatly simplifies the final expressions

without sacrificing the principle. Since in the case ,

the roots are and their imaginary part is

, we, thus, request at the singular point.

Now (5) greatly simplifies and reads

(9)

We now get a complex equation whose real and imaginary

parts finally provide the optimized values of and as

follows:

(10)

(11)

(12)

It is seen that for low , we retrieve and .

Also, is affected to first order in , whereas the coupling

is affected only to second order. This prescription (11)–(12) can

now be used to introduce in a given starting system a detuning

to restore a perfect singularity: if the system before correction

has at , we have to add the complementary

detuning :

(13)

For small phases, the condition is the one from

[14]. It is not difficult in the perturbation spirit to adjust the two

guides spacers to reach a given modulus of coupling strength

if we have set their effective indices and know the cladding

(spacer) constant : we then know what is the spatial law of

exponential decay, dictated by . The quantitative
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Fig. 4. Graphical interpretation of the detuning correction to restore a complex
coupling phase. The matrix coefficients are represented in the complex plane,
and a rotated frame is used.

coupling strength can be assessed by the splitting in the absence

of gain/loss for instance.

To continue this section, we give a pictorial view of the

healing process (see Fig. 4): finding a way to restore a perfect

singularity amounts to compensate the phase .

We can depict the ideal target matrix just by representing all its

four matrix elements of in the complex plane (not a

standard complex plane representation of harmonic quantities):

the singularity is known to be perfect for two complex conju-

gate nondiagonal terms and for two purely imaginary diagonal

terms, one varying and the other fixed . Since

it survives to the addition of any common real constant of the

diagonal terms and , (roots are then complex conju-

gate rather than lying on real or imaginary axis) we can omit

such constant. We now note that this picture of four points can

undergo a rotation , associated with , and still produce

a singular behavior in the rotated frame, when is varied (at

constant ). The eigenvalues themselves are also rotated, but

importantly, their quadratic evolution around the singular point

would be preserved, guaranteing the essence of PT-enhanced

differential gain for reasonable values since the evolution on

the complex axis would mostly persist. In this rotated case, the

coupling constant product becomes instead of .

Conversely, now we have understood that a rotated matrix

can work, we may, thus, proceed backward and consider that the

nonconjugate nondiagonalmatrix elements and of the

system to be healed (and thus featuring initially )

can just be seen as complex conjugate in a rotated frame (see

Fig. 4) built on their bisector . This is pictured in a

convenient case whereby is real but is complex, without

loss of generality (neither does their exact magnitude matter,

only their product appears). Thus, if we place the two diagonal

elements and correctly in this rotated frame, namely

symmetric to the bisector, we are able to reproduce a perfect

singularity. Thus, without moving , we have to place

such that at the targeted singular point it is complex conjugate

to in the rotated frame.

Fig. 5. Trajectories of eigenvalues for (blue)

, and 2.0 for a case with an original complex coupling phase of 0.4
rad.

As long as with variable gain we travel nearly vertically

enough after this singular point, we will produce a nearly

optimal form of enhanced differential gain. We, thus, add a

small real diagonal term that we can guess to be negative.

Arranging for a fixed value of or for a value that would evolve

with amounts to choose to travel vertically or obliquely,

which is of secondary importance. The reader can check that

(12) can be drawn from Fig. 4.

Our way to proceed to a “healing” mainly through detuning

is dictated by the fact that practically cannot be straightfor-

wardly controlled whereas a detuning and a given coupling

strength are parameters easy to adjust, respectively, through

optogeometric tuning of individual guide section and through

guide-to-guide spacing. Thus, we take as a quantity imposed

by design constraints (specific set of shape and gain/loss region

that dictates each isolated mode overlap with the other guide’s

gain/loss).

One might now wonder what is the penalty if the requested

“healing” conditions are not obeyed. An illustrative sequence is

given in the following for the case and rad,

so that is the critical

detuning to restore the singularity. The diagonal real parts are

initially zero for simplicity. The result is given directly in the

complex plane in Fig. 5, varying the ratio across unity,

thus, from no correction to the nearly symmet-

rical case of double correction . The restoration

of a perfectly singular point is fully clear. The resulting trajec-

tories, however, now cross at some angle ( rad) instead

of the symmetric pattern in Fig. 3(d) in the limit case .

