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Abstract. When particles are multiply scattered by a random poten-
tial, their momentum distribution becomes isotropic on average. We
study this quantum dynamics numerically and with a master equation.
We show how to measure the elastic scattering time as well as charac-
teristic isotropisation times, which permit to reconstruct the scattering
phase function, even in rather strong disorder.

1 Introduction

These days, ultra-cold atoms permit to study disorder physics in a quantitative man-
ner. In particular, quantum transport of non-interacting particles can be studied in 1D
[1], 2D [2,3,4] and 3D [5,6]. One of the latest development, suggested in [7], consists in
launching a quasi-monochromatic wave packet inside the bulk of a random potential
and monitoring the single-particle momentum distribution [3,4]. The long-time evo-
lution leads to coherent backscattering (CBS) and coherent forward scattering (CFS)
signals, which are linked to weak and strong localization, respectively [8]. In this pa-
per, we analytically and numerically analyze the short-time dynamics, which contains
valuable information about disorder strength and scattering characteristics. In par-
ticular, we show how one can not only measure the scattering and transport times,
but also reconstruct, by an angular Fourier analysis of the momentum distribution,
the complete scattering phase function.

2 Momentum-distribution dynamics

Starting from the momentum distribution nk(0), we seek to compute nk(t) = |ψk(t)|2

at later times t under the evolution with H = Hkin + V (r). The over-bar {.} denotes
an ensemble average over realizations of the random potential V (r).

We simulate this evolution numerically by solving the two dimensional (2D) Schrö-
dinger equation for matter waves with Hkin = p2/2m using a finite-difference method.
The initial wave function has a small width ~∆k around a finite average momentum
~k0. The random potential V (r) is an isotropic speckle with a Gaussian spatial co-
variance length σ and amplitude V . The natural energy and time scales of the system
are Eσ = ~

2/mσ2 and tσ = mσ2/~. Figure 1 shows numerically calculated momen-
tum distributions, averaged over 1000 disorder realizations, for two different regimes:
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Fig. 1. Density plots of momentum distributions from the numerical simulation. Upper row:
Experimental regime of [4], where k0 = 0.9/σ, V = 0.35Eσ, and ∆k = 0.07k0. Bottom row:
k0 = 1.8/σ, V = 0.7Eσ and ∆k = 0.035k0. Parameters are chosen such that the weak-
disorder ratio ∆ = 2V 2/(k0σ)2 ≈ 0.3 of perturbation theory is the same [9]. Right panels:
the peak value nk0

of the initial momentum component decreases exponentially, Eq. (5).
The indicated fits yield the elastic scattering times γ−1

0
= τs = 6.7tσ and 2.4tσ, respectively.

rather isotropic scattering with k0σ = 0.9 (upper row) and rather anisotropic scat-
tering k0σ = 1.8 (bottom row).

As the initial peak at +k0 decays, due to elastic scattering by the random po-
tential, other momenta are populated on the (disorder-broadened) Rayleigh ring of
radius k0. Eventually, a CBS peak appears at −k0. In the remainder of this paper,
we rather focus on the dynamics that produces the isotropic background.

From an analytical point of view, since unitary evolution conserves energy, it is
appropriate to study the joint distribution nk(E, t) of energy and momentum, with
marginal nk(t) =

∫

dE
2π
nk(E, t). The density ψψ∗ propagates according to

nk(E, t) =

∫

dω

2π
e−iωt

∑

k′

Φkk′(E,ω)nk′(0), (1)

where the intensity propagator Φkk′(E,ω) obeys the integral equation of motion [9,10]

[−iω + γk(E)]Φkk′(E,ω) = Ak(E)

[

δkk′ +
∑

p

Ukp(E,ω)Φpk′(E,ω)

]

. (2)