This is the trace of the rotation by combined with

the purely imaginary (vertical) trajectory of the guide param-

eter of the form . It implies that in a graph versus

, now (as that of Fig. 3(a) for instance), beyond or before the

exceptional point, the real parts of the indices in the “healed”

case do not describe a single line but rather an acute and “flat”

parabola. What also appears is the quadratic trend of the curve

around singularity. Thus, without much surprise, if we miss the

exact detuning our penalty goes like . A similar
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rule also holds for the targeted gain, but this was known in the

initial cases of Figs. 2 and 3. In general, this makes the proce-

dure somewhat demanding if a high degree of healing is sought.

But the aforementioned study of Fig. 3 tells us that the enhanced

gain region becomes smoother for imperfect PT symmetry with

a remaining phase, which is practically a welcome situation to

operate under relaxed absolute gain conditions and ensuring a

smaller but more easily reproducible enhancement.

IV. EXACT EXAMPLES FOR PLANAR AND CHANNEL

WAVEGUIDES

A. Dielectric-Based Waveguides

We now compare these predictions modeled with the sole

CMT to those of actual guides, accounted with exact electro-

magnetism, at a given frequency. The simplest case is a 1-D

geometry , namely a stack of different layers out of

which two are guiding, one with some fixed loss and the other

with a variable gain.

For such a 1-D stack, it suffices to set dielectric constants and

to give dimensionless thicknesses of the th layer in the form

to take advantage of scaling laws. Nu-

merically, to hunt for complex poles in complex space

( can also be used), we found it convenient to

use the noniterative Cauchy integrals of the complex analytical

diverging quantity of the transfer matrix of the system [23],

typically : we have

(14)

If a single pole is in the contour, the residue simplifies. Here,

we used two to four half-circles to safely get the poles with

minimal algorithmic effort.

In our first example (see the inset of Fig. 6), both waveguides

WG1 and WG2 have a constant and a width

(this corresponds, say, to silicon nitride at m

and thickness nm). The cladding (i.e., layers 1, 3, 5 with

obvious numbering) has a constant (say, silica

or polymer). For the time being, WG1 is uniformly lossy with

, whereas the variable gain-carrying WG2 guide

features localized gain in the form

only in its central half of thickness , the two sides of

thickness being gain free. From the study of the isolated

guides, we get their gain/losses in terms of , and we can

also access the relevant partial derivatives and

, so that we control gain and detuning through

these handles. From the knowledge of the loss of WG1

, and from the calculation of the splitting of WG1

and WG2 for any cladding layer spacing first guess, we can

restore the situation of [14], : we get the coupling

strength for any thickness, say , and we infer the way to

reach this condition from the fact that for given effective indices,

the coupling strength has the well-known behavior dictated

by the decay constant . Here, we arrive at

.

The use of the aforementioned analysis on the eigen-

values (poles) of the system with optimal

Fig. 6. Trajectory of the complex indices for the coupled-waveguide system,
not detuned and detuned (“corrected”) with the correction that restores the sin-

gularity. The points correspond to a scan in , with a coarser graining in the
no detuning case than in the corrected case, by a factor of 4.

confirmed us that the coupling strength is pretty constant

, whereas the phase evolves much more.

In this particular case, it turns out to change sign from pos-

itive to negative upon the increase of . Given the sharper

gain repartition in the gain-carrying WG2 waveguide, the

gain/loss equality is attained for . At

this point, our correction yields a phase .

The correction then decomposes into

. Eventually,

making use of , we get the detuning

correction to be made on our WG2: we have to increase its

dielectric constant by . This is a typical value

of electro-optic material and devices, by the way. At the present

stage, only the high gain is not clearly realistic

today, but we have discussed this point in [14].

Fig. 6 presents the two complex trajectories of eigenvalues

: the one before healing and the one for the “healed” case.