This form is valid for small frequencies ω ≪ E and can thus describe the dynamics
at long enough times t ≫ ~/E. The spectral function Ak(E) = 2π 〈k| δ(E −H) |k〉
is the probability density of a plane-wave state k to have energy E. The vertex
Ukp(E,ω) describes all scattering events that couple ψ and ψ∗. It is related to the
elastic scattering rate γk(E) by the so-called Ward identity [9,11]

γk(E) =
∑

p

Ap(E)Upk(E, 0). (3)
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This relation is a variant of the optical theorem, and expresses particle-number con-
servation. Using (−iω)Φkk′(E,ω) from (2) in (1) then yields the equation of motion

∂tnk(E, t) =Ak(E)nk(0)δ(t) − γk(E)nk(E, t)

+Ak(E)

∫

dω

2π
e−iωt

∑

p,k′

Ukp(E,ω)Φpk′(E,ω)nk′(0). (4)

Initially, the populations at k
′ 6= k0 outside the initial wave packet are small.

The most noteworthy evolution is the decay of nk0
as described by the first line of

(4), whose solution immediately leads to nk0
(t) = θ(t)

[∫

dE
2π
Ak0

(E)e−γk0
(E)t

]

nk0
(0).

This is a superposition of simple exponential decays, weighted by the spectral density.
As function of E, Ak(E) is rather sharply peaked around the effective excitation
energy Ek, whereas γk(E) is smooth. Therefore, the dominant behaviour is

nk0
(t) = e−γ0tnk0

(0) (5)

with the elastic scattering rate γ0 = γk0
(Ek0

).
The corresponding numerical data are shown in the right-hand panels of Fig. 1.

For the two regimes of rather strong disorder studied here, we find τs = 6.5tσ for the
first case and τs = 2.4tσ for the second. Lowest-order perturbation theory [9,12] over-
estimates the scattering strength and predicts τs = 2.5tσ and τs = 1.4tσ, respectively.
We have, however, verified that if the simulation is run for V 2/EEσ = 0.005 ≪ 1,
the measured value of τs agrees with [9,12].

3 Diffusive isotropisation

3.1 Master equation

Equation (4) describes the equilibration of populations due to potential scattering.
Whenever the potential-scattering vertex Ukk′(E,ω) is regular for ω → 0, the singu-
lar ω-dependence of Φkk′(E,ω) dominates the ω-integral.1 Using (1) and the Ward
identity (3), one then arrives at a Markovian master equation of the Pauli type:

∂tnk(E, t) =
∑

p

Ukp(E) [Ak(E)np(E, t) −Ap(E)nk(E, t)] . (6)

Assuming a factorised solution nk(E, t) = Ak(E)nk(t), we then obtain a closed mas-
ter equation for the momentum distribution, ∂tnk(t) =

∑

p Ūkp [np(t) − nk(t)], with

transition rates Ūkp =
∫

dE
2π
Ak(E)Ap(E)Ukp(E). The spectral functions fix the ener-

gies at Ep ≈ Ek. Consequently, we can focus on the angular probability density n(θ)
on the circle k = k0(cos θ, sin θ) of elastic scattering. There, scattering from θ to θ′

is described by the on-shell value U(θ − θ′). It is helpful to re-introduce the elastic
scattering rate γ0 = ν0

∫

dθU(θ), in accordance with (3); ν0 = ν(Ek0
) denotes the

1 U(ω) ≈ U(0) can only be factorised from the ω-integral in (4) if it has no singular
dependence in ω. This is true at short times, since the single-scattering term does not
depend on frequency at all and the frequency dependence is smooth for the first interference
corrections. But the CBS contribution develops a diffusion pole at ω = 0 and backscattering.
Thus, the momentum distribution retains a memory of the initial condition and displays the
CBS peak [7]. Even more singular terms appear at the onset of Anderson localisation and
produce the CFS signal [8]. These phenomena are beyond the master-equation approach
developed here.
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(c) k0σ = 1.8