B. Phase of Coupling

We next consider a case where the role of the phase versus

the optogeometric parameters is more significant than the afore-

mentioned case: we now localize the fixed losses in either the

“far” or the “close” half of WG1. All the rest of the study is the

same, the values being just twice larger because the overlap

of the guided mode with the gain region exists only in one half.

We note in Fig. 7 that the initial cases have different phase

signs around the crossing, with similar absolute values, leading

to opposite trends at the avoided crossing. Nevertheless, the

healing strategy works well. The final tilt of the exceptional

point crossing thus is seen to depend logically on the optoge-

ometric parameters. In the “far” case, the complex gain is less

than what the real part coupling involves, and conversely in the

“close” case, it is more, leading to distinct complex coupling

behaviors, which in turn request distinct corrective angles of ro-

tation . Only one coupling constant is affected by the change

not the other one, so we do

not have the most heuristic situation which would be opposite

rotation angles.
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Fig. 7. Same as in Fig. 6, except that losses are now localized either “far” or
“close” from the gain-carrying waveguide. Both data are superimposed and de-
signed by arrows. Note the distinct patterns of the original cases and the re-
maining difference in tilt angle on approaching the exceptional point between
the two “corrected” cases.

Fig. 8. Plasmonic case: eigenvalues in the case of a dielectric waveguide with
variable gain and core real index as in Fig. 7, coupled to a SPP supported
by a fictitious metal – . The starting configuration has a large
avoidance of the singularity (smaller crosses and circles); the corrected one (core
dielectric constant shift of ), more densely sampled here, is nearly
perfect (larger crosses and circles).

C. Surface Plasmon Polariton

As a final 1-D example, we study a plasmonic case for the

loss-carrying guide, thus in the TM polarization in 1-D [17]. The

stack consists of a formal ad hoc “metal” –

supporting a surface plasmon polariton (SPP), a low index

spacer , and a high index guide com-

prising a central gain region as in Fig. 7 case. The phase is found

to be rad and the detuning correction is predicted

to be in terms of effective index, requiring a core

dielectric constant shift of , about 1%. The result

compared to the original situation is very satisfying (see Fig. 8),

showing that the nature of the loss channel (more dielectric or

more fully metallic) is indifferent.

Fig. 9. Eigenvalue trajectories for original coupled PIROW structured and
“healed” PIROW structure.

D. Coupled Inverse-Rib Plasmonic Waveguides

We now detail a first 2-D example, a study made by

trial and error [12]. The basic waveguides belong to the

family of the so-called hybrid waveguide making use of a

high-index/low-index/metal sandwich, and allowing strongly

subwavelength mode sizes if the low-index gap is of small

dimensions in both transverse directions. The first initial study

[19], [20] dealt with cylindrical high-index systems and led to

the first longitudinal “spaser” [18]. We proposed a technologi-

cally simple and deterministic way to get similar situations, the

so-called plasmonic inverse-rib optical waveguide (PIROW)

whereby a high index planarization of a grooved low index

resist on a flat metal achieves essentially the same result. A

starting point is [22, Fig. 1] for PIROW definition, and then [14,

Figs. 5 and 6] for a first example of coupled passive PIROW

structures. In [12, Fig. 9], we empirically found that detuning

did restore the singularity. Here, we apply the aforementioned

analysis to check the relevance of our approach in deterministi-

cally providing the detuning correction. The results of [12] are

plotted in Fig. 9 in the complex plane. The quantity scanned is

the gain of the inverse rib together with the gain of the fraction

of the top high-index slab indicated in the inset, to compensate

the plasmonic losses with less material gain than if in the rib

only. Corrective detuning is supposed to be implemented only

in this top fraction, which adds some complexity, but also

exemplifies the robustness of our approach.

The analysis indicates again that K is nearly constant, but

here the phase is relatively large ( rad) as could

be expected from the broadly avoided singularity in the orig-

inal case. The detuning correction in terms of effective index is

0.00164, which corresponds here to add a positive index shift in

the top part of the PIROW of about 0.010. The empirical choice

was 0.0092, hence an 8% discrepancy. We hypothesize that this

might stem from the complex situation denoted previously, with

both waveguides carrying losses, even the gain one.
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Fig. 10. Eigenvalue trajectories for coupled LRSPP waveguide and SU8 (high-
index polymer) waveguides in polymer (BCB) in three cases for a wavelength

nm: tuned at zero gain (“original” , yellow and light blue
triangles), corrected to restore the singularity ( , red and blue
triangles) and “over-corrected” ( , green and gray diamonds).
The inset depicts the geometry in question, with the LRSPP guide on the left and
the dielectric guide on the right.

E. LRSPP

We finish these examples by the case of a LRSPP channel

waveguide coupled to low-index-contrast channel waveguide

[21], in which modes are rather “deconfined,” and polariza-

tion is quasi TM, i.e., vertical in the inset of Fig. 10. Here,

the same procedure is applied we track individual guide prop-

erties, then get to a zero detuning situation associated with the

proper coupling given the LRSPP guide losses,

and finally we apply the correction through a higher index in

the SU8 core than originally. Here, the coupling requirement

translates into a large 3.42 m spacing between

the guides given the weak losses. The extra index contribution

needed to restore the singularity is in the range,

e.g., accessible by thermo-optical tuning. Actually, compared

to the empirical value , our correction approach

(characterized by mrad only) yields a nearly perfect

result (a shift of in . Such

a good agreement is at variance with the slight discrepancy of

the double PIROW case above. These distinct behaviors are in

support of our assumptions for the complexity of this double

PIROW case, notably the presence of losses in both guides.

V. CONCLUSION

The concept of PT-symmetry breaking brings, beyond its fun-

damental interest, the opportunity to implement a high differen-

tial gain near its exceptional point, and furthermore to do this

by interaction of the gain system with a loss-carrying wave-

guide. Such a situation may notably include a plasmonic or

metal-based waveguide [14] in conjunction with a more stan-

dard dielectric waveguide for instance. To date only so-called

passive PT-symmetric structures, with only losses and no gain,

have been studied [8] with metals. Other PT-symmetric realiza-

tions involve more peculiar gain regimes [11].

We have first outlined how much differential gain would be

available. This crucially depends on the degree of perfection

of the PT-symmetry breaking. A critical control parameter of

this perfection is the phase of the product of the coupling con-

stants . This phase is responsible for smoothing

the singularity; it has a physical basis and is not dependent on

any “phase origin”; only individual coefficient may have such

a dependence. The smoothing of eigenvalue evolution close to

the exceptional point is initially slightly beneficial in the sense

that it avoids a divergence of the differential gain near the sin-

gularity, but this smoothing can rapidly become detrimental to

the very existence of a decent differential gain. We have made

this scenario more quantitative.

We have then given an account of PT-symmetric coupled

waveguide systems in the framework of coupled mode theory

to explain why and how the presence of this detrimental phase

could be “healed” to restore a genuine singular behavior versus

the gain of the active waveguide. This involves simply a de-

tuning of the two waveguides, which was explained graphically

as well in Fig. 4. This had been made only by trial and error in

a first case, and is now confirmed by an examination of the cou-

pled-mode-theory results.

We have eventually applied this approach to heal a number

of waveguide systems, either of the slab or of the channel type.

We start from a tuned system, whose individual effective indices

are known (a constant loss-carrying waveguide and a variable

gain waveguide), as well as their tuning characteristic, i.e., the

coefficients (partial derivative) which tell how one of the con-

stituent dielectric constant influences the real part of their ef-

fective index. We then check that the detuning predicted from

the coupled mode theory does restore the singularity nearly en-

tirely. A few slab systems were used as models to point out what

are the handles liable to influence the coupling phase in ques-

tion, including a SPP case. Channel waveguide cases were in-

tended to be more realistic. One of them is the PIROW case

used for the trial-and-error first account [12], while the other is

the system embedded in SU8, for which exper-

imental proof of the coupling behavior is among the best char-

acterized to date [21].

We have, thus, provided tools to make good use of the

PT-symmetry breaking singularity to produce high differential

gains in real-life systems, and hope to test these effects in

experiments.
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