Fig. 2. (a) Fourier coefficients of the momentum distribution on the elastic scattering circle,
up to m = 4, as function of time, for the case k0σ = 1.8. Straight lines are fits to the
exponential decay, Eq. (8), for tσ < t < 5tσ. (b) and (c) Fourier coefficients um of the
scattering phase function, as measured from the numerical data (full red/blue), and at the
single-scattering approximation, Eq. (9) (dashed black). The insets show the reconstructed
phase functions, using moments up to m = 4.

density of states. Finally, the elastic isotropisation of momentum is described by [see
also Eq. (6.83) of [13]]

∂tn(θ, t) = γ0

∫ 2π

0

dθ′u(θ − θ′) [n(θ′, t) − n(θ, t)] , (7)

where u(β) = U(β)[
∫

dθU(θ)]−1 is the normalised differential cross section of elastic
scattering, the so-called phase function.

3.2 Characteristic times

The convolution (7) on the unit circle can be readily solved by Fourier analysis: the
coefficients cm =

∫

dθeimθn(θ) obey the decoupled equations of motion

∂tcm(t) = −γ0(1 − um)cm(t) = −τ−1
m cm(t) (8)

in terms of the phase-function Fourier components um =
∫

dβeimβu(β). By virtue
of u0 = 1, the zeroth mode c0 (i.e., the number of particles) is conserved. The first
harmonic c1 decays exponentially on the transport-time scale τ1 = τs/[1 − 〈cosβ〉],
with the usual notation 〈cosβ〉 = u1 =

∫

dβ cosβu(β) [9] . Higher harmonics decay
with their own times τm = τs/[1 − 〈cosmβ〉].

Only for a completely isotropic phase function with 〈cosmβ〉 = 0 all times τm
are strictly identical to the elastic scattering time τs. Things are more interest-
ing for spatially correlated potentials. Indeed, at the single-scattering approxima-

tion, the Gaussian correlator U
(1)
kp ∝ exp{−σ2(k − p)2/2} has the phase function

u(1)(β) = exp{k2σ2 cosβ}/[2πI0(k
2σ2)] where I0(·) is the modified Bessel function.

The corresponding Fourier coefficients

u(1)
m = Im(k2σ2)/I0(k

2σ2) (9)

decrease as a function of the order m, such that the decay rates τ−1
m increase. In

other words, the highest Fourier modes disappear first, giving way to an ever-broader
background.

In Fig. 2(a), we show the time evolution of the first four Fourier coefficients cm
of the angular distribution in the case k0σ = 1.8, as obtained from the numerical
simulation data shown in Fig. 1 by a radial integration over a small interval around
|k| = k0.
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3.3 Reconstruction of the phase function

From the measured decay of cm(t), one can compute the Fourier coefficients um via
Eq. (8), and thus reconstruct the phase function u(β). Fig. 2(b) and (c) show the um as
measured from the numerical data, together with the single-scattering approximation
(9). In the first case k0σ = 0.9, the higher-order Fourier coefficients of the momentum
distribution are very small. Consequently, the scattering phase function, shown in
the inset of Fig. 2(b), is rather isotropic, as expected for k0σ < 1. In the second
case k0σ = 1.8, the scattering is much more pronounced in the forward direction, as
expected for k0σ ≫ 1.

Compared to the bare single-scattering phase functions (in dashed), the full re-
constructed phase functions show a tendency towards enhanced backscattering. We
may attribute this to weak localization corrections associated with short scattering
paths, which are only known for isotropic scatterers [14].

4 Conclusion

We have analyzed the momentum isotropisation of a quasi-monochromatic wave
packet inside a spatially correlated random potential. Results from the numerical
calculation are well reproduced by a master-equation approach, even in regimes of
strong disorder. We show how to reconstruct the phase function of elastic scattering
from the measured exponential decay times of the angular components of the mo-
mentum distribution. This method is directly applicable in present-day experiments
[3,4], and can serve as an in situ calibration of random potentials, for instance when
investigating the impact of disorder in the presence of interactions [15,16].
